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Nowhere scattered C �-algebras

Hannes Thiel and Eduard Vilalta

Abstract. We say that a C�-algebra is nowhere scattered if none of its quotients contains a minimal
open projection. We characterize this property in various ways, by topological properties of the
spectrum, by divisibility properties in the Cuntz semigroup, by the existence of Haar unitaries for
states, and by the absence of nonzero ideal-quotients that are elementary, scattered or type I. Under
the additional assumption of real rank zero or stable rank one, we show that nowhere scatteredness
implies even stronger divisibility properties of the Cuntz semigroup.

1. Introduction

A topological space is said to be scattered if each of its nonempty closed subsets contains
an isolated point. Analogously, a C �-algebra is scattered if each of its nonzero quotients
contains a minimal open projection; see Section 2. Here, a minimal open projection in a
C �-algebraA is a projection p 2A such that pApDCp; see Paragraph 2.1. In this paper,
we consider C �-algebras that are very far from scattered.

Definition A. A C �-algebra is nowhere scattered if none of its quotients contains a min-
imal open projection.

Similarly, we say that a topological space is nowhere scattered if none of its closed
subsets contains an isolated point; see Definition 5.1. Thus, one-element sets cannot be
closed, and nowhere scattered spaces are far from being T1, let alone Hausdorff. In Sec-
tion 5, we study this topological notion and the relation to its noncommutative counterpart.
We prove that a separable C �-algebra is nowhere scattered if and only if its spectrum is;
see Theorem 5.3.

Besides this topological description, we also show that nowhere scatteredness admits
various further characterizations: in terms of the structure of ideal-quotients (Section 3),
by the existence of Haar unitaries and maximal abelian subalgebras with diffuse spectrum
(Section 6), and by divisibility properties of the Cuntz semigroup (Section 8). We present
a number of these characterizations in Theorem B below.

For C �-algebras of real rank zero, nowhere scatteredness can be described in terms
of divisibility properties of the Murray–von Neumann semigroup of projections; see The-
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orem 9.1. However, in contrast with the Cuntz semigroup, this invariant does not con-
tain enough information to characterize nowhere scatteredness in the general setting; see
Remark 9.2. In Theorem 9.11, we also provide additional characterizations of nowhere
scatteredness for C �-algebras of stable rank one.

Theorem B (Theorem 3.1, Theorem 6.2, Theorem 8.9). Let A be a C �-algebra. Then the
following are equivalent:

(1) A is nowhere scattered;

(2) every quotient of A is antiliminal;

(3) A has no nonzero elementary/scattered/type I ideal-quotients;

(4) no hereditary sub-C �-algebra of A admits a one-dimensional (a finite-dimen-
sional) irreducible representation;

(5) every positive functional (pure state) on A is nowhere scattered;

(6) for every pure state ' on A and every ideal I � A, there exists a Haar unitary in
zI for ' (there exists a masa C0.X/ � I such that ' induces a diffuse measure on
X with total mass k'jIk);

(7) for every positive functional ' on A and every hereditary sub-C �-algebra B � A,
there exists a Haar unitary in zB for ' (there exists a masa C0.X/ � B such that '
induces a diffuse measure on X with total mass k'jBk);

(8) every element in Cu.A/ is weakly .2; !/-divisible;

(9) every element in Cu.A/ is weakly .k; !/-divisible for every k � 2.

In Section 4, we study permanence properties of such C �-algebras.

Proposition C (Proposition 4.1, Proposition 4.6). Nowhere scatteredness passes to hered-
itary sub-C �-algebras (in particular, ideals), to quotients, and to inductive limits.

Further, nowhere scatteredness satisfies the Löwenheim–Skolem condition: For every
nowhere scattered C �-algebra, the collection of separable, nowhere scattered sub-C �-
algebras is � -complete and cofinal among all separable sub-C �-algebras; see Proposi-
tion 4.11.

The concept of nowhere scattered C �-algebras has implicitly appeared in the literature
before, but not under this name (or any name for that matter). For example, our charac-
terizations in terms of divisibility properties of Cu.A/ can also be derived from results
in [36]; see Remark 8.10. Nowhere scattered, real rank zero C �-algebras have been con-
sidered in [17, 33].

The term ‘nowhere scattered’ was first used in [44] to name positive functionals on
C �-algebras that give no weight to scattered ideal-quotients. It is the purpose of this paper
to initiate a systematic study of nowhere scatteredness by collecting, systematizing and
complementing existing results.
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Terminology and notation

An ideal in a C �-algebra means a closed, two-sided ideal. Given a C �-algebra A, we use
AC to denote the positive elements in A. Given a Hilbert space H , we let B.H/ denote
the C �-algebra of bounded, linear operators on H , and K.H/ is the ideal of compact
operators.

2. Scattered C �-algebras

Following [22, Definition 2.1], a C �-algebra is said to be scattered if each of its states
is atomic, that is, a countable weighted sum of pure states. This definition is inspired by
a result of Pełczyński and Semadeni, [31], which states that a compact, Hausdorff space
X is scattered if and only if every regular Borel probability measure on X is atomic.
Scatteredness admits various characterizations, both for topological spaces and for C �-
algebras – and several of these descriptions are remarkably similar in the two settings; see
Paragraph 2.2.

Note that a locally compact, Hausdorff space X is scattered if and only if its one-point
compactification is, and this is in turn equivalent to C0.X/ being a scattered C �-algebra.
Thus, it follows from [27, Lemma 2.2] that a C �-algebra A is scattered if and only if for
each commutative sub-C �-algebra C0.X/ � A the space X is scattered.

2.1. By a minimal open projection in aC �-algebraAwe mean a nonzero projection p 2A
such that pAp D Cp. In some parts of the literature, such projections are simply called
‘minimal projections’, for example [19, Definition 1.1]. We do not follow this convention
since it could potentially lead to confusion: one could understand a minimal projection in
a C �-algebra to be a nonzero projection p such that every subprojection q of p satisfies
q D 0 or q D p, and this would include projections like the unit of the Jiang–Su algebra.

Let us justify our terminology: An open projection in a C �-algebra A is a projection
p 2 A�� such that there exists an increasing net in AC that converges in the weak*-
topology of A�� to p. Then pA��p \ A is a hereditary sub-C �-algebra of A, and this
induces a natural bijection between open projections in A and hereditary sub-C �-algebras
of A. For details we refer to [30, p. 77f].

Claim: Let p 2 A�� be an open projection. Then p belongs to A and satisfies pAp D
Cp if and only if p is minimal in the sense that for every open projection q 2 A�� with
q � p we have q D 0 or q D p. Indeed, the forward implication is clear. Conversely,
assume that p is minimal in the above sense and set B WD pA��p \A. If x; y 2 B satisfy
xy D 0, then x�x and yy� are orthogonal, positive elements, whose support projections
are orthogonal open subprojections of p. Using minimality of p, we deduce that x�x D 0
or yy� D 0, which shows that B has no zero divisors and thus B Š C by the Gelfand–
Mazur theorem. This implies that B is unital and thus p 2 A, and also pAp D Cp.
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2.2. Let A be a C �-algebra (X be a locally compact, Hausdorff space). Then, the follow-
ing are equivalent:

(1) A is scattered, that is, every state on A is atomic;
(every regular Borel probability measure on X is atomic, [31]);

(2) A�� is an atomic von Neumann algebra, that is, A�� is isomorphic to a product
of type I factors, [22, Theorem 2.2];

(3) A� has the Radon–Nikodỳm property, [12, Theorem 3];

(4) for every separable sub-C �-algebra B � A, the dual space B� is separable – to
see this, note that (3) implies (4) by [12, Theorem 1], and that (4) implies (12)
since C0..0; 1�/ is a separable C �-algebra with nonseparable dual space;

(5) A admits a composition series .I�/� such that each successive quotient I�C1=I�
is elementary, [23, Theorem 2];

(6) A is type I and yA is scattered, [23, Corollary 3];

(7) A is type I and the center of A is scattered, [26, Theorem 2.2];

(8) every sub-C �-algebra of A has real rank zero, [27, Theorem 2.3];
(every continuous image of X is zero-dimensional, [31]);

(9) every nonzero sub-C �-algebra of A contains a minimal open projection, [19,
Theorem 1.4];

(10) the spectrum of every selfadjoint element in A is countable, [21];
(every continuous function X ! R has countable range, [39, Corollary 8.5.6]);

(11) every quotient of A contains a minimal open projection, [19, Theorem 1.4];
(X is scattered, that is, every closed subset of X contains an isolated point);

(12) there exists no sub-C �-algebra C0..0; 1�/ � A, [19, Theorem 1.4];
(there is no continuous, surjective map X ! Œ0; 1�, [31]).

3. Nowhere scattered C �-algebras

In this section, we prove basic characterizations of nowhere scatteredness; see Theo-
rem 3.1. We observe that (weakly) purely infinite C �-algebras are nowhere scattered,
and we show that a von Neumann algebra is nowhere scattered if and only if its type I
summand is zero; see Example 3.3 and Proposition 3.4 respectively.

A C �-algebra is elementary if it is isomorphic to the algebra of compact operators on
some Hilbert space. An ideal-quotient of a C �-algebra A is a (closed, two-sided) ideal of
a quotient of A. A relatively open subset of a closed subset of a topological space is said
to be locally closed. Using the correspondence between ideals (quotients) of A and open
(closed) subsets of its primitive ideal space Prim.A/, it follows that ideal-quotients of A
correspond to locally closed subsets of Prim.A/.
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An element a 2AC is abelian if the hereditary sub-C �-algebra aAa is commutative. A
C �-algebra is type I if every nonzero quotient contains a nonzero, abelian element; see [8,
Definition IV.1.1.6]. A C �-algebra is antiliminal if it contains no nonzero abelian positive
elements; see [8, Definition IV.1.1.6]. An irreducible representation � WA!B.H/ is said
to be GCR if �.A/ \K.H/ ¤ ¹0º.

Theorem 3.1. Let A be a C �-algebra. Then the following are equivalent:

(1) A is nowhere scattered (no quotient contains a minimal open projection);

(2) every quotient of A is antiliminal;

(3) A has no nonzero ideal-quotients of type I;

(4) A has no nonzero scattered ideal-quotients;

(5) A has no nonzero elementary ideal-quotients;

(6) A has no nonzero irreducible GCR representation;

(7) no hereditary sub-C �-algebra of A admits a finite-dimensional irreducible repre-
sentation;

(8) no hereditary sub-C �-algebra of A admits a one-dimensional irreducible repre-
sentation.

Proof. Let us first prove that (1) implies (2). Assume that there exists an ideal I � A such
that A=I is not antiliminal. Set B WD A=I and choose a nonzero, abelian element b 2 BC.
This allows us to obtain an ideal J � bBb such that bBb=J Š C. LetK � B be the ideal
generated by J . Since bBb � B is hereditary, we have K \ bBb D J . It follows that the
image of bBb under the quotient map B ! B=K is isomorphic to bBb=J , and so B=K
contains a minimal open projection, which contradicts (1), as required.

To show that (2) implies (3), let I � J � A be ideals such that J=I is nonzero and of
type I. Then J=I contains a nonzero, abelian element, whenceA=I is not antiliminal. The
implications ‘(3))(4))(5)’ follow using that every elementary C �-algebra is scattered,
and that every scattered C �-algebra is type I.

Now assume that there exists a nonzero irreducible GCR representation � WA!B.H/.
Then K.H/ � �.A/ by [8, Corollary IV.1.2.5]. Let I be the kernel of � , and set J WD
��1.K.H//. Then I � J � A are ideals such that J=I Š K.H/. This proves that (5)
implies (6).

To see that (6) implies (7), let B � A be a hereditary sub-C �-algebra, and let �0WB!
B.H0/ be a nonzero, finite-dimensional irreducible representation. Extend �0 to an irre-
ducible representation � WA! B.H/ on some Hilbert space H containing H0, such that
H0 is invariant under �.B/ and such that �.b/� D �0.b/� for all b 2 B and � 2 H0; see
[8, Proposition II.6.4.11].

Let H1 be the essential subspace of �jB , that is, the closed linear subspace of H gen-
erated by �.B/H . By [8, Proposition II.6.1.9], the restriction of �jB to H1 is irreducible.
SinceH0 is a closed subspace ofH1 that is invariant under �.B/, it follows thatH0DH1.
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Let p 2 B.H/ denote the orthogonal projection ontoH0. Then p�.b/D �.b/ and there-
fore �.b/D �.b/p D p�.b/p for every b 2 B . Thus, �.B/ �K.H/, and it follows that
� is GCR.

The implication ‘(7))(8)’ is clear. Finally, to see that (8) implies (1), let I � A be an
ideal and let p 2A=I be a minimal open projection. Let � WA!A=I be the quotient map.
Set B WD ��1.Cp/. Then B is a hereditary sub-C �-algebra of A that admits a nonzero,
one-dimensional representation.

Example 3.2. A simpleC �-algebra is nowhere scattered if and only if it is not elementary.
In particular, a unital simple C �-algebra is nowhere scattered if and only if it is infinite-
dimensional.

A C �-algebra A is purely infinite (in the sense of Kirchberg–Rørdam, [24, Defini-
tion 4.1]) if and only if every element x of its Cuntz semigroup Cu.A/, as defined in
Paragraph 7.1, satisfies 2x D x; see [24, Theorem 4.16] and [4, Proposition 7.2.8].

More generally, A is said to be weakly purely infinite if there exists n 2 N such that
every x 2 Cu.A/ satisfies 2nx D nx; see [25, Definition 4.3]. Every purely infinite C �-
algebra is weakly purely infinite, and it is an open problem if the converse holds.

A C �-algebraA is traceless if no algebraic ideal ofA admits a nonzero quasitrace; see
[25, Definition 4.2]. Equivalently, every lower-semicontinuous 2-quasitrace AC! Œ0;1�

(in the sense of [16]) takes only values in ¹0;1º; see [9, Remark 2.27 (viii)]. Using the
correspondence between quasitraces onA and functionals on Cu.A/, this is also equivalent
to the property that every x 2 Cu.A/ satisfies 2yx D yx. Consequently, every weakly purely
infinite C �-algebra is traceless; see [25, Theorem 4.8].

Example 3.3. Since every elementary C �-algebra admits a nontrivial quasitrace, it fol-
lows that a traceless C �-algebra cannot have nonzero elementary ideal-quotients. Using
Theorem 3.1, we deduce that every traceless C �-algebra is nowhere scattered. In particu-
lar, every (weakly) purely infinite C �-algebra is nowhere scattered.

Proposition 3.4. A von Neumann algebra is nowhere scattered if and only if its type I sum-
mand is zero.

Proof. Let M be a von Neumann algebra. To show the forward implication, assume that
M is nowhere scattered. If p 2 M is a nonzero abelian projection, then the hereditary
sub-C �-algebra pMp is commutative and therefore admits a one-dimensional irreducible
representation. Thus, it follows from Theorem 3.1 that M contains no nonzero abelian
projections, and thus its type I summand is zero.

To show the converse implication, assume that the type I summand of M is zero. To
reach a contradiction, assume that B � M is a hereditary sub-C �-algebra that admits a
finite-dimensional, irreducible representation � ; see Theorem 3.1. Choose a projection
p 2 B such that �.p/ ¤ 0. Since M has no type I summand, for each n � 1 we can
find 2n pairwise orthogonal and equivalent projections whose sum is equal to p; see [42,
Proposition V.1.35]. This contradicts that �.p/ has nonzero, finite rank.
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4. Permanence properties

In this section, we show that nowhere scatteredness enjoys many permanence properties.
In particular, it passes to hereditary sub-C �-algebras (hence, ideals), quotients, and induc-
tive limits.

Proposition 4.1. Let A be a nowhere scattered C �-algebra. Then every quotient and
every hereditary sub-C �-algebra of A is nowhere scattered.

Proof. This follows from Theorem 3.1, since condition (2) passes to quotients, and con-
dition (7) passes to hereditary sub-C �-algebras.

Proposition 4.2. Let A be a C �-algebra, and let I � A be an ideal. Then A is nowhere
scattered if (and only if) I and A=I are nowhere scattered.

Proof. Assume that I and A=I are nowhere scattered. To verify condition (4) of Theo-
rem 3.1, let J � K � A be ideals such that K=J is scattered. Then I \ J � I \K � I
are ideals such that .I \K/=.I \ J / is isomorphic to an ideal of K=J and is therefore
scattered. Since I is nowhere scattered, we get I \ J D I \K.

Similarly, J=I \ J �K=I \K �A=I are ideals such that .J=I \ J /=.K=I \K/ is
isomorphic to a quotient of J=K and therefore scattered. Since A=I is nowhere scattered,
we get J=I \ J D K=I \K. It follows that J D K.

A C �-algebra is scattered if and only if each of its sub-C �-algebras has real rank zero;
see Paragraph 2.2. It follows that every sub-C �-algebra of a scattered C �-algebra is again
scattered. The analog for nowhere scatteredness does not hold: Take, for example, C � A
in any unital, nowhere scattered C �-algebra A.

Conversely, given a full sub-C �-algebra B � A, it is natural to ask if A is nowhere
scattered whenever B is. Without extra assumptions, this fails: Consider for example a
type II factor M � B.H/. By Proposition 3.4, M is nowhere scattered, but B.H/ con-
tains an elementary ideal and therefore is not nowhere scattered. The ‘right’ additional
condition is for B to separate the ideals of A, that is, two ideals I; J � A satisfy I D J
whenever I \ B D J \ B .

Proposition 4.3. Let A be C �-algebra, and let B � A be a nowhere scattered sub-C �-
algebra that separates the ideals of A. Then A is nowhere scattered.

Proof. Let I � J � A be ideals with J=I scattered. In order to prove condition (4) in
Theorem 3.1, we show that this ideal-quotient is zero.

Note that .J \ B/=.I \ B/ is scattered since it is isomorphic to a subalgebra of J=I .
Since B is nowhere scattered, it follows that J \B D I \B , and thus J D I , as desired.
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Example 4.4. Consider an action of an exact, discrete group G on a nowhere scattered
C �-algebra A. Assume that the induced action G Õ yA is essentially free. Then, by [41,
Theorem 1.20], A separates the ideals of the reduced crossed product A Ìred G. Hence,
A Ìred G is nowhere scattered by Proposition 4.3.

Given a C �-algebra A, recall that a family .A�/�2ƒ of sub-C �-algebras A� � A is
said to approximate A if for every finite subset ¹a1; : : : ; anº � A and " > 0 there exists
� 2 ƒ and b1; : : : ; bn 2 A� such that kak � bkk < " for k D 1; : : : ; n.

Proposition 4.5. Let A be C �-algebra, and let .A�/�2ƒ be a family of nowhere scattered
sub-C �-algebras of A that approximates A. Then A is nowhere scattered.

Proof. As above, let us prove condition (4) of Theorem 3.1. Take I � J � A ideals
such that J=I is scattered. For each �, the ideal-quotient .A� \ J /=.A� \ I / of A� is
isomorphic to a subalgebra of J=I and therefore scattered. Since A� is nowhere scattered,
we get A� \ J D A� \ I .

To verify that J D I , let a 2 JC. Given " > 0, use that .A�/�2ƒ approximates A
and a functional calculus argument to obtain � and a positive element b 2 A� such that
ka � bk < ". Consider the "-cut-down .b � "/C as in Paragraph 7.1. Then there exists
r 2 A such that .b � "/C D rar�; see, for example, [43, Lemma 2.29]. Since J is an
ideal, and since A� is closed under functional calculus, we deduce that .b � "/C belongs
to A� \ J , and thus to I . We have ka � .b � "/Ck < 2", and since " > 0 was arbitrary,
we deduce that a 2 I , as desired.

Proposition 4.6. An inductive limit of nowhere scattered C �-algebras is nowhere scat-
tered.

Proof. Letƒ be a directed set, let .A�/�2ƒ be a family of nowhere scattered C �-algebras,
and let '�;�WA� ! A� be coherent connecting morphisms for � � � in ƒ. The inductive
limit of this system is given by a C �-algebra A together with morphisms into the limit
'�WA�! A. For each �, set B� WD '�.A�/ � A. Then B� is a quotient of A�, and there-
fore is nowhere scattered by Proposition 4.1. It follows from standard properties of the
inductive limit that .B�/� approximates A. Hence, A is nowhere scattered by Proposi-
tion 4.5.

Lemma 4.7. Let A be a C �-algebra, and let a 2 AC. Then aAa has no one-dimensional
irreducible representations if and only if there exists a countable subset G � A such that
.axa/2 D 0 for each x 2 G, and such that a 2 C �.¹axa W x 2 Gº/.

Proof. Without loss of generality, we may assume that a is strictly positive and thus A D
aAa. To show the backward implication, assume that G has the stated properties, and
let � WA! C be a one-dimensional representation. Given x 2 G, we have �.axa/2 D
�..axa/2/ D 0, and therefore �.axa/ D 0. It follows that �.a/ D 0, and thus � D 0, as
desired.
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To show the forward implication, assume that A has no one-dimensional irreducible
representations. Set N2 WD ¹y 2 A W y2 D 0º. An additive commutator in A is an element
of the form cd � dc for some c; d 2 A. Let L denote the linear span of the additive
commutators in A. Then, A is generated by L as a (closed, two-sided) ideal. By [35,
Theorem 1.3], the C �-algebra generated by L agrees with the (closed, two-sided) ideal
generated by L. Hence, A D C �.L/. By [35, Corollary 2.3], the closure of L agrees with
the closed, linear span of N2, which implies that A D C �.N2/. This allows us to choose
a countable subset F � N2 such that a 2 C �.F /. The statement now follows from the
following claim.

Claim: Let y 2 N2 and  > 0. Then there exists x 2 A such that axa 2 N2 and
ky � axak <  .

We may assume that kyk � 1. By [40, Theorem 5], the universalC �-algebra generated
by a contractive, square-zero element is projective. This implies that the corresponding
relations are stable (see for example [28, Theorem 14.1.4]), that is, for every " > 0 there
exists ı D ı."/ > 0 such that if z is an element in a C �-algebra satisfying kzk � 1 and
kz2k � ı, then there exists a contractive, square-zero element z0 with kz � z0k < ".

For each n � 1, let fnWR! Œ0; 1� be a continuous function that takes the value 0 on
.�1; 1

n
� and that takes the value 1 on Œ 2

n
;1/. Then .fn.a//n is an approximate unit forA.

Thus, limn!1 k.fn.a/yfn.a//
2k D 0. Thus, we can find m � 1 such that

k.fm.a/yfm.a//
2
k < ı

�
2

�
and ky � fm.a/yfm.a/k <



2
:

We view fm.a/yfm.a/ as an element of the sub-C �-algebra fm.a/Afm.a/. Using
also that fm.a/yfm.a/ is contractive, we obtain z 2 fm.a/Afm.a/ such that z2 D 0 and
kz � fm.a/yfm.a/k <


2

. Then ky � zk <  .
It remains to show that z D axa for some x 2 A. Note that f2m.a/ acts as a unit on

fm.a/Afm.a/. Using functional calculus, choose b 2 A such that f2m.a/D ab D ba. We
obtain

z D f2m.a/zf2m.a/ D abzba;

and thus x WD bzb has the claimed properties.

Proposition 4.8. Let A be a C �-algebra. Then the following are equivalent:

(1) A is nowhere scattered;

(2) for every a 2 AC there exists b 2 AC with ka � bk < 1
2

and such that

.b � 1
2
/CA.b �

1
2
/C

has no one-dimensional irreducible representations;

(3) for every a 2 AC there exist b 2 AC with ka � bk < 1
2

and a countable sub-
set G � A such that ..b � 1

2
/Cx.b �

1
2
/C/

2 D 0 for each x 2 G and such that
.b � 1

2
/C 2 C

�.¹.b � 1
2
/Cx.b �

1
2
/C W x 2 Gº/.
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Proof. If A is nowhere scattered, then by Theorem 3.1 every hereditary sub-C �-algebra
of A has no one-dimensional irreducible representations. This shows that (1) implies (2).
The equivalence between (2) and (3) follows from Lemma 4.7.

It remains to show that (2) implies (1). Thus, assume that (2) holds, and note that
it suffices to verify statement (8) of Theorem 3.1. So let B � A be a hereditary sub-
C �-algebra. To reach a contradiction, let � W B ! C be a one-dimensional irreducible
representation. Extend � to an irreducible representation z� ofA on some Hilbert spaceH ,
such that there is a one-dimensional subspace H0 � H that is invariant under z�.B/, and
such that z�jB agrees with � on H0.

Choose a 2BC with �.a/D 1. By assumption, we obtain b 2AC such that ka� bk<
1
2

, and such that .b � 1
2
/CA.b �

1
2
/C has no one-dimensional irreducible representations.

By [25, Lemma 2.2], there exists y 2 A such that .b � 1
2
/C D yay�. Set x WD ya1=2.

Then
.b � 1

2
/C D xx

� and x�x 2 aAa � B:

This implies that x�Ax is isomorphic (as a C �-algebra) to xAx�. We have xAx� D
.b � 1

2
/CA.b �

1
2
/C, which does not have one-dimensional irreducible representations. It

follows that x�Ax has no one-dimensional irreducible representations, and thus � van-
ishes on x�Ax. Hence, �.x�x/ D 0, and z�.x�x/ D 0. This implies z�.x/ D 0, and so

z�
�
.b � 1

2
/C
�
D z�.xx�/ D 0:

But
ka � .b � 1

2
/Ck � ka � bk C kb � .b �

1
2
/Ck < 1;

and thus k�.a/k D kz�.a/k < 1, a contradiction.

Remark 4.9. In condition (2) of Proposition 4.8, it is not enough to require bAb to have
no one-dimensional irreducible representations. Indeed, in any unital C �-algebra A with-
out one-dimensional irreducible representations (for example ADM2), for every a 2 AC
and " > 0 we can set b D aC "

2
2 AC, which satisfies ka � bk < " and bAb D A.

Proposition 4.10. Let A be a nowhere scattered C �-algebra, and let B0 � A be a sepa-
rable sub-C �-algebra. Then there exists a separable, nowhere scattered sub-C �-algebra
B � A such that B0 � B .

Proof. We will inductively choose:

• an increasing sequence B0 � B1 � � � � of separable sub-C �-algebras of A;

• for each k � 0, a countable, dense subset Fk � .Bk/C;

• for each b 2 Fk a countable set Gk;b � A such that ..b � 1
2
/Cx.b �

1
2
/C/

2 D 0 for
every x 2 Gk;b , and such that .b � 1

2
/C belongs to the sub-C �-algebra generated by

¹.b � 1
2
/Cx.b �

1
2
/C W x 2 Gk;bº.

We will also ensure that Gk;b � BkC1 for each k � 0 and b 2 Fk .
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Let k � 0, and assume that we have chosen Bk . We will describe how to choose Fk ,
Gk;b and BkC1. First, let Fk be any countable, dense subset of .Bk/C. For each b 2 Fk ,
using that .b � 1

2
/CA.b �

1
2
/C has no irreducible one-dimensional representations (since

A is nowhere scattered), we can apply Lemma 4.7 to obtain a countable subset Gk;b � A
with the claimed properties. Then let BkC1 be the sub-C �-algebra of A generated by Bk
together with

S
b2Fk

Gk;b .

Set B WD
S
k Bk . Then B is a separable sub-C �-algebra of A containing B0. To see

that B is nowhere scattered, we verify statement (3) of Proposition 4.8. So let a 2 BC.
Using that

S
k Fk is dense in BC, we can find k and b 2 Fk such that ka � bk < 1

2
. By

construction, B contains the set Gk;b , which satisfies the desired conditions.

A property P for C �-algebras satisfies the Löwenheim–Skolem condition if for every
C �-algebra A with property P there exists a family � of separable sub-C �-algebras of A
that each have property P , and such that � is � -complete (for every countable, directed
subfamily D � � , theC �-algebra

S
D �A belongs to �) and cofinal (for every separable

sub-C �-algebra B0 � A there exists B 2 � with B0 � B).
It is known that many interesting properties of C �-algebras (such as real rank zero,

stable rank one, nuclearity, simplicity) satisfy the Löwenheim–Skolem condition.
For properties of Cu-semigroups, the Löwenheim–Skolem condition was considered

in [46], where it was also shown that properties like (O5), (O6) and weak cancellation
each satisfy it; see Sections 7 and 9 for definitions.

Proposition 4.11. Let A be a nowhere scattered C �-algebra. Then the family � of sepa-
rable, nowhere scattered sub-C �-algebras of A is � -complete and cofinal. In particular,
nowhere scatteredness satisfies the Löwenheim–Skolem condition.

Proof. To show that � is � -complete, let D � � be a countable, directed subfamily. ThenS
D is the inductive limit of D , considered as a net indexed over itself. Hence, it follows

from Proposition 4.6 that
S

D is nowhere scattered and thus belongs to � , as desired.
Further, by Proposition 4.10, � is cofinal.

Proposition 4.12. Let A and B be Morita equivalent C �-algebras. Assume that A is
nowhere scattered. Then so is B .

In particular, a C �-algebra D is nowhere scattered if and only if its stabilization
D ˝K is.

Proof. By [8, Theorem II.7.6.9], A and B are isomorphic to complementary full corners
in another C �-algebra, that is, there exists a C �-algebra C and a projection p 2 M.C/
such that pCp and .1� p/C.1� p/ are full (hereditary) sub-C �-algebras of C satisfying
A Š pCp and B Š .1 � p/C.1 � p/.

Assuming that A is nowhere scattered, it follows that pCp is as well. Since pCp is a
full hereditary sub-C �-algebra, it separates the ideals of C . Hence, C is nowhere scattered
by Proposition 4.3. Using that .1 � p/C.1 � p/ is a hereditary sub-C �-algebra of C , it is
nowhere scattered by Proposition 4.1. Thus, B is nowhere scattered.
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Proposition 4.13. Let .Aj /j2J be a family of nowhere scattered C �-algebras. Then the
direct sum

L
j2J Aj is nowhere scattered.

Proof. By Proposition 4.2, nowhere scatteredness passes to sums of finitely many sum-
mands. Thus, for every finite subset F � J , the sum

L
j2F Aj is nowhere scattered.

Now the result follows from Proposition 4.6, using that
L
j2J Aj is the inductive limit ofL

j2F Aj , indexed over the finite subsets of J ordered by inclusion.

The next example shows that nowhere scatteredness does not pass to products (of
infinitely many summands).

Example 4.14. By [36, Corollary 8.6], there exists a sequence .Ak/k2N of unital, simple,
infinite-dimensional C �-algebras such that their product

Q
k Ak has a one-dimensional,

irreducible representation. Thus, while each Ak is nowhere scattered, their product is not.
This example also shows that nowhere scatteredness does not pass to multiplier alge-

bras of separable C �-algebras. As an example, consider A WD
L
k Ak with Ak as above.

Then A is separable and nowhere scattered by Proposition 4.13. Further, it is well known
that M.A/ is canonically isomorphic to

Q
k Ak ; see, for example, [8, II.8.1.3].

Example 4.15. LetM be a type II1 factor, let 'WM ! C be a pure state, and let A be the
associated hereditary kernel, that is,

A D
®
a 2M W '.aa�/ D '.a�a/ D 0

¯
:

By [38, Theorem 1], A is a simple C �-algebra such thatD.A/=AŠC, whereD.A/ is
Sakai’s derived algebra. Pedersen showed that the derived algebra of a simple C �-algebra
is naturally isomorphic with its multiplier algebra; see the remarks after Proposition 2.6
in [29].

Thus,A is a simple, nowhere scattered C �-algebra withM.A/=AŠC, whenceM.A/
is not nowhere scattered.

Examples 4.14 and 4.15 above show that for a nonunital, nowhere scattered C �-
algebra A the multiplier algebra M.A/ may have a one-dimensional irreducible repre-
sentation (and hence M.A/ is not nowhere scattered) even if we additionally assume that
A is separable or simple. We suspect that there are also examples for the case that A is
separable and simple.

Question 4.16. Does there exist a nonunital, separable, simple, nonelementary C �-alge-
bra A such that M.A/ has a one-dimensional irreducible representation?

Sufficient conditions which ensure that the multiplier algebra of a C �-algebra is no-
where scattered are studied in [49].
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5. Topological characterizations

A topological space X is said to be scattered (or dispersed) if every nonempty closed
subset C of X contains a point that is isolated relative to C .

Definition 5.1. We say that a topological spaceX is nowhere scattered if no closed subset
of X contains an isolated point.

A subset of a topological space is said to be perfect if it is closed and contains no
isolated points. Thus, a topological space is nowhere scattered if and only if each of its
closed subsets is perfect. It follows that nowhere scatteredness passes to closed subspaces.
Further, using that an isolated point in an open subset is also isolated in the whole space,
we see that nowhere scatteredness passes to open subspaces, and thus to locally closed
subspaces. Considering one-element subsets shows that nowhere scatteredness does not
pass to every subspace.

Proposition 5.2. Let X be a topological space. Then the following are equivalent:

(1) X is nowhere scattered;

(2) X has no nonempty, scattered, locally closed subsets;

(3) X has no nonempty, locally closed subset that is T1;

(4) X has no locally closed subset containing only one element.

Proof. Since nowhere scatteredness passes to locally closed subsets, and since a nowhere
scattered space is not scattered, we see that (1) implies (2). Since a singleton is scattered,
it follows that (2) implies (3). It is clear that (3) implies (4). Finally, it follows directly
from the definition that (4) implies (1).

Let A be a C �-algebra. We use yA to denote the spectrum of A, that is, the set of
unitary equivalence classes of irreducible representations of A, equipped with the hull-
kernel topology. We refer to [8, Paragraph II.6.5.13] for details.

By [23, Corollary 3], A is scattered if and only if A is of type I and yA is scattered as a
topological space. A separable C �-algebra is of type I if and only if its spectrum is a T0-
space; see [8, Theorem IV.1.5.7]. Since scattered spaces are T0, it follows that a separable
C �-algebra A is scattered if and only if yA is scattered. The assumption of separability
is necessary: Akemann and Weaver’s counterexample to the Naimark problem, [1], is a
C �-algebra that is nonelementary and simple (hence, not scattered), but whose spectrum
is a one-point space (hence, scattered). This also shows that the forward implication in
Theorem 5.3 below does not hold for general nonseparable C �-algebras, although the
backwards implication does.

Theorem 5.3. A separable C �-algebra is nowhere scattered if and only if its spectrum is.

Proof. Let A be a separable C �-algebra. By Theorem 3.1, A is nowhere scattered if and
only if it has no nonzero scattered ideal-quotients. On the other hand, by Proposition 5.2,
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yA is nowhere scattered if and only if it has no nonempty scattered locally closed subsets.
Using that a separableC �-algebra is scattered if and only if its spectrum is (see [23, Corol-
lary 3]), the result now follows from the natural correspondence between ideal-quotients
of A and locally closed subsets of yA.

6. Diffuse masas and Haar unitaries

In this section, we observe that a C �-algebra is nowhere scattered if and only if each
of its positive functionals is. We use this result to connect nowhere scatteredness of a
C �-algebra to the existence of Haar unitaries and diffuse masas (maximal abelian sub-
C �-algebras) for positive functionals.

Let A be a C �-algebra, and let 'WA! C be a positive functional. We say that ' is
nowhere scattered if it gives no weight to scattered ideal-quotients ofA, that is, if k'jIk D
k'jJ k whenever I � J � A are ideals such that J=I is scattered; see [44, Definition 3.5].

If A is unital, then a unitary u 2 A is said to be a Haar unitary with respect to ' if
'.uk/ D 0 for all k 2 Z n ¹0º; see [44, Definition 4.8]. This definition is a generalization
to the setting of positive functionals of the well-established notion of Haar unitaries with
respect to traces. By [44, Proposition 4.9], ' admits a Haar unitary if and only if there
exists a unital (maximal) abelian sub-C �-algebra C.X/ � A such that ' induces a diffuse
measure on X . We extend this to the nonunital setting in Lemma 6.1 below.

Lemma 6.1. Let ' be a positive functional on a nonunital C �-algebra A, and let zA WD
A C C1 � A�� be the minimal unitization of A. Set z' WD '��j zAW

zA! C, which is the
canonical extension of ' to a positive functional on zA. Then z' admits a Haar unitary if
and only if there exists a maximal abelian sub-C �-algebraC0.X/�A such that ' induces
a diffuse measure � on X with �.X/ D k'k.

Proof. To show the backward implication, assume that we have an abelian sub-C �-algebra
C0.X/ � A with the stated properties. We identify C0.X/C C1 � zA with C. zX/, where
zX is the forced one-point compactification ofX . Recall that, ifX is already compact, then
zX is the disjoint union of X and one extra point.

Let z� be the measure on zX induced by z'. Then

z�. zX/ D kz'k D k'k D �.X/:

Hence, z�. zX n X/ D 0, which implies that z� is diffuse. It follows that a Haar unitary
for z' can be found in C0.X/CC1 � zA.

Conversely, assume that z' admits a Haar unitary. By [44, Proposition 4.9], we obtain
a maximal abelian sub-C �-algebra C.Y / � zA such that z' induces a diffuse measure �
on Y . We claim that A \ C.Y / has the desired properties.

Note that 1 2 C.Y /. Let � W zA! C be the canonical one-dimensional representation
such that ker.�/ D A. The restriction of � to C.Y / corresponds to the evaluation at a
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point y 2 Y , and the ideal A \ C.Y / of C.Y / naturally corresponds to the open subset
X WD Y n ¹yº. We identify C0.X/ with A \ C.Y /, and we note that the measure on X
induced by 'jC0.X/ is the restriction of � to X . This measure on X is therefore diffuse.

Using that � is diffuse on Y , we have �.X/ D �.Y / and thus

�.X/ D �.Y / D kz'k D k'k:

Finally, using thatC.Y /� zA is maximal abelian, it follows thatC0.X/�A is maximal
abelian as well.

Theorem 6.2. Let A be a C �-algebra. Then the following are equivalent:

(1) A is nowhere scattered;

(2) every positive functional on A is nowhere scattered;

(3) every pure state on A is nowhere scattered;

(4) for every positive functional 'WA!C and every hereditary sub-C �-algebra B �
A there exists a Haar unitary in zB with respect to ';

(5) for every pure state 'WA! C and every ideal I � A there exists a Haar unitary
in zI with respect to ';

(6) for every positive functional 'WA!C and every hereditary sub-C �-algebra B �
A there exists a maximal abelian sub-C �-algebra C0.X/� B such that ' induces
a diffuse measure � on X with �.X/ D k'jBk;

(7) for every pure state 'WA ! C and every ideal I � A there exists a maximal
abelian sub-C �-algebra C0.X/ � I such that ' induces a diffuse measure � on
X with �.X/ D k'jIk.

Proof. By Theorem 3.1, A is nowhere scattered if and only if A has no nonzero scattered
ideal-quotients. This shows that (1) implies (2), which in turn implies (3). To see that (3)
implies (1), assume for the sake of contradiction that A is not nowhere scattered. Then
there exist ideals I � J � A such that J=I is nonzero and scattered. Choose a nonzero
pure state '0 on J=I . Composing with the quotient map J ! J=I we obtain a pure state
' on J , which we can extend to a pure state z' on A. Then z'jI D 0, while z'jJ ¤ 0, which
shows that z' is a pure state on A that is not nowhere scattered, a contradiction.

By [44, Theorem 4.11], (2) is equivalent to (4). Similarly, (3) is equivalent to (5).
Finally, it follows from Lemma 6.1 that (4) is equivalent to (6), and that (5) is equivalent
to (7).

7. A new property of Cuntz semigroups

We introduce a new property for Cu-semigroups, called (O8); see Definition 7.2. This new
property can be thought of as the Cu-semigroup version of the projectivity of C0..0; 1�/˚
C0..0; 1�/, which allows one to lift orthogonal positive elements in a quotient of a C �-
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algebra. We show that the Cuntz semigroup of every C �-algebra satisfies (O8); see The-
orem 7.4. We also deduce a result that can be interpreted as the Cu-version of the projec-
tivity of Mn.C0..0; 1�//; see Proposition 7.8.

7.1. Let A be a C �-algebra. Given a; b 2 AC, one says that a is Cuntz subequivalent
to b, denoted a - b, if there is a sequence .rn/n in A such that limn ka � rnbr

�
nk D 0.

Further, a is said to be Cuntz equivalent to b, in symbols a � b, if a - b and b - a. The
Cuntz semigroup of A is the set of Cuntz equivalence classes of positive elements in the
stabilization of A, that is,

Cu.A/ WD .A˝K/C=�;

where the class of a positive element a is denoted by Œa�. One equips Cu.A/ with the
addition induced by the orthogonal sum, and with the partial order given by Œa� � Œb� if
a - b. This turns Cu.A/ into a partially ordered, abelian monoid.

As shown in [14], the Cuntz semigroup of any C �-algebra enjoys additional order-
theoretic properties; see also [6] and [4]. To state them, recall that given two elements
x; y in a partially ordered set, one says that x is way-below y, denoted x� y, if for every
increasing sequence .yk/k with supremum satisfying y � supk yk there exists k0 such that
x � yk0 . Given a C �-algebra A, Œa�� Œb� in Cu.A/ if and only if there exists " > 0 such
that a - .b � "/C, where .b � "/C is the "-cut-down of b obtained by applying functional
calculus for the function t 7! max¹0; t � "º to b.

One says that a positively ordered, abelian monoid S is a Cu-semigroup, also called
abstract Cuntz semigroup, if the following conditions are satisfied:

(O1) Every increasing sequence in S has a supremum.

(O2) For every x 2 S there exists a�-increasing sequence .xn/n with x D supn xn.

(O3) If x0 � x and y0 � y in S , then x0 C y0 � x C y.

(O4) If .xn/n and .yn/n are increasing sequences in S , then

sup
n
.xn C yn/ D sup

n
xn C sup

n
yn:

By [14], Cu.A/ is a Cu-semigroup for every C �-algebra A.
Since the introduction of Cu-semigroups, the Cuntz semigroup of any C �-algebra has

been shown to satisfy additional properties, such as the two stated below; see [4] and [34]
respectively, and also [2].

(O5) Given xC y � z, x0� x and y0� y in S there exists c 2 S such that x0C c �
z � xC c and y0� c. (This property is often applied with y0 D y D 0, in which
case it says that for x0� x � z there exists an ‘almost complement’ c such that
x0 C c � z � x C c.)

(O6) Given x0 � x � y C z in S there exist e; f 2 S such that x0 � e C f with
e � x; y, and f � x; z.
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Definition 7.2. Let S be a Cu-semigroup. We say that S satisfies (O8) if for all x0;x;y0;y;
z; w 2 S satisfying 2w D w and

x C y � z C w; x0 � x; and y0 � y

there exist z1; z2 2 S such that

z1 C z2 � z; x0 � z1 C w; y0 � z2 C w; z1 � x C w; and z2 � y C w:

Remark 7.3. A Cu-semigroup S satisfies (O8) if and only if for all x0; x; y0; y; z; w in S
satisfying 2w D w and

x C y � z C w; x0 � x; and y0 � y

there exist z1; z2 2 S such that

z1 C z2 � z; x0 � z1 C w; y0 � z2 C w; z1 � x C w; and z2 � y C w:

Indeed, the forward implication is trivial. To see the backward implication, let x0;x;y0;
y; z; w satisfy the conditions in the statement, and choose zx; zy; zz such that

x C y � zz C w; x0 � zx � x; y0 � zy � y; and zz � z:

Then, there exist t1; t2 2 S with

t1 C t2 � zz; zx � t1 C w; zy � t2 C w; t1 � x C w; and t2 � y C w:

In particular, since x0 � t1 Cw and y0 � t2 Cw, we can find elements z1 � t1 and
z2 � t2 such that x0 � z1 C w and y0 � z2 C w. It is easy to check that such elements
satisfy the desired conditions.

Theorem 7.4. The Cuntz semigroup of every C �-algebra satisfies (O8).

Proof. Let A be a C �-algebra, and let x0; x; y0; y; z; w 2 Cu.A/ satisfy 2w D w and

x C y � z C w; x0 � x; and y0 � y:

We may assume that A is stable. Let I be the ideal of A corresponding to the ideal
¹s 2 Cu.A/ W s � wº of Cu.A/, and let � WA ! A=I denote its quotient map. Choose
a; b; c 2 AC and " > 0 such that a and b are orthogonal,

x D Œa�; y D Œb�; z D Œc�; x0 � Œ.a � "/C�; and y0 � Œ.b � "/C�:

By [13, Proposition 3.3], two elements e; f 2 AC satisfy Œe� � Œf �Cw if and only if
�.e/ - �.f /. Thus,

�.a/C �.b/ D �.aC b/ - �.c/:



H. Thiel and E. Vilalta 248

Using Rørdam’s lemma (see for example [43, Theorem 2.30]), there exists r 2 A=I
such that

.�.a/ � "/C C .�.b/ � "/C D ..�.a/C �.b// � "/C D r
�r

and rr� 2 �.c/.A=I /�.c/.
Set

e WD r.�.a/ � "/Cr
� and f WD r.�.b/ � "/Cr

�:

Note that e and f are orthogonal positive elements contained in the hereditary sub-
C �-algebra �.c/.A=I /�.c/. Since � maps the hereditary sub-C �-algebra cAc onto
�.c/.A=I /�.c/, and since the C �-algebra C0..0; kek�/˚ C0..0; kf k�/ is projective (see
[15, Section 4]), we can choose orthogonal positive elements Qe; Qf 2 cAc such that �. Qe/D
e and �. Qf / D f . Set

z1 WD Œ Qe� and z2 WD Œ Qf �:

Using that Qe and Qf are orthogonal, and that Qe C Qf 2 cAc, we get z1 C z2 � Œc� D z.
Also note that, since �. Qe/ D e - .�.a/ � "/C - �.a/, we have z1 � x C w. Similarly,
z2 � y C w.

Moreover, one also gets

r�er D r�r.�.a/ � "/Cr
�r D .�.a/ � "/3C � .�.a/ � "/C;

which shows that x0 � z1 C w. An analogous argument proves y0 � z2 C w.
It follows from Remark 7.3 that Cu.A/ satisfies (O8), as desired.

One can think of (O8) as a weak form of Riesz refinement. In this sense, Proposi-
tion 7.5 below can be seen as a Cu-version of the fact that a cancellative, algebraically
ordered semigroup with Riesz decomposition has Riesz refinement.

A Cu-semigroup S is said to be weakly cancellative if for all x;y; z 2 S with xC z�
yC z we have x� y. It follows from [37, Theorem 4.3] that the Cuntz semigroup of every
stable rank one C �-algebra is weakly cancellative.

Proposition 7.5. Let S be a weakly cancellative Cu-semigroup satisfying (O5) and (O6).
Then S satisfies (O8).

Proof. Let x0; x; y0; y; z; w satisfy

x C y � z C w; x0 � x; y0 � y; and 2w D w:

Applying (O6) for x0 � x � z C w, we obtain zz1 such that

x0 � zz1 C w and zz1 � x; z:

Choose z1 2 S such that

x0 � z1 C w and z1 � zz1:
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Applying (O5) for z1 � zz1 � z, we find c 2 S with

z1 C c � z � zz1 C c:

Then,
x C y � z C w � zz1 C c C w

and, since S is weakly cancellative and zz1 � x, we get y � c C w.
Applying (O6) for y0 � y � c C w, we obtain z2 such that

y0 � z2 C w and z2 � y; c:

We have z1 C z2 � z1 C c � z. It now follows from Remark 7.3 that z1 and z2 have
the desired properties.

Lemma 7.6. Let S be a Cu-semigroup satisfying (O8), let w 2 S satisfy 2w D w, and let
x01; : : : ; x

0
n; x1; : : : ; xn; z 2 S satisfy

x1 C � � � C xn � z C w; x01 � x1; : : : and x0n � xn:

Then there exist z1; : : : ; zn 2 S such that

z1 C � � � C zn � z; x0j � zj C w; and zj � xj C w

for j D 1; : : : ; n.

Proof. We prove the result by induction over n. The case nD 1 is clear, and the case nD 2
holds by definition of (O8).

Thus, let n � 3, and assume that the statement holds for n � 1. Let x0j ; xj ; z; w for
j D 1; : : : ; n be as in the statement, and choose x00n�1; x

00
n such that

x0n�1 � x00n�1 � xn�1 and x0n � x00n � xn:

Applying the assumption for the n� 1 pairs x01� x1; : : : ;x
0
n�2� xn�2 and x00n�1C x

00
n�

xn�1 C xn, we obtain z1; : : : ; zn�2; v such that

z1 C � � � C zn�2 C v � z; x0j � zj C w; and zj � xj C w

for j D 1; : : : ; n � 2 and

x00n�1 C x
00
n � v C w and v � xn�1 C xn C w:

Applying (O8) for

x00n�1 C x
00
n � v C w; x0n�1 � x00n�1; and x0n � x00n;

we obtain zn�1; zn with zn�1 C zn � v and such that

x0n�1 � zn�1 C w; x0n � zn C w; zn�1 � x00n�1 C w; and zn � x00n C w:

Then z1; : : : ; zn have the desired properties.
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Proposition 7.7. Let S be a Cu-semigroup satisfying (O6) and (O8), let w 2 S be such
that 2w D w, and let x01; : : : ; x

0
n; x1; : : : ; xn; z 2 S satisfy

x1 C � � � C xn � z C w; and x01 � x1 � x02 � x2 � � � � � x0n � xn:

Then, there exist z1; : : : ; zn 2 S such that

z1 C z2 C � � � C zn � z; z1 � � � � � zn; x0j � zj C w; and zj � xj C w

for j D 1; : : : ; n.

Proof. Applying Lemma 7.6, we obtain y1; : : : ; yn such that

y1 C � � � C yn � z; x0j � yj C w; and yj � xj C w

for j D 1; : : : ; n.
For every j , let y0j � yj be such that x0j � y0j C w. Set zn WD yn, and note that

y0n�1 � yn�1 � xn�1 C w � x
0
n C w � yn C w D zn C w:

Applying (O6), we obtain zn�1 such that

y0n�1 � zn�1 C w; and zn�1 � yn�1; zn;

where we note that one also has

y0n�2 � yn�2 � xn�2 C w � x
0
n�1 C w � y

0
n�1 C w � zn�1 C w:

Proceeding in this manner, we obtain elements z1; : : : ; zn such that

y0j � zj C w and zj � yj ; zjC1

for every j � n � 1.
It is easy to see that such elements satisfy the required properties.

The next result can be interpreted as the Cu-semigroup version of the projectivity of
C0..0; 1�;Mn/.

Proposition 7.8. Let S be a Cu-semigroup satisfying (O6) and (O8), let n � 1, and let
x0; x; y; w 2 S satisfy

nx � y C w; x0 � x; and 2w D w:

Then there exists z 2 S such that

nz � y; x0 � z C w; and z � x C w:
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Proof. Choose x01; x1; x
0
2; x2; : : : ; xn such that

x0 � x01 � x1 � x02 � x2 � � � � � x0n � xn � x:

Applying Proposition 7.7, we obtain z1; : : : ; zn satisfying

z1 C � � � C zn � y; z1 � � � � � zn; x0j � zj C w; and zj � xj C w

for j D 1; : : : ; n.
Set z WD z1. Then

nz � z1 C � � � C zn � y; x0 � x01 � z1 C w D z C w;

and z D z1 � zn � xn C w � x C w.

8. C �-algebras and Cu-semigroups without elementary
ideal-quotients

In this section, we prove that a Cu-semigroup S satisfying (O5), (O6) and (O8) has no
nonzero elementary ideal-quotients if and only if S is weakly .2; !/-divisible; see Propo-
sition 8.8. In Paragraph 8.1 we provide a tailored definition of elementary Cu-semigroup,
which is justified by Lemma 8.2. We deduce in Theorem 8.9 that a C �-algebra is nowhere
scattered if and only if every element in its Cuntz semigroup is weakly .2; !/-divisible.
This can also be deduced from results in [36]; see Remark 8.10.

8.1. A C �-algebra is said to be elementary if it is isomorphic to the compact operators on
some Hilbert space.

In [4, Paragraph 5.1.16], a nonzero Cu-semigroup was said to be ‘elementary’ if it is
simple and contains a minimal nonzero element. This definition includes ¹0;1º, which
is the Cuntz semigroup of simple, purely infinite C �-algebras – and these C �-algebras
are very far from elementary. To amend this, we will instead say that a nonzero Cu-semi-
group is elementary if it is simple and contains a minimal, nonzero element x that is finite
(that is, x ¤ 2x). Lemma 8.2 below shows that this refined definition fits the established
terminology in C �-algebras.

The next result is shown in [18, Theorem 4.4.4]. We include a proof for the conve-
nience of the reader.

Lemma 8.2. Let A be a (nonzero) C �-algebra. Then the following are equivalent:

(1) A is elementary;

(2) Cu.A/ Š N;

(3) Cu.A/ is elementary.
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Proof. To show that (1) implies (2), assume that A is elementary. Upon stabilization, we
may assume that A Š K.H/ for some infinite-dimensional Hilbert space H . Using the
spectral theorem for compact operators, one can show that AC! N, mapping a 2 AC to
its rank, induces the desired isomorphism Cu.A/ Š N.

Alternatively, one sees that every projection in K.H/ has finite-rank, and that two
projections are Murray–von Neumann equivalent if and only if their ranks agree. It follows
that the Murray–von Neumann semigroup V.A/ is isomorphic to N. Using that A has real
rank zero, we obtain that Cu.A/ is isomorphic to the sequential ideal completion of N,
and thus Cu.A/ Š N; see, for example, [4, Remark 5.5.6].

It is clear that (2) implies (3). To show that (3) implies (1), assume that Cu.A/ is
elementary. Then Cu.A/ is simple, and consequently so is A (see [4, Corollary 5.1.12]).
Choose a minimal, nonzero element x 2 Cu.A/ with x ¤ 2x, and let a 2 AC be a nonzero
element.

Since x is minimal, we have x � x. Using that A is simple, it follows from [11,
Theorem 5.8] that we can choose a projection p 2 A˝K with Œp� D x. Since a ¤ 0, we
have Œa�¤ 0 and therefore x � Œa�. Then p - a, whence we obtain a projection q 2Awith
Œq� D x. Thus, q is a minimal open projection, that is, qAq D Cq. This is well-known to
imply that A is elementary.

Given a Cu-semigroup S , a downward-hereditary submonoid I � S is an ideal if it is
closed under suprema of increasing sequences. For each ideal I of S , one can consider its
corresponding quotient S=I , which is again a Cu-semigroup; see [4, Lemma 5.1.2].

We omit the proof of the following lemma.

Lemma 8.3. Let S be a Cu-semigroup satisfying (O8) and let I be an ideal of S . Then,
I and S=I satisfy (O8).

Lemma 8.4. Let S be a Cu-semigroup satisfying (O5) and (O8). Let I be an ideal of S
and denote by � the canonical map S ! S=I . Given y 2 S and e; e0 2 S=I such that

e0 � e and 2e � �.y/;

there exists z 2 S such that e0 � �.z/� e and 2z � y.

Proof. Let x 2 S be such that �.x/ D e and take x0 � x such that e0 � �.x0/. Since
�.2x/ � �.y/, there exists w 2 I satisfying 2x � y Cw. Thus, we have 2x � y C1w,
where we note that1w 2 I .

Applying Proposition 7.8, we obtain an element z 2 S such that

2z � y; x0 � z C1w; and z � x C1w:

Passing to the quotient, and using that1w 2 I , we get

e0 � �.x0/� �.z/� �.x/ D e;

as required.
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By an ideal-quotient in a Cu-semigroup S we mean a quotient J=I for some ideals
I � J of S .

Lemma 8.5. Let S be a Cu-semigroup satisfying (O5), (O6) and (O8). Assume that S has
no nonzero elementary ideal-quotients. Let x 2 S be nonzero. Then there exists z 2 S with
0 ¤ 2z � x.

Proof. Using that x is nonzero, we can choose nonzero elements x00; x0 2 S such that
x00 � x0 � x.

Applying (O5), we obtain c 2 S with

x00 C c � x � x0 C c:

Let I � S be the ideal generated by c. Then, x is either in I or not. We study each
case separately.

Case 1: We have x 2 I . In this case, and since ideals are downward hereditary, we
have x00 2 I , and therefore x00 �1c. Thus, there exists n 2 N such that x00 � nc.

Let x000 � x00 be a nonzero element. Following the proof of [34, Proposition 5.2.1],
we can apply (O6) to x000 � x00 � nc to obtain elements c1; : : : ; cn � x00; c such that

x000 � c1 C � � � C cn:

Using that x000 ¤ 0, it follows that there exists some j such that the element cj is
nonzero. Setting z D cj , one has 2z � x00 C c � x, as required.

Case 2: We have x … I . Let K � S denote the ideal generated by x. Then the image
of x in K=I is a nonzero, compact, full element.

It follows that there exists a maximal ideal J � K containing I . Consequently, the
quotient K=J is simple. Let � WK ! K=J be the quotient map.

By [4, Proposition 5.1.3], (O5) and (O6) pass to ideals and quotients. Thus, K=J is
a simple, nonelementary Cu-semigroup satisfying (O5) and (O6). Applying [34, Proposi-
tion 5.2.1], we obtain e 2 K=J with 0 ¤ 2e � �.x/. Choose e0 2 K=J with 0 ¤ e0� e.
By Lemmas 8.3 and 8.4, we obtain z 2K � S such that e0� �.z/ and 2z � x. It follows
that z is nonzero and has the desired properties.

8.6. Let S be a Cu-semigroup and let k � 1. An element x 2 S is said to be .k; !/-
divisible if for every x0 2 S satisfying x0 � x there exist n 2 N and y 2 S such that
ky � x and x0 � ny. Further, x is said to be weakly .k; !/-divisible if for every x0 2 S
satisfying x0 � x there exist n 2 N and y1; : : : ; yn 2 Cu.A/ such that ky1; : : : ; kyn � x
and x0 � y1 C � � � C yn; see [36, Definition 5.1] or [3, Paragraph 5.1].

We say that S is (weakly) .k; !/-divisible if each of its elements is.

Lemma 8.7. Let S be a weakly .2; !/-divisible Cu-semigroup. Then, S is weakly .k; !/-
divisible for every k 2 N.
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Proof. It suffices to show that every element in S is weakly .2k ; !/-divisible for each
k � 1. We prove this by induction over k, where we note that the case k D 1 holds by
assumption.

Thus, let k � 1 and assume that every element is weakly .2k ; !/-divisible. To verify
that every element is weakly .2kC1; !/-divisible, let x0; x 2 S satisfy x0 � x. Choose
x00 2 S such that x0� x00� x. Using that x is weakly .2;!/-divisible, we obtainm 2 N
and y1; : : : ; ym 2 S such that

2y1; : : : ; 2ym � x; and x00 � y1 C � � � C ym:

Choose y01; : : : ; y
0
m 2 S such that

y01 � y1; : : : ; y
0
m � ym; and x0 � y01 C � � � C y

0
m:

Applying the induction assumption for each pair y0i � yi , we obtain n.i/ 2 N and
zi;1; : : : ; zi;n.i/ 2 S such that

2kzi;1; : : : ; 2
kzi;n.i/ � yi ; and y0i � zi;1 C � � � C zi;n.i/:

Consequently,
2kC1zi;j � 2yi � x;

for each i 2 ¹1; : : : ; mº and j 2 ¹1; : : : ; n.i/º. Further,

x0 � y01 C � � � C y
0
m D

mX
iD1

y0i �

mX
iD1

n.i/X
jD1

zi;j ;

which shows that the elements zi;j have the desired properties.

Proposition 8.8. Let S be a Cu-semigroup satisfying (O5), (O6) and (O8). Then the fol-
lowing are equivalent:

(1) S has no nonzero elementary ideal-quotients;

(2) every element in S is weakly .2; !/-divisible;

(3) every element in S is weakly .k; !/-divisible for every k � 2.

Proof. The equivalence between (2) and (3) follows from Lemma 8.7. To show that (2)
implies (1), assume that S is weakly .2; !/-divisible, and note that a nonzero elementary
Cu-semigroup T is not weakly .2; !/-divisible. Indeed, if x 2 T is minimal, nonzero
and x ¤ 2x, then one can see that x is not weakly .2; !/-divisible. Since weak .2; !/-
divisibility passes to ideals and quotients, it follows that S has no nonzero elementary
ideal-quotients.

Conversely, to show that (1) implies (2), assume now that S has no nonzero elementary
ideal-quotients and let x 2 S . The proof is inspired by that of [7, Theorem 6.7]. Set

D WD
®
z 2 S W 2z � x

¯
:

Let I � S be the ideal generated by D. Note that s 2 S belongs to I if and only if
there exists a sequence .zk/k in D such that s �

P1
kD0 zk .
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Claim: We have x 2 I .
To prove the claim, let � WS ! S=I denote the quotient map. To reach a contradiction,

assume that �.x/¤ 0. By [4, Proposition 5.1.3] and Lemma 8.3, we know that (O5), (O6)
and (O8) pass to quotients.

Hence, we can apply Lemma 8.5 to S=I . Thus, since �.x/ ¤ 0, we obtain e 2 S=I
with 0¤ 2e � �.x/. Choose e0 2 S=I with 0¤ e0� e. By Lemma 8.4, we obtain z 2 S
such that e0 � �.z/ and 2z � x. Consequently, z 2 D � I , which implies �.z/ D 0 and
therefore e0 D 0, a contradiction. Thus, we have �.x/D 0 and so x 2 I , which proves the
claim.

Now, given any x0 2 S such that x0 � x, take u 2 S with x0 � u� x. Using that
u� x 2 I , we obtain z1; : : : ; zn 2 D such that u � z1 C � � � C zn.

Note that we have 2zj � x for every j and x0 � u � z1 C � � � C zn. It follows that x
is weakly .2; !/-divisible, as desired.

Theorem 8.9. Let A be a C �-algebra. Then the following are equivalent:
(1) A is nowhere scattered;
(2) every element in Cu.A/ is weakly .2; !/-divisible;
(3) every element in Cu.A/ is weakly .k; !/-divisible for every k � 2;

Proof. It follows from [4, Proposition 5.1.10] that ideal-quotients in A naturally corre-
spond to ideal-quotients in Cu.A/. Thus, by Lemma 8.2, A has no nonzero elementary
ideal-quotients if and only if Cu.A/ has no nonzero elementary ideal-quotients. Applying
Theorem 3.1, we see that A is nowhere scattered if and only if Cu.A/ has no nonzero
elementary ideal-quotients.

As noted in Paragraph 7.1, Cu.A/ is a Cu-semigroup satisfying (O5) and (O6). By
Theorem 7.4, Cu.A/ also satisfies (O8). Now the result follows from Proposition 8.8.

Remark 8.10. Let us indicate an alternative proof of Theorem 8.9 that is based on the
results by Rørdam and Robert in [36].

Let A be a C �-algebra. By Proposition 4.12, A is nowhere scattered if and only if its
stabilization is. We may therefore assume that A is stable.

First, assume that A is nowhere scattered. Let x 2 Cu.A/ and k � 2. Choose a 2 AC
with x D Œa�, and let B WD aAa be the generated hereditary sub-C �-algebra. By [36,
Theorem 5.3 (iii)], B has no irreducible representations of dimension less than or equal
to k � 1 if and only if Œa� is weakly .k; !/-divisible in Cu.B/ (equivalently, in Cu.A/).
Thus, it follows from Theorem 3.1 that x is weakly .k; !/-divisible.

Conversely, assume that every element of Cu.A/ is weakly .2; !/-divisible. To reach
a contradiction, assume that A is not nowhere scattered. We need to find x 2 Cu.A/ that is
not weakly .2;!/-divisible. Applying Theorem 3.1 we obtain a hereditary sub-C �-algebra
B � A that admits a one-dimensional irreducible representation � . Choose c 2 BC with
�.b/ ¤ 0, and consider the hereditary sub-C �-algebra C WD cAc. Then � restricts to a
one-dimensional irreducible representation of C . Using [36, Theorem 5.3 (iii)] again, it
follows that Œc� is not weakly .2; !/-divisible in Cu.C /, and therefore also not in Cu.A/.
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9. Real rank zero and stable rank one

In this section, we establish characterizations of nowhere scatteredness among C �-alge-
bras of real rank zero or stable rank one.

A unital C �-algebra has real rank zero if the invertible, selfadjoint elements are dense
in the set of selfadjoint elements. A nonunital C �-algebra has real rank zero if its minimal
unitization does. This important property is well studied and enjoys many nice perma-
nence properties. We refer to [8, p. 453ff] and [10].

The Murray–von Neumann semigroup V.A/ of a C �-algebra A is defined as the set of
equivalence classes of projections inA˝K , where two projections p and q are equivalent
if there exists a partial isometry v 2 A˝K with p D vv� and q D v�v. Equipped with
the addition induced by orthogonal sum and the algebraic order �alg, V.A/ becomes a
pre-ordered monoid.

A semigroup S is weakly divisible if for every x 2 S there exist y; z 2 S such that
x D 2y C 3z.

Theorem 9.1. LetA be aC �-algebra of real rank zero. Then the following are equivalent:

(1) A is nowhere scattered;

(2) V.A/ is weakly divisible;

(3) Cu.A/ is weakly divisible.

Proof. To show that (1) implies (2), assume that A is nowhere scattered. By Proposi-
tion 4.12, we may assume A to be stable. Thus, any element in V.A/ is of the form Œp�

with p a projection in A.
Then, given any Œp� 2 V.A/, it follows from Theorem 3.1 (7) that pAp has no one-

dimensional irreducible representation. As shown in the proof of [7, Corollary 6.8], this
implies that Œp� D 2y C 3z for some y; z 2 V.A/.

Assume now that (2) is satisfied. In this case, if x0 �alg x and x0 D 2y0 C 3z0 in V.A/,
then there exist y; z 2 V.A/ with y0 �alg y and z0 �alg z, and such that x D 2y C 3z.
Indeed, given w 2 V.A/ such that x0 Cw D x, we can find u; v satisfying w D 2uC 3v.
Setting y D y0 C u and z D z0 C v, the result follows.

Since A has real rank zero, there exists an order preserving, monoid morphism ˛W

V.A/! Cu.A/ with sup-dense image; see, for example, [47, Theorem 5.7]. That is, every
element x 2Cu.A/ can be written as the supremum of an increasing sequence in ˛.V.A//.
By the remark above, this implies that

x D sup
n
.2yn C 3zn/

with .yn/n; .zn/n increasing sequences in ˛.V.A//.
Thus, we get x D 2 supn.yn/C 3 supn.zn/, as desired.
Finally, to show that (3) implies (1), assume that Cu.A/ is weakly divisible. By The-

orem 8.9 it suffices to show that every element in Cu.A/ is weakly .2; !/-divisible. So
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let x0; x 2 Cu.A/ satisfy x0 � x. By assumption, we obtain y; z 2 Cu.A/ such that x D
2y C 3z. Set s WD x C y. Then, one gets 2s D 2x C 2y � x and x0 � x � 3y C 3z D 3s,
as required.

Remark 9.2. If A does not have real rank zero, then weak divisibility of V.A/ is not
equivalent to nowhere scatteredness.

Take, for example, the Jiang–Su algebra Z. Then, since 1 2 N cannot be decomposed
as 2x C 3y in N, it follows that V.Z/ Š N is not weakly divisible.

However, it follows from Example 3.2 that Z is nowhere scattered.

A unital C �-algebra has stable rank one if its invertible elements are dense. A non-
unital C �-algebra has stable rank one if its minimal unitization does. Just as real rank
zero, the property of stable rank one enjoys many permanence properties. We refer to
[8, Section V.3.1].

Cuntz semigroups of stable rank one C �-algebras have additional regularity charac-
teristics; see [3,45]. In particular, by [3, Theorem 3.5], they satisfy the Riesz interpolation
property: If x1; x2; y1; y2 are such that xj � yk for each j; k 2 ¹1; 2º, then there exists z
with x1; x2 � z � y1; y2.

A Cu-semigroup S is countably based if it contains a countable subset B such that
every element in S is the supremum of an increasing sequence of elements in B . If S is a
countably based Cu-semigroup, then every upward directed subset of S has a supremum.
Separable C �-algebras have countably based Cuntz semigroups.

Given a separable, stable rank one C �-algebraA, it follows from [3, Theorem 3.8] that
Cu.A/ is inf-semilattice ordered. That is, infima of finite sets exists and, for every triple
x; y; z, one has

.x C z/ ^ .y C z/ D .x ^ y/C z:

Definition 9.3. We say that a Cu-semigroup S satisfies the interval axiom if for all x0; x;
y; u; v 2 S satisfying

x0 � x; x � y C u; and x � y C v;

there exists w 2 S such that

x0 � y C w and w � u; v:

Remark 9.4. The interval axiom as defined in Definition 9.3 above is the Cu-version of
the ‘algebraic interval axiom’ considered by Wehrung for positively ordered monoids in
[50, Paragraph 1.3].

Proposition 9.5. Let S be a countably based Cu-semigroup. Then S is inf-semilattice
ordered if and only if S has the Riesz interpolation property and satisfies the interval
axiom.
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Proof. To show that forward implication, assume that S is inf-semilattice ordered. Given
xj ;yk 2S with xj � yk for i;j 2 ¹1;2º, we have x1;x2� .y1 ^ y2/� y1;y2, which shows
that S has the Riesz interpolation property. To verify the interval axiom, let x0; x; y;u; v 2
S satisfy

x0 � x; x � y C u; and x � y C v:

Then
x0 � x � .y C u/ ^ .y C v/ D y C .u ^ v/;

which allows us to choose w 2 S such that x0 � y C w and w � .u ^ v/. Thus, w has
the desired properties.

Let us show the backward implication. Given x; y 2 S , it follows from the Riesz
interpolation property that the set L WD ¹z 2 S W z � x; yº is upward directed. Since S
is countably based, the supremum of L exists and x ^ y D supL. Thus, S is an inf-
semilattice.

To show that addition distributes over infima, let x;y;z 2S and note that the inequality
.x C z/ ^ .y C z/ � .x ^ y/C z is clear. For the other inequality, set w D .x C z/ ^

.y C z/, and let w0 2 S satisfy w0 � w. Applying the interval axiom, we obtain s such
that w0 � z C s and s � x; y. Then s � x ^ y, and therefore w0 � .x ^ y/C z. Since this
holds for every w0 way-below w, we get w � .x ^ y/C z.

A submonoid T of a Cu-semigroup S is said to be a sub-Cu-semigroup if T is a
Cu-semigroup with the induced order, and if the inclusion T ! S preserves suprema of
increasing sequences and the way-below relation.

In analogy to its definition for C �-algebras (as defined in Section 4), we say that
a property P for Cu-semigroups satisfies the Löwenheim–Skolem condition if for every
Cu-semigroup with property P there exists a family � of countably based sub-Cu-semi-
groups of S each having property P , and such that � is � -complete and cofinal; see
[46, Paragraph 5.2]. The next result can be proved with the methods that are used to prove
[46, Proposition 5.3]. We omit the details.

Proposition 9.6. The interval axiom and the Riesz interpolation property both satisfy the
Löwenheim–Skolem condition.

IfA is a separableC �-algebra of stable rank one, then Cu.A/ is inf-semilattice ordered
by [3, Theorem 3.8], and thus satisfies the interval axiom. With the techniques of [46], we
can show that this also holds in the nonseparable case.

Corollary 9.7. Let A be a C �-algebra of stable rank one. Then Cu.A/ satisfies weak
cancellation, the Riesz interpolation property, and the interval axiom.

Proof. It follows from [37, Theorem 4.3] and [3, Theorem 3.5] that Cu.A/ is weakly
cancellative and has the Riesz interpolation property. To show that Cu.A/ satisfies the
interval axiom, let x0; x; y; u; v 2 Cu.A/ satisfy

x0 � x; x � y C u; and x � y C v:
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Applying [46, Proposition 6.1], we obtain a � -complete and cofinal collection of sepa-
rable sub-C �-algebras B � A such that the inclusion B! A induces an order-embedding
Cu.B/! Cu.A/ whose image contains x0; x; y; u; v. Using that stable rank one satis-
fies the Löwenheim–Skolem condition, we may choose such separable sub-C �-algebras
B �Awith stable rank one. Thus, each Cuntz semigroup Cu.B/ is inf-semilattice ordered
by [3, Theorem 3.8]. It follows from Proposition 9.5 that Cu.B/ satisfies the interval
axiom. Hence, an element w with the desired properties can be found in Cu.B/ and, since
Cu.B/ can be identified with a sub-Cu-semigroup of Cu.A/, we deduce that Cu.A/ satis-
fies the interval axiom.

Remark 9.8. Cuntz semigroups of separable C �-algebras of real rank zero do not neces-
sarily satisfy the interval axiom. Indeed, in [20] Goodearl constructs a separable (stably
finite, nuclear) C �-algebra A of real rank zero such that K0.A/ does not have the Riesz
decomposition property. Thus, K0.A/ does not have the Riesz interpolation property and,
by [32, Lemma 4.2], it follows that V.A/ does not have the Riesz interpolation property
either. However, as noted in [50], if a refinement monoid satisfies the (algebraic) interval
axiom, then it satisfies Riesz interpolation. By [5, Lemma 2.3], which is based on [51],
V.A/ is a refinement monoid and, therefore, V.A/ does not satisfy the algebraic interval
axiom. Using that Cu.A/ is isomorphic to the sequential ideal completion of V.A/ (see,
for example, [4, Remark 5.5.6]), we deduce that Cu.A/ does not satisfy the interval axiom.

Question 9.9. For which C �-algebras does the Cuntz semigroup satisfy the interval
axiom?

Lemma 9.10. Let S be a weakly cancellative Cu-semigroup satisfying (O5), the interval
axiom, and the Riesz interpolation property, and let x 2 S and k � 2. Then x is weakly
.k; !/-divisible if and only if x is .k; !/-divisible.

Proof. It suffices to show the forward implication. Thus, assume that x is weakly .k; !/-
divisible. Then there exists a sequence .yn/n in S such that kyn � x for each n, and such
that x �

P1
nD1 yn.

By [46, Propositions 5.3, 5.4] and Proposition 9.6, the properties (O5), weak cancella-
tion, the interval axiom, and the Riesz interpolation property each satisfy the Löwenheim–
Skolem condition. Using this, we find a countably based sub-Cu-semigroup T � S con-
taining x;y1; y2; : : : ; and such that T satisfies (O5), weak cancellation, the interval axiom,
and the Riesz interpolation property. By Proposition 9.5, T is inf-semilattice ordered.

We note that x is weakly .k; !/-divisible in T . Applying [3, Theorem 5.5], it follows
that x is .k; !/-divisible in T , and hence also in S .

Theorem 9.11. Let A be a C �-algebra of stable rank one. Then the following are equiv-
alent:

(1) A is nowhere scattered;

(2) every element in Cu.A/ is .2; !/-divisible;



H. Thiel and E. Vilalta 260

(3) every element in Cu.A/ is .k; !/-divisible for every k � 2.

Proof. As observed in Paragraph 7.1, Cu.A/ is a Cu-semigroup satisfying (O5). By Corol-
lary 9.7, Cu.A/ satisfies weak cancellation, the Riesz interpolation property, and the inter-
val axiom. Thus, Lemma 9.10 shows that an element in Cu.A/ is weakly .k; !/-divisible
if and only if it is .k; !/-divisible. Now the result follows from Theorem 8.9.

The question of whether this stronger divisibility property in Cu.A/ characterizes
nowhere scatteredness is connected to the global Glimm problem, which will be studied
in [48].
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