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Discrete quantum structures I: Quantum predicate logic

Andre Kornell

Abstract. A discrete quantum structure is a discrete quantum space that is equipped with rela-
tions and functions of various finite arities. Discrete quantum spaces are identified with hereditarily
atomic von Neumann algebras, their relations with projection operators, and their functions with
unital normal �-homomorphisms. The propositional quantum logic of Birkhoff and von Neumann
has been extended to a predicate quantum logic by Weaver; we investigate this predicate quantum
logic as the internal logic of discrete quantum structures. We extend this predicate quantum logic
to include function symbols and an equality symbol. Overall, we recover the basic structures of
discrete quantum mathematics from physical first principles. More complicated structures will be
recovered similarly in part II of this paper.

1. Introduction

1.1. Equality

This paper establishes a connection between quantum logic and discrete noncommutative
mathematics. The study of quantum logic was initiated by Birkhoff and von Neumann,
who drew an analogy between the lattice of projection operators in a von Neumann algebra
and the lattice of measurable subsets of a measure space, modulo null sets [6, Secs. 5, 6],
providing our interpretation of the Boolean connectives :, ^, and _. The lattice of projec-
tion operators was then investigated as a propositional logic, providing our interpretation
of the Boolean connective! [13,19,32,44]. Weaver extended this quantum propositional
logic to a quantum predicate logic, providing our interpretation of the quantifiers 8 and 9
[56, Sec. 2.6]. Motivated by the same physical and logical considerations, we continue
this line of research by suggesting an interpretation of the equality relation.

Noncommutative mathematics in the sense of noncommutative geometry may be said
to originate with the observation of Gelfand and Naı̆mark that commutative unital C*-
algebras are in duality with compact Hausdorff spaces [15, Lem. 1]. The notion of a locally
compact quantum space, i.e., a pseudospace, as an object that is formally dual to a C*-
algebra was first clearly enunciated by Woronowicz [59, Sec. 1]. The notion of a discrete
quantum space as an object that is formally dual to a c0-direct sum of full matrix algebras
then appeared implicitly in the work of Podleś and Woronowicz on Pontryagin duality for
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compact quantum groups [42, Sec. 2]. The discrete quantum structures considered in this
paper are all essentially discrete quantum spaces equipped with additional structure.

Discrete quantum structures generalize the structures of many-sorted first-order logic
[46], which consist of sets equipped with functions and relations, e.g., groups, graphs, and
vector spaces. Discrete quantum structures have not been previously considered in full
generality, but their definition is already implicit in the established generalizations of non-
commutative mathematics. For technical simplicity, we generalize sets to von Neumann
algebras that are `1-direct sums of full matrix algebras, rather than to C*-algebras that
are c0-direct sums of full matrix algebras. These are the hereditarily atomic von Neumann
algebras [30, Prop. 5.4]. We generalize the Cartesian product to the spatial tensor prod-
uct, we generalize relations to projections, and we generalize functions to unital normal
�-homomorphisms in the opposite direction.

The only complication to this straightforward narrative is that sometimes the order of
multiplication in a von Neumann algebra M is unexpectedly reversed. For example, the
multiplication of a discrete quantum group is a unital normal �-homomorphism M !

M x̋ M , but the adjacency relation of a discrete quantum graph is a projection in

M x̋ M op:

Of course, if M is commutative, then M op D M , so this complication is a phenomenon
that is peculiar to the quantum setting.

For each von Neumann algebra M , we interpret the equality relation to be the largest
projection ıM 2M x̋ M op that is orthogonal to p˝ .1� p/ for every projection p 2M .
IfM D `1.A/ for some setA, then ıM is the projection that corresponds to the diagonal of
the Cartesian squareA�A. However, ifM DL1.R/, then ıM D 0. The intuitive explana-
tion for this phenomenon is that the diagonal of the Cartesian square R �R has Lebesgue
measure zero. The equality relation ıM is suitably nondegenerate for precisely the class
of hereditarily atomic von Neumann algebras. Indeed, the following are equivalent:

(1) ıM is not orthogonal to p ˝ p for any nonzero projection p 2M ;

(2) M is hereditarily atomic.

This equivalence is proved in Appendix A.1, and it provides an additional justification for
our focus on this class of von Neumann algebras. It also provides an additional charac-
terization of this class [30, Prop. 5.4]. In contrast, it is routine to verify that 0 is the only
projection in M2.C/ x̋ M2.C/ that is orthogonal to p ˝ .1 � p/ for every projection
p 2M2.C/.

1.2. Physical intuition

The projection ıM may be equivalently defined as the infimum of all projections of the
form p ˝ p C .1 � p/ ˝ .1 � p/ for a projection p 2 M . To interpret this definition
physically, we regard von Neumann algebras as abstract physical systems. Then, the von
Neumann algebra is hereditarily atomic if and only if the physical system is discrete in
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the sense that each observable admits a complete set of pairwise orthogonal eigenstates
[30, Prop. 5.4]. The normal states of the von Neumann algebra are the states of the physical
system, the projections in the von Neumann algebra are the Boolean observables of the
physical system, and the tensor product of two von Neumann algebras is the composite of
two spatially separated physical systems. In the case of hereditarily atomic von Neumann
algebras, the categorical tensor product is also the spatial tensor product [17, Prop. 8.6].

Let M be a hereditarily atomic von Neumann algebra. From the physical perspective,
ıM is a Boolean observable on the composite system M x̋ M op that guarantees equal
outcomes for pairs of equal Boolean observables on M and M op. Furthermore, every
Boolean observable with this property implies ıM : if the former is measured and found
to be true, then a measurement of the latter will also find it to be true. Thus, ıM may be
characterized as the Boolean observable that is true in exactly those states of the system
M x̋ M op that guarantee equal outcomes for pairs of equal Boolean observables. Such
states are used in perfect quantum strategies for synchronous games [2, Sec. 5.2] and
[9, 37, 40].

Viewed as abstract physical systems, M and M op have exactly the same states and
observables. Probed separately, their physics is indistinguishable. However, the composite
systemsM x̋ M op andM x̋ M exhibit different physics. Of course,M x̋ M op andM x̋
M are isomorphic as von Neumann algebras becauseM is hereditarily atomic, but there is
generally no isomorphism between them that fixes the projections of both tensor factors, as
the exampleM DM2.C/ demonstrates. IfM ¤ 0, then there exists at least one state on the
systemM x̋ M op that guarantees equal outcomes for pairs of equal Boolean observables,
but there need not be a state on the system M x̋ M with this property.

Fancifully, we might regard M and M op as otherwise isomorphic physical systems
that are oriented oppositely in time. To motivate this intuition, we consider the example of
an electron-positron pair that is produced by a neutral pion decay [10]. We may model the
spin of the electron byM2.C/ and the spin of the positron byM2.C/op. The conservation
of angular momentum then implies that their magnetic moments are equal along any axis
of measurement. Thus, the composite system M2.C/ x̋ M2.C/op is in the unique state
such that a measurement of ıM2.C/ is guaranteed to yield 1. Furthermore, this observation
demonstrates that the spin of the positron must be modeled by the opposite operator alge-
bra, because the composite system must have a state with zero total angular momentum. Of
course, a positron is sometimes regarded as an electron traveling backward in time [12,47].

1.3. Quantum sets

The development in this paper proceeds in terms of quantum sets, their functions, and their
binary relations. The reader may choose to view each quantum set X as an object that is
formally dual to a hereditarily atomic von Neumann algebra in the same way that a pseu-
dospace is formally dual to a C*-algebra [59]. In this account, the category of quantum
sets and functions is defined to be the opposite of the category of hereditarily atomic von
Neumann algebras and unital normal �-homomorphisms, and the category of quantum
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sets and binary relations is defined to be the category of hereditarily atomic von Neumann
algebras and Weaver’s quantum relations [57]. The former category is then included into
the latter category via the equivalence in [29].

Formally, we instead define a quantum set X to be an object whose data consists of a
set At.X/ of nonzero finite-dimensional Hilbert spaces called the atoms of X [30]. The
corresponding hereditarily atomic von Neumann algebra `1.X/ is then defined to be the
`1-direct sum of the factors L.X/ for X 2 At.X/. Each quantum set X has a dual X�

that is obtained by dualizing all the atoms of X, and `1.X�/ is naturally isomorphic to
`1.X/op. Each pair of quantum sets, X and Y, has a Cartesian product X � Y that is
obtained by forming all possible tensor products of an atom of X with an atom of Y, and
`1.X � Y/ is naturally isomorphic to `1.X/ x̋ `1.Y/.

A binary relation R from a quantum set X to a quantum set Y is just a choice of
subspaces R.X; Y / � L.X; Y / for all X 2 At.X/ and Y 2 At.Y/. Binary relations from
X to Y are in one-to-one correspondence with projections in the hereditarily atomic von
Neumann algebra `1.X/ x̋ `1.Y/op [57, Prop. 2.23]. Thus, binary relations from X

to Y form an orthomodular lattice [24]. The one-to-one correspondence between binary
relations from X to Y and quantum relations from `1.Y/ to `1.X/ in Weaver’s sense
is verified in Appendix A.2. The category qRel of quantum sets and binary relations is
dagger compact [30, Thm. 3.6], i.e., strongly compact, and this enables our extensive use
of the graphical calculus [1, 41].

The quantum sets in this paper are essentially just discrete quantum spaces, which
first arose in the study of compact quantum groups [42]. Finite quantum sets, which are
formally dual to finite-dimensional C*-algebras, were identified even earlier [59]. Finite
quantum sets appear naturally in the study of quantum symmetry [55] and quantum infor-
mation [38]. In [38], finite quantum sets appear as special symmetric dagger Frobenius
algebras in the category of finite-dimensional Hilbert spaces [54]. The class of finite quan-
tum sets is sufficient and convenient for many applications, but the class of all quantum
sets has two significant advantages: discrete quantum groups are generally infinite, and
the category of all quantum sets and functions is closed monoidal [30, Thm. 9.1].

Two closely related quantum generalizations of sets have been proposed. Giles gen-
eralized sets essentially to atomic von Neumann algebras, calling them q-spaces [16].
Rump has also recently proposed a striking geometric definition of quantum sets [43]. For
both of these definitions and for our definition, a quantum set is an object that may be
partitioned into irreducible components, and up to isomorphism, the predicates on each
component are the closed subspaces of some Hermitian space [25], forming a complete
atomic orthomodular lattice. For the moment, our choice of definition appears to be the
most compatible with the established body of noncommutative generalizations [30, 42].
Other quantum analogs of set theory exist, but they are less closely related [45, 49].

The notion of a quantum relation is defined for arbitrary von Neumann algebras, but
in effect, this paper treats only hereditarily atomic von Neumann algebras. This feature of
the approach is discussed in Section 1.6.
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1.4. Results

The semantics that we define in this paper assigns an interpretation to each nonduplicating
term and to each nonduplicating formula in a language of many-sorted first-order logic
that draws its nonlogical symbols from the category qRel. The qualifier “nonduplicating”
refers to a syntactic constraint that reflects the absence of a diagonal function for quantum
sets and for quantum spaces more generally [59] and the impossibility of broadcasting
quantum states [4]. The sorts of our language are quantum sets. Its relation symbols are
binary relations into the monoidal unit 1, and its function symbols are binary relations that
are functions [30, Def. 4.1]. The quantum set 1 consists of a single one-dimensional atom,
which we take to be C. Equality for sort X is a binary relation EX from X �X� to 1. It
is both the counit of the dagger compact structure of qRel and the binary relation into 1
that corresponds canonically to the projection ı`1.X/ that was defined in Section 1.1.

The semantics interprets each nonduplicating formula �.x1; : : : ; xn/, whose distinct
free variables x1; : : : ; xn are of sorts X1; : : : ;Xn, respectively, as a binary relation
J�.x1; : : : ; xn/K from X1 � � � � �Xn to 1. In the graphical calculus, this is depicted as
follows:

J�.x1; : : : ; xn/K

XnX1

� � �

Our core computational device relates the equality relation to the graphical calculus.

Theorem 1.4.1 (Also Theorem 3.3.2). Let �.x1; x2; x3; : : : ; xn/ be a nonduplicating for-
mula, whose distinct free variables x1; x2; x3; : : : ; xn are of sorts X1;X2;X3; : : : ;Xn,
respectively. Assume that X2 DX�1 , and let  .x3; : : : ; xn/ be the nonduplicating formula

.9x1/ .9x2/ .�.x1; x2; x3; : : : ; xn/&EX1
.x1; x2//:

Then,

J .x3; : : : ; xn/K

XnX3

� � � D

J�.x1; x2; x3; : : : ; xn/K

XnX3

� � � :

In the graphical calculus, the object X�1 may be depicted as an upward-directed wire
labeled X�1 or as a downward-directed wire labeled X1. Thus, we may connect the wire
depicting X1 with the wire depicting X2 D X�1 , as shown. We use the symbol & for the
Sasaki projection connective, which is defined byP &QD .P _:Q/^Q [44, Def. 5.1].

Theorem 1.4.1 provides an unexpected connection between matrix multiplication and
quantum logic. Each nonzero finite-dimensional Hilbert space H is associated with a
quantum set H , whose only atom is H . Furthermore, each operator r on H is associ-
ated with a binary relation R from H �H� to C, whose only component is the span of
the functional H ˝H� ! C that is canonically obtained from r . Theorem 1.4.1 has the
following corollary.
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Corollary 1.4.2 (Also Corollary 3.3.3). Let H be a nonzero finite-dimensional Hilbert
space, and let H be the associated quantum set. Let r , s, and t be operators on H , and
let R, S , and T be the associated binary relations from H �H� to 1. Then, the following
are equivalent:

(1) J.9x2/ .9x3/ ..R.x1; x2/ ^ S.x3; x4//&EH .x3; x2//K D T ;

(2) sr and t are scalar multiples of each other.

Thus, matrix multiplication is implicit in the ortholattice structure of subspaces of
finite-dimensional Hilbert spaces and their tensor products.

This first part of the paper concludes with a detailed treatment of the semantics of
terms. Each nonduplicating term t of sort Y, whose distinct free variables x1; : : : ; xn are
of sorts X1; : : : ;Xn, respectively, is interpreted as a function X1 � � � � �Xn ! Y. Such
a function is equivalently a unital normal �-homomorphism `1.Y/! `1.X1/ x̋ � � � x̋

`1.Xn/. Formally, such a function is defined to be a binary relation from X1 � � � � �Xn

to Y of a particular kind [30, Def. 4.1]. This convention highlights the compositionality of
the semantics:

JR.t1; : : : ; tm/K
� � ���� ���

D

JR.y1; : : : ; ym/K

� � �Jt1K
���

JtmK
���

for each binary relationR from Y1 � � � � �Ym to 1 and terms t1; : : : ; tm of sorts Y1; : : : ;Ym,
respectively; see Lemma 3.5.2.

Functions are introduced indirectly via function graphs. While a function X ! Y is
formally a binary relation from X to Y, the corresponding function graph is a binary
relation from X � Y� to 1. Such function graphs may be defined in the semantics of this
paper.

Theorem 1.4.3 (Also Theorem 3.4.2). Let X and Y be quantum sets. There is a canonical
bijective correspondence between the following sets:

(1) unital normal �-homomorphisms `1.Y/! `1.X/,

(2) binary relations G from X � Y� to 1 such that

(a) J.8x/ .9y/G.x; y/K and

(b) J.8y1/ .8y2/ ..9x1/ .9x2/ ..G�.x1; y1/ ^G.x2; y2//&EX.x2; x1//

! EY.y1; y2//K

are both equal to the larger of the two binary relations on 1.

The purpose of introducing functions in this indirect way is to minimize the concep-
tual assumptions that lead to the structures that we consider. This first part of the paper
motivates the basic ingredients of discrete quantum mathematics essentially just from the
formalization of propositions by the closed subspaces of a Hilbert space and the formal-
ization of composite quantum systems by tensor-product Hilbert spaces.
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1.5. Motivation

The many quantum generalizations that underlie noncommutative mathematics are moti-
vated by diverse considerations, but they are nevertheless mutually compatible, and this
is true even within discrete noncommutative mathematics. For example, discrete quantum
groups arose in the program of extending Pontryagin duality to include noncommutative
groups, more than two decades after its inception [26, 27, 42, 48, 52], and the notion of
quantum isomorphism between simple graphs arose quite independently in the study of
quantum nonlocality originating from the Kochen–Specker theorem [2, 9, 14, 22, 28, 36],
but these two quantum generalizations are now understood to be related [3, 5, 8, 34, 39].

This compatibility between quantum generalizations of disparate origins demands an
explanation, and the simplest possible explanation is that the quantum generalizations that
underlie noncommutative mathematics are all instances of a single quantum generaliza-
tion. Such an explanation requires a general notion of quantum structure and furthermore
a method for extending each class of ordinary structures to a class of quantum structures.
For comparison, in [59], Woronowicz not only defines the general notion of a locally
compact quantum space, i.e., a pseudospace, but also extends the classes of finite, finite-
dimensional, and compact locally compact spaces to classes of finite, finite-dimensional,
and compact locally compact quantum spaces, respectively. The problem is to extend this
approach to encompass all possible quantum structures and all possible properties.

This paper proposes a solution to this problem in the special case of discrete structures.
We may define a discrete structure to consist of sets, relations, and functions, and simi-
larly, we may define a discrete quantum structure to consist of quantum sets, relations, and
functions [30]. The role of quantum predicate logic with equality is then to extend each
class of ordinary structures to a class of quantum structures. The nonduplicating formulas
are the classes that we are extending, and the semantics is the method by which we are
extending these classes. Formally, a formula of many-sorted first-order logic is defined
to be nonduplicating if no variable appears more than once in any atomic subformula.
This restriction is weaker than it might appear; it is routine to show that every formula
of many-sorted first-order logic with equality is equivalent over discrete structures to a
nonduplicating formula.

Many established classes of discrete quantum structures are unified in this way. The
second part of this paper will treat quantum graphs [11], quantum metric spaces[33], quan-
tum posets [57, 58], quantum graph homomorphisms [36], quantum graph isomorphisms
[2], quantum permutations [55], and quantum groups [53], all discrete in the sense that the
underlying von Neumann algebra is hereditarily atomic.

1.6. Arbitrary von Neumann algebras

The notion of a quantum relation is defined for all von Neumann algebras [57] and not
just those that are hereditarily atomic. However, this paper treats only hereditarily atomic
von Neumann algebras. There is no established notion of orthocomplement for quantum
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relations in the general case. As a consequence, there is no obvious interpretation of nega-
tion or, more generally, of implication. Thus, Theorem 1.4.1 cannot even be stated.

The naive approach to defining the orthocomplement of a quantum relation on an
arbitrary von Neumann algebra M fails immediately. For illustration, let M D L.H/ for
a separable infinite-dimensional Hilbert space H . The identity quantum relation on M is
the span of the identity operator on H , and the orthocomplement of this identity quantum
relation should consist of operators that are in some sense orthogonal to the identity opera-
tor. Hence, naively, the orthocomplement should consist of trace-zero operators. However,
the trace-zero operators on H do not form an ultraweakly closed subspace of L.H/, and
furthermore their ultraweak closure is L.H/ itself. Thus, we are led to define an ortho-
complement that is not even a complement.

In addition to this technical obstacle, there is a significant conceptual obstacle to the
generalization of predicate logic to arbitrary von Neumann algebras. In noncommutative
mathematics, von Neumann algebras are a quantum generalization of well-behaved mea-
sure spaces and not of sets. There is no established generalization of predicate logic to
measure spaces. Thus, a quantum predicate logic for arbitrary von Neumann algebras
would be a quantum generalization of something that has not yet been defined classically.

The classical measure-theoretic setting appears to offer little in the way of simplifica-
tion. The projection operators in a commutative von Neumann algebra form a complete
Boolean algebra, which suggests the use of classical logic, but it is again the binary rela-
tions that are an obstacle. Whether the identity binary relation on L1.R/ is viewed as a
quantum relation or as a measurable relation [57], it appears to have no negation that is
suitable even for intuitionistic logic.

Intuitionistic logic has previously been investigated as an internal logic of physical
systems in the context of the Bohrification program [18, 20]. In this approach, a proposi-
tion is a suitable choice of propositions for each classical context, i.e., a suitable choice of
projection operators for each commutative subalgebra of an operator algebra [21]. Intu-
itionistic logic and quantum logic correspond to related but ultimately distinct conceptions
of noncontextuality in quantum systems, and it is the latter conception that forms the con-
ceptual foundation of noncommutative geometry.

In summary, while there does exist a notion of a quantum structure that accommodates
arbitrary von Neumann algebras, we have no corresponding interpretation of nonduplicat-
ing formulas with equality, and moreover, we have no conceptual reason to expect one.

1.7. Many-sorted logic

Some quantum groups are commutative, and others are not. Some quantum graphs are
complete, and others are not. The core definition of this paper unifies these two notions
and many others; it specifies whether or not a quantum structure possesses a classical
property for a large class of quantum structures that includes both discrete groups and dis-
crete graphs and for a large class of classical properties that includes both commutativity
and completeness. Specifically, it applies to discrete quantum structures, which consist
of quantum sets, binary relations, and functions, and to the classical properties that are
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formalized by the nonduplicating sentences of many-sorted first-order logic. The notion
of a nonduplicating formula is defined in Definition 2.7.3. Thus, the purpose of logical
formulas in this paper is to speak precisely about classical properties, which enables us to
state and prove theorems at this level of generality.

More formally, we quantize the semantics of many-sorted first-order logic [46]. We
presently review this semantics in a form that is convenient to this goal. For simplicity, we
work with a single fixed many-sorted structure that consists of all sets and the relations
and functions between them. Our language includes infinitely many variables for each
set. The class of all terms is defined recursively: a variable of sort A is a term of sort A,
and for each function f WA1 � � � � �Am! B , if t1; : : : ; tm are terms of sorts A1; : : : ; Am,
respectively, then the expression f .t1; : : : ; tm/ is a term of sort B . An atomic formula is
then defined to be an expression of the form R.t1; : : : ; tn/, where R � A1 � � � � � An and
t1; : : : ; tn are terms of sortsA1; : : : ;An, respectively. The natural numbersm and nmay be
equal to 0. Finally, the class of all formulas is defined recursively: an atomic formula is a
formula, and if � and  are formulas and v is a variable, then the expressions :�, � ^ ,
� _  , � !  , .8v/ �, and .9v/ � are formulas. A sentence is defined to be simply a
formula with no free variables.

The sentences that we have defined are mathematical objects like groups and topo-
logical spaces. Tarski’s analysis of semantics [50, 51] leads to the definition of truth as a
property of sentences, in the same sense that commutativity and compactness are prop-
erties of groups and topological spaces, respectively. To formulate this definition, we
first formalize the specification of subsets by properties. For each sequence of variables
v1; : : : ; vn of sorts A1; : : : ; An, respectively, and each formula � whose free variables are
among v1; : : : ; vn, we define the subset

J.v1; : : : ; vn/ j �K � A1 � � � � � An;

the set of all tuples .a1; : : : ; an/ 2 A1 � � � � � An that satisfy �. This definition proceeds
by recursion on the class of all formulas, and in the end, we obtain a partial class function
whose first argument is a tuple of variables and whose second argument is a formula.

A sentence � is then defined to be true if J. / j �K D ¹. /º. In effect, we have that

J.v1; : : : ; vn/ j �K D ¹.a1; : : : ; an/ 2 A1 � � � � � An j �.a1; : : : ; an/ is trueº:

This equation emphasizes that the formula � is a formula of the object language, a math-
ematical object about which we may state theorems, rather than a formula of the metalan-
guage, the language in which we state our theorems. The notation �.a1; : : : ; an/ expresses
the substitution of the elements a1; : : : ;an for the variables v1; : : : ; vn, where each element
ai 2 Ai is regarded as a function from the singleton set ¹�º WD ¹. /º to the set Ai .

1.8. Conventions

Each variable is of a unique sort, which is a quantum set. However, as an aid to memory
and intuition, we write .9x 2X/� in place of .9x/� and Jx 2X j �K in place of J.x/ j �K,
where X is the sort of x. If � is a formula, then we write �.x1; : : : ; xn/ to indicate that
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the free variables of � are among x1; : : : ; xn and that variables x1; : : : ; xn are pairwise
distinct. We do likewise for terms.

LetH andK be Hilbert spaces. We writeL.H;K/ for the set of all bounded operators
fromH toK, we write L.H/ for the set L.H;H/ of all bounded operators onH , and we
write H� for the set L.H;C/ of all bounded functionals on H . Let a be a linear operator
from H to K. We write a� 2 L.K; H/ for the Hermitian adjoint of a, we write a� 2
L.K�; H�/ for the Banach space transpose of a, and we write a� 2 L.H�; K�/ for the
“conjugate” .a�/� of a. Note that if A is an operator algebra onH , then A� is canonically
isomorphic to the opposite of A, that is, to the algebra A with the order of multiplication
reversed. We retain the stock term “�-homomorphism” to mean a homomorphism that
respects the Hermitian adjoint operation a 7! a�.

We write Ca for the linear span of a bounded operator a. If a and b are bounded oper-
ators, then we write a � b for the product of a and b, in order to separate the factors visually
and to make the operator product readily distinguishable from function application. If V
and W are subspaces of bounded operators, then we write V � W for the linear span of
¹v � w j v 2 V; w 2 W º.

Let A and B be sets. We regard each binary relation from A to B foremost as a mor-
phism from A to B in the category of sets and binary relations. Similarly, we regard
a relation of arity .A1; : : : ; An/ foremost as morphism from A1 � � � � � An to ¹�º, the
monoidal unit of the canonical monoidal structure on the category of sets and binary rela-
tions. Thus, a binary relation onA is essentially the same thing as a relation of arity .A;A/,
but we regard the former as morphism fromA toA, and we regard the latter as a morphism
from A � A to ¹�º. In the same vein, we may regard any element a 2 A as a morphism
from ¹�º to A.

We use the adjective “ordinary” to emphasize that we are using a noun in its standard
mathematical sense. Thus, an ordinary set is just a set.

2. Definition

We now expound the interpretation of nonduplicating first-order formulas over quantum
sets. We recall quantum sets in Section 2.1, and we define their relations in Section 2.2. We
define the interpretation of primitive formulas in Section 2.3, and we extend this interpre-
tation to all nonduplicating relational formulas in Section 2.4. Then, we define quantifiers
over the diagonal in Section 2.5, and we use these quantifiers to define function graphs in
Section 2.6. Finally, we define the interpretation of arbitrary nonduplicating formulas in
Section 2.7.

2.1. Quantum sets

A quantum set is essentially just a set of nonzero finite-dimensional Hilbert spaces, intu-
itively, a union of indecomposable quantum sets. This section is a brief summary of some
relevant definitions from [30].
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Definition 2.1.1. A quantum set X is uniquely determined by a set At.X/ of nonzero
finite-dimensional Hilbert spaces, called the atoms of X.

Each quantum set X is associated to the von Neumann algebra

`1.X/ D
M

X2At.X/

L.X/;

which intuitively consists of all bounded complex-valued functions on X. This algebra
is typically not commutative, and thus the elements of X are figures of speech, rather
like the points of a quantum space. Formally, X is equal to At.X/, but intuitively, they
are distinct objects, and this notational distinction affects the meaning of our expressions.
For example, `1.X/ is generally not isomorphic to `1.At.X//. Indeed, the former von
Neumann algebra is generally not commutative, but the latter von Neumann algebra is
always commutative, because At.X/ is just an ordinary set, which happens to consist of
Hilbert spaces. This explains the circuitous language in Definition 2.1.1.

In quantum mathematics, we should recover the classical theory whenever the relevant
operator algebras are all commutative. This is the definitional feature of any quantum
generalization in the sense of noncommutative geometry. In our case, we observe that
`1.X/ is commutative if and only if each atom of X is one-dimensional. Intuitively, such
atoms correspond to those elements of X which exist individually, apart from the other
elements. This gloss clarifies how ordinary sets should be incorporated into the picture.

Definition 2.1.2. To each ordinary set A, we associate a quantum set ‘A whose atoms
are one-dimensional Hilbert spaces, with one such atom for each element of A. More
generally, we say that a quantum set X is classical if and only if each of its atoms is
one-dimensional.

We may gloss the first sentence of Definition 2.1.2 by the equation

At.‘A/ D ¹Ca j a 2 Aº;

where Ca denotes a one-dimensional Hilbert space that is somehow labeled by the ele-
ment a. The exact formalization of this labeling is inconsequential; it is only important
that distinct elements a1 and a2 correspond to distinct Hilbert spaces Ca1 and Ca2 so that
we have a canonical bijection A! At.‘A/.

A property of a quantum set X generalizes a property of an ordinary set A if we
obtain the latter from the former by replacing X by ‘A, and it is likewise for operations.
For example, the Cartesian product of quantum sets generalizes the Cartesian product of
ordinary sets.

Definition 2.1.3. The Cartesian product X � Y of quantum sets X and Y is defined by
At.X � Y/ D ¹X ˝ Y j X 2 At.X/; Y 2 At.Y/º.

This is not an exact quantum generalization because ‘A � ‘B may be formally dis-
tinct from ‘.A � B/. However, ‘A � ‘B is isomorphic to ‘.A � B/ in the obvious sense.
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The Cartesian product of quantum sets corresponds to the spatial tensor of von Neumann
algebras in the sense that

`1.X � Y/ Š `1.X/ x̋ `1.Y/

for all quantum sets X and Y.
Each quantum set X has a dual X� that is defined by the equation

At.X�/ D ¹X� j X 2 At.X/º

[30, Def. 3.4]. Dualization in this sense corresponds to reversing the order of multiplica-
tion in a von Neumann algebra: `1.X/op is canonically isomorphic to `1.X�/ via the
map a 7! a�, where a� is the transpose rather than the adjoint of a bounded operator a.
Formally, we define a�.X/D a.X/� for each atom X 2 At.X/. The quantum sets X and
X� are distinct but closely related. The example of pair production in Section 1.1 suggests
the intuition that the elements of X� are the antielements of X. Like the elements of X,
the antielements of X are just figures of speech; they are not mathematical objects.

2.2. Relations on quantum sets

Intuitively, we may view each quantum set as the phase space of an abstract physical
system that is discrete in the sense that each observable admits an orthonormal basis of
eigenvectors [30, Prop. 5.4]. Thus, the predicates, i.e., unary relations on a quantum set X,
should be in bijection with the projections in `1.X/. Such a projection is formally a
family of projections pX 2 L.X/, for X 2 At.X/, so we may define a predicate P on X

to be simply a family of subspacesP.X/�X , forX 2At.X/, as it is done in [30, App. B].
However, for technical and intuitive reasons, we prefer to work with subspaces of the dual
Hilbert spaces.

Definition 2.2.1. Let X be a quantum set. A predicate P on X is a function assigning a
subspace P.X/ � L.X;C/ to each atom X of X.

The canonical one-to-one correspondence between predicates P on X and projections
p in `1.X/ is defined by P.X/ D L.X;C/ � p.X/, for X 2 At.X/.

For each atom X , the subspaces of L.X;C/ form a modular orthomodular lattice, and
thus, the predicates on X themselves form a modular orthomodular lattice Pred.X/, with
its operations defined atomwise. This is essentially the orthomodular lattice of projections
in `1.X/. We use the standard notations ^ and _ for the meets and the joins, respec-
tively, as well as ?X and >X for the smallest and largest predicates on a quantum set X,
respectively, but we notate the orthocomplementation by :.

Each predicate P on X has a conjugate P�, a predicate on X� that is defined by
P�.X

�/ D ¹�� j � 2 P.X/º for each atom X 2 At.X/. The functional �� is formally
defined by �� D .��/�, and since � 2 X�, we may also characterize �� by the equation
��.�/ D h�j�i, for � 2 X�. Intuitively, P� holds of those elements of X� such that P
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holds of their counterparts in X. We thus obtain an isomorphism of orthomodular lattices
Pred.X/! Pred.X�/.

We now define the Cartesian product of two predicates, generalizing the Cartesian
product of two subsets to the quantum setting.

Definition 2.2.2. If P and Q are predicates on quantum sets X and Y, respectively, then
the predicate P �Q on X � Y is defined by .P �Q/.X ˝ Y / D P.X/ ˝Q.Y /, for
X 2 At.X/ and Y 2 At.Y/.

Both P.X/ and Q.Y / are vector spaces of functionals, and P.X/˝Q.Y / denotes
another vector space of functionals, so we have suppressed the canonical isomorphism
C ˝C Š C. Thus, .P �Q/.X ˝ Y / is essentially just the span of bilinear functionals

.x; y/ 7! �.x/�.y/;

for � 2 P.X/ and � 2 Q.Y /. The construction .P; Q/ 7! P � Q corresponds to the
tensor product of two projections, i.e., to the conjunction of two Boolean observables on
the composite of two abstract physical systems.

Finally, we define relations on quantum sets, generalizing the relations of ordinary
many-sorted logic.

Definition 2.2.3. Let X1; : : : ;Xn be quantum sets. A relation of arity .X1; : : : ;Xn/ is a
predicate on the Cartesian product X1 � � � � �Xn, with n � 0.

Thus, a relation of arity .X1; : : : ;Xn/ essentially just assigns a vector space of multi-
linear functionalsX1 � � � � �Xn!C to each choice of atomsX1 2At.X1/,X2 2At.X2/,
etc. We write Rel.X1; : : : ;Xn/ for the set of all relations of arity .X1; : : : ;Xn/. Permuting
the quantum sets X1; : : : ;Xn according to some permutation � of the index set ¹1; : : : ; nº,
we expect and obtain a bijection between Rel.X1; : : : ;Xn/ and Rel.X�.1/; : : : ;X�.n//.

Definition 2.2.4. Let X1; : : : ;Xn be quantum sets, and let � be a permutation of the
index set ¹1; : : : ; nº. For each relation R of arity .X�.1/; : : : ;X�.n//, define the relation
�#.R/ of arity .X1; : : : ;Xn/ by

�#.R/.X1 ˝ � � � ˝Xn/ D R.X�.1/ ˝ � � � ˝X�.n// � u� ;

for allX1 2At.X1/,X2;2At.X2/, etc., where u� WX1˝ � � � ˝Xn!X�.1/˝ � � � ˝X�.n/
is the unitary operator that permutes the tensor factors according to � .

The construction R 7! �#.R/ is clearly a bijection

Rel.X�.1/; : : : ;X�.n//! Rel.X1; : : : ;Xn/;

with inverse S 7! .��1/#.S/. Furthermore, it is an isomorphism of orthomodular lattices.
Its effect on the projections corresponding to these relations is given by the canonical
unital normal �-homomorphism

`1.X�.1// x̋ � � � x̋ `
1.X�.n//! `1.X1/ x̋ � � � x̋ `

1.Xn/:
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2.3. Interpreting primitive formulas

We work with the language of many-sorted first-order logic whose sorts are the quantum
sets of Section 2.1 and whose relation symbols are the relations of Section 2.2. Each sort,
that is, each quantum set, is assigned an infinite stock of variables, intuitively ranging over
that quantum set. Within formulas, we write x 2X to annotate that x has sort X, replacing
the more traditional notation x W X. We will incorporate function symbols in Section 2.6.

Definition 2.3.1. A primitive atomic formula is an expression of the form R.x1; : : : ; xn/,
where the R is a relation of some arity .X1; : : : ;Xn/ and x1; : : : ; xn are distinct variables
of sorts X1; : : : ;Xn, respectively. The class of primitive formulas is defined recursively:
each primitive atomic formula is a primitive formula, and if � and are primitive formulas
and x is a variable of some sort X, then the expressions :�, � ^  and .8x 2 X/ � are
primitive formulas. A primitive sentence is a primitive formula with no free variables. We
will sometimes write �.x1; : : : ; xn/ in place of � to indicate that the free variables of �
are among x1; : : : ; xn and that the variables x1; : : : ; xn are pairwise distinct.

For each sequence of distinct variables x1; : : : ; xn of sorts X1; : : : ;Xn, respectively,
and each primitive formula �.x1; : : : ; xn/, we now define a relation

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K

of arity .X1; : : : ;Xn/ to be our interpretation of � in the context x1 2 X1; : : : ; xn 2 Xn.
We will occasionally simply write J�.x1; : : : ; xn/K when the context is obvious.

The notation Jx1 WX1; : : : ;xn WXn ` �.x1; : : : ;xn/K is more or less standard to categor-
ical logic, but it is not as intuitive in this setting. The chosen notation is intended to suggest
the standard notation for defining subsets, e.g., ¹.x; y/ 2 R �R j x2 C y2 D 1º. We use
brackets rather than braces because the familiar bijection between subsets and predicates
does not survive the quantum generalization [30, Sec. 10]. We are defining predicates.

Definition 2.3.2. Let X1; : : : ;Xn be quantum sets, and let x1; : : : ; xn be distinct variables
of sorts X1; : : : ;Xn, respectively. For each permutation � of ¹1; : : : ; nº, and each relation
R of arity .X�.1/; : : : ;X�.m//, for some m � n, we define

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j R.x�.1/; : : : ; x�.m//K

D �#.R � >X�.mC1/
� � � � � >X�.n/

/:

It is then straightforward to verify that this relation depends only on the values of � on
¹1; : : : ;mº. Furthermore, for arbitrary primitive formulas �.x1; : : : ;xn/ and .x1; : : : ;xn/,
we define

(1) J.x1; : : : ; xn/ 2 X1 � � � � �Xn j :�.x1; : : : ; xn/K
D :J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K;

(2) J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/ ^  .x1; : : : ; xn/K
D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K
^ J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K;
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(3) J.x2; : : : ; xn/ 2 X2 � � � � �Xn j .8x1 2 X1/ �.x1; : : : ; xn/K
D sup¹R 2 Rel.X2; : : : ;Xn/ j >X1

�R

� J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/Kº.

The quantum sets X1; : : : ;Xn in Definition 2.3.2 are arbitrary, as are the variables
x1; : : : ; xn, so we have defined the interpretation of all primitive formulas by recursion
over that class.

Our interpretation of universal quantification may be justified by observing that it is
a straightforward generalization of the classical interpretation. A further argument was
given by Weaver when he introduced this definition [56]. In essence, Weaver drew an
analogy between the elements of a set and the pure normal states of a type I factor, and we
could do the same here. The same analogy was later drawn by Rump [43]. However, we
do not view pure states as a direct analog of elements, instead holding fast to the orthodox
understanding of elements and points in noncommutative mathematics that is expressed
in Section 2.1.

The interpretation of a primitive formula in the empty context is a relation of arity . /,
i.e., a predicate on the empty Cartesian product of quantum sets. By convention, this empty
Cartesian product is the quantum set 1 whose only atom is the field C of complex numbers,
considered as a one-dimensional Hilbert space. It has exactly two predicates, the predicate
> D >1, defined by >.C/ D L.C;C/, and ? D ?1, defined by ?.C/ D 0. It is natural
to say that a formula �. /, which has no free variables, is true if J�. /K D >.

Proposition 2.3.3 (Also Proposition A.3.2). Let X1; : : : ;Xp be quantum sets, and let
x1; : : : ; xp be distinct variables of sorts X1; : : : ;Xp , respectively. For each permutation
� of ¹1; : : : ; pº and each primitive formula �.x1; : : : ; xn/, with n � p, we have that

J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j �.x1; : : : ; xn/K

D .��1/#.J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K � >XnC1
� � � � � >Xp

/:

This is the expected but necessary observation that permuting the context corresponds
exactly to permuting the arity of the resulting relation and that additionally any unused
variable x of some sort X corresponds to a factor of >X . This behavior is built into the
definition of our interpretation of primitive atomic formulas, but an inductive argument is
necessary to show that it persists for primitive formulas of higher syntactic complexity.
The proof is relegated to Appendix A.3.

2.4. Defined logical symbols

As in classical logic, the disjunction connective _ and the existential quantifier 9 may be
expressed in terms of their duals.

Definition 2.4.1. For primitive formulas �.x1; : : : ; xn/ and  .x1; : : : ; xn/, we write

 .x1; : : : ; xn/ _  .x1; : : : ; xn/
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as an abbreviation for :.: .x1; : : : ; xn/ ^ : .x1; : : : ; xn//, and we write

.9x1 2 X1/ �.x1; : : : ; xn/

as an abbreviation for :.8x1 2 X1/:�.x1; : : : ; xn/.

Proposition 2.4.2. Let X1; : : : ;Xn be quantum sets, and let x1; : : : ; xn be distinct
variables of sorts X1; : : : ;Xn, respectively. For primitive formulas �.x1; : : : ; xn/ and
 .x1; : : : ; xn/,

(1) J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/ _  .x1; : : : ; xn/K
D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K
_ J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K;

(2) J.x2; : : : ; xn/ 2 X2 � � � � �Xn j .9x1 2 X1/ �.x1; : : : ; xn/K
D inf¹R 2 Rel.X2; : : : ;Xn/ j >X1

�R

� J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/Kº.

Proof. Straightforward.

In classical logic, an implication �.x1; : : : ; xn/!  .x1; : : : ; xn/ may be viewed as
abbreviating the formula:�.x1; : : : ;xn/_ .x1; : : : ;xn/, but it is now widely understood
both that this expression is entirely unsatisfactory to the quantum setting and that no such
expression is entirely satisfactory. Hardegree observed [19] that there are exactly three
polynomials P ! Q in propositional variables P and Q, for the operations :, ^, and _,
that satisfy the following requirements in every orthomodular lattice:

(1) P ^ .P ! Q/ � Q,

(2) .P ! Q/ ^ :Q � :P ,

(3) P ! Q D > if and only if P � Q.

They are as follows:

(1) :P _ .P ^Q/,

(2) .:P ^ :Q/ _Q,

(3) .P ^Q/ _ .:P ^Q/ _ .:P ^ :Q/.

None of these expressions is entirely satisfactory because none of them satisfies the ex-
pected transitivity law .P ! Q/ ^ .Q ! R/ � P ! R. In this paper, we interpret the
implication P ! Q to be the Sasaki arrow :P _ .P ^Q/.

This choice may be motivated by physical considerations. If P andQ are propositions
about a physical system [6] and :P _ .P ^Q/ is true of the initial state with probability
one, then a positive outcome in a measurement of the truth value ofP guarantees a positive
outcome in a successive measurement of the truth value of Q. Moreover, :P _ .P ^Q/
is the weakest such proposition in the sense that any other proposition with this property
implies it [13, 44]. This choice of implication may also be pragmatically justified by its
role in the proof of Proposition 3.3.1.
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Definition 2.4.3. For primitive formulas �.x1; : : : ; xn/ and  .x1; : : : ; xn/, we write

�.x1; : : : ; xn/!  .x1; : : : ; xn/

as an abbreviation for :�.x1; : : : ; xn/ _ .�.x1; : : : ; xn/ ^  .x1; : : : ; xn//. We also write

�.x1; : : : ; xn/$  .x1; : : : ; xn/

as an abbreviation for

.�.x1; : : : ; xn/!  .x1; : : : ; xn// ^ . .x1; : : : ; xn/! �.x1; : : : ; xn//:

Contradiction ? and equality D are commonly regarded as logical symbols on the
basis that their interpretation does not really depend on the structure being considered.
This distinction between logical and nonlogical relations is not meaningful within our
approach of interpreting primitive formulas in a single many-sorted structure, the class of
all quantum sets equipped with all their relations. Each relation symbol is a relation that
denotes itself, and we do not consider other structures in which that symbol may denote
some other relation. However, with this semantics in hand, it is entirely straightforward to
define the notion of a discrete quantum model that accommodates both a logical equality
symbol and various nonlogical relations symbols [23].

Contradiction ? is a relation of arity . /; it was defined in Section 2.3. The equality
relation EX on a quantum set X is a relation of arity .X;X�/, which we now define.

Definition 2.4.4. Let X be a quantum set. The equality relation on X is the relation
EX of arity .X;X�/ defined by EX.X ˝ X

�/ D C"X for all atoms X 2 At.X/ and
EX.X1˝X

�
2 /D 0 for distinct atomsX1;X2 2At.X/, where "X is the evaluation operator

X ˝X� ! C.

The equality projection ı`1.X/ that was defined in Section 1.1 may be regarded as an
element of `1.X �X�/; see Section 2.1. Viewed in this way, it is the projection that cor-
responds to the predicate EX in the sense that EX.X1˝X

�
2 /D L.X1˝X

�
2 ;C/ � ı`1.X/

for all X1; X2 2 At.X/. This is proved in Appendix A.4. From the intuitive perspective
that X� consists of the antielements of X, the relation EX identifies elements of X with
antielements of X, and there is generally no way to identify the elements of one copy of
X with the elements of another. As in Section 2.1, the elements and antielements of a
quantum set are just figures of speech.

2.5. Quantifying over the diagonal

The characteristic feature of the equality relation in the quantum setting is its mixed arity.
For this reason, axioms often quantify over both the underlying quantum set of a discrete
quantum structure and over its dual, and the relations that constitute that structure often
have mixed arity. For example, the reflexivity of a relation R equipping a quantum set X

is naturally expressed by the nonduplicating sentence

.8x1 2 X/ .8x2 2 X�/ .EX.x1; x2/! R.x1; x2//:
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The variables x1 and x2 must have sorts X and X�, respectively, because EX has arity
.X;X�/. It follows that R should also have arity .X;X�/. Thus, a reflexive relation on
X should have arity .X;X�/.

The formulation of reflexivity given in the above paragraph suggests a device for
expressing the quantification of a variable ranging simultaneously over a quantum set X

and over its dual X�. For greater convenience, we might modify our conventions to allow
a single bound variable to appear once as an X-sorted argument and once as an X�-sorted
argument in any atomic formula. However, to avoid the risk of confusion and the cost of
time borne by introducing this notation, we make do with a minor addition to our syntax
that canonizes this device as a defined quantifier. We do so in part because this quantifier
occurs frequently in the axiomatizations of already established quantum generalizations
of discrete structures; see the second part of this paper.

Definition 2.5.1. Let X be a quantum set. Let �.x1;x2;x3; : : : ;xn/ be a primitive formula
with x1 and x2 of sorts X and X�, respectively. We write

.8.x1 D x2/ 2 X �X�/ �.x1; : : : ; xn/

as an abbreviation for .8x2 2 X�/ .8x1 2 X/ .EX.x1; x2/! �.x1; : : : ; xn//. We also
write

.9.x1 D x2/ 2 X �X�/ �.x1; : : : ; xn/

as an abbreviation for :.8.x1 D x2/ 2 X �X�/:�.x1; : : : ; xn/.

For clarity, we will often decorate a variable that ranges over the dual of a given quan-
tum set with an asterisk as a part of that symbol. For two variables that are paired by the
quantifier that we have just defined, it is convenient for the variables to differ by exactly
the asterisk, e.g., .8.x D x�/ 2X �X�/R.x; x�/, forR a relation of arity .X;X�/. The
variables x and x� are entirely distinct.

The example of pair production in Section 1.1 suggests a vivid intuition for the univer-
sal diagonal quantifier. We reframe this example in terms of quantum sets: the phase space
of the electron’s spin is a quantum set X that consists of a single two-dimensional atom
X . The phase space of the positron’s spin is then X�, and the phase space of the compos-
ite system is X �X�. Each relation R of arity .X;X�/ corresponds to a projection r in
`1.X �X�/, i.e., to a Boolean observable on the composite system `1.X/ x̋ `1.X/op.
We will soon show that J.8.x D x�/ 2X �X�/R.x;x�/KD> if and only if ı`1.X/ � r ;
see Proposition 3.2.2. Therefore, J.8.x D x�/ 2X �X�/R.x; x�/KD > if and only if a
measurement of r is guaranteed to yield 1 whenever the composite system is prepared via
a neutral pion decay.

The suggested intuition is that we may analogously produce element-antielement pairs
from any nonempty quantum set X and that the universal diagonal quantifier refers to all
element-antielements pairs produced in this way. To the extent that a variable x of sort X

may be regarded as naming an element of X, the variable x� of sort X� may be regarded
as naming the corresponding antielement. However, the variables x and x� are formally
unrelated, and the elements and antielements of X are just figures of speech.
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2.6. Function graphs

Functions may be treated logically as relations. Classically, we may identify each function
f from a set X to a set Y with its graph relation J.x; y/ 2 X � Y j f .x/D yK. We follow
the same approach in the quantum setting.

Let us suppose that F is a function from a quantum set X to a quantum set Y in
some appropriate sense. As the variable x ranges over X, the term F.x/ ranges in Y,
so the graph relation of F is a relation defined by the formula EY.F.x/; y/. The equality
relationEY has arity .Y;Y�/, so the variable y must range over Y�, not Y. Thus, the graph
relation of a function F from a quantum set X to a quantum set Y should be a relation of
arity .X;Y�/. Therefore, we define a function graph from X to Y to be a relation G of
arity .X;Y�/ that is univalent in X and total in X, expressing both properties by primitive
formulas.

Definition 2.6.1. Let X and Y be quantum sets. A relation G of arity .X;Y�/ is said to
be a function graph if it satisfies the following:

(1) J.8x 2 X/ .9y� 2 Y�/G.x; y�/K D >;

(2) J.8y1 2 Y/ .8y2� 2 Y�/ ..9.x D x�/ 2 X �X�/ .G�.x�; y1/ ^ G.x; y2�//!

EY.y1; y2�//K D >.

This definition is recognizable from ordinary logic. The placement of asterisks in the
second formula is essentially dictated by the arity of EY . We reason that the variables y1
and y2� must be of sorts Y and Y�, respectively, so the first atomic subformula must use
the conjugate relationG� in place ofG. This implies that the variable x� in the first atomic
subformula must be of sort X�. Likewise, the variable x in the second atomic subformula
must be of sort X.

For each function graphG of arity .X;Y�/, we extend the language by adding a func-
tion symbol MG. Anticipating Theorem 3.4.2, we formally define MG to be the binary relation
.G � IY/ ı .IX � E

�
Y
/ from X to Y [30, Sec. 3]. Reasoning graphically, as described in

Section 3.1, it is easy to see that

R D EY ı . MR � IY�/

for each relation R of arity .X; Y�/. Thus, the mapping G 7! MG is injective, and we
introduce no ambiguity by defining our function symbols in this way.

We remark that a relation may have more than one arity. Finite Cartesian products are
formally defined associating to the left, so a function graphG of arity .X1 � � � � �Xm;Y

�/

is also a relation of arity .X1; : : : ;Xm;Y
�/. Hence, we will use the function symbol MG

both with one argument and with n arguments, Definition 2.6.1 notwithstanding. This is
made precise in Section 2.7.

2.7. Interpreting nonduplicating formulas

We now define the class of nonduplicating formulas, and we extend the semantics of
Section 2.3 to this class.
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Definition 2.7.1. The class of nonduplicating terms is defined recursively: a variable
of sort X is a nonduplicating term of sort X, and for each function graph G of arity
.X1; : : : ;Xm; Y

�/, if s1; : : : ; sm are nonduplicating terms of sorts X1; : : : ;Xm, re-
spectively, and no two of these terms have a variable in common, then the expression
MG.s1; : : : ; sm/ is a nonduplicating term of sort Y. Furthermore, for each relationR of arity
.Y1; : : : ;Yn/, if t1; : : : ; tn are nonduplicating terms of sorts Y1; : : : ;Yn, respectively, and
no two of these terms have a variable in common, then the expression R.t1; : : : ; tn/ is a
nonduplicating atomic formula.

Definition 2.7.2. Let Y1; : : : ;Yn be quantum sets; letR be a relation of arity .Y1; : : : ;Yn/.
IfR.t1; : : : ; tn/ is a nonduplicating atomic formula that is not primitive, then it abbreviates
the nonduplicating formula

.9.yn D yn�/ 2 Yn � Y�n / � � �.9.y1 D y1�/ 2 Y1 � Y�1 /

.R.y1; : : : ; yn/ ^ t1 Õ y1� ^ � � � ^ tn Õ yn�/;

where the variables y1; : : : ; yn and y1�; : : : ; yn� are all new in the sense that they do not
occur in the formula R.t1; : : : ; tn/. In this context, a formula of the form t Õ y�, for t of
sort Y and y� of sort Y�, abbreviates EY.t; y�/ if t is a variable and G.s1; : : : ; sm; y�/ if
t is of the form MG.s1; : : : ; sm/, for some terms s1; : : : ; sm.

Thus, every nonduplicating atomic formula that is not primitive abbreviates a primitive
formula. For example, the formula P. MG.x//, with G a function graph of arity .X;Y�/,
abbreviates the formula .9.y D y�/ 2 Y � Y�/ .P.y/^G.x;y�//, which in turn abbrevi-
ates the formula .9y� 2 Y�/ .9y 2 Y/ .EY.y; y�/! .P.y/ ^ G.x; y�///, which finally
abbreviates the primitive formula

.9y� 2 Y�/ .8y 2 Y/ .:EY.y; y�/ _ .EY.y; y�/ ^ .P.y/ ^G.x; y�////:

This observation extends easily to the class of all nonduplicating formulas.

Definition 2.7.3. The class of nonduplicating formulas is defined recursively: each nondu-
plicating atomic formula is a nonduplicating formula, and if � and  are nonduplicating
formulas and x is variable of some sort X, then the expressions:�, � ^ , � _ , �! ,
.8x 2 X/ �, and .9x 2 X/ � are nonduplicating formulas.

The abbreviations that we have defined in Section 2 together define a translation, i.e.,
a class function from nonduplicating formulas to primitive formulas, which fixes all of the
primitive formulas. This extends our interpretation of primitive formulas to all nondupli-
cating formulas. Formally, for each nonduplicating formula �.x1; : : : ; xn/, we define

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K

D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j z�.x1; : : : ; xn/K;

where z�.x1; : : : ; xn/ is the translation of �.x1; : : : ; xn/. Note that the translation has
exactly the same free variables as the original formula.
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B

XnX1

� � �

Y1 Ym
� � �

R

XnX1

� � �
EX

XX

IX

X

�

X

>X

Figure 1. Some depicted binary relations.

For the sake of the exposition, quantification over the diagonal remains an informal
abbreviation; i.e., .8.x D x�/ 2 X �X�/ �.x; x�; y1; : : : ; yn/ is the formula

.8x� 2 X�/ .8x 2 X/ .EX.x; x�/! �.x; x�; y1; : : : ; yn//

for each nonduplicating formula �.x; x�; y1; : : : ; yn/, and it is likewise for .9.x D x�/ 2
X �X�/ �.x; x�; y1; : : : ; yn/. Similarly, equivalence remains an informal abbreviation;
i.e., �.x1; : : : ; xn/$  .x1; : : : ; xn/ is the formula .�.x1; : : : ; xn/!  .x1; : : : ; xn// ^

. .x1; : : : ; xn/ ! �.x1; : : : ; xn// for all nonduplicating formulas �.x1; : : : ; xn/ and
 .x1; : : : ; xn/.

3. Computation

Computation with the relations that we have defined is most easily performed with the aid
of wire diagrams. A relation R of some arity .X1; : : : ;Xn/ is also a binary relation from
X1 � � � � �Xn to 1 in the sense of [30]. Hence,R.X1˝ � � � ˝Xn/DR.X1˝ � � � ˝Xn;C/
for all atoms X1 2 At.X1/, X2 2 At.X2/, etc. The category of quantum sets and binary
relations is compact closed and therefore supports a graphical calculus in which binary
relations are depicted as boxes and quantum sets are depicted as wires [1].

3.1. Wire diagrams

A binary relation B from a product X1 � � � � �Xn to a product Y1 � � � � � Ym is depicted
as a box with n wires entering the box from the bottom, each associated to one of the
quantum sets X1; : : : ;Xn, and withm wires leaving the box from the top, each associated
to one of the quantum sets Y1; : : : ;Ym. A relation R of arity .X1; : : : ;Xn/ is therefore
depicted as a box with wires coming just from below. See Figure 1.

We orient each wire, with downward-oriented wires corresponding to dual quantum
sets. In other words, a downward-oriented wire labeled X corresponds to the quantum
set X�. The advantage of this notation is that the equality relation, which is also the counit
of the dagger compact structure on the category of quantum sets and binary relations, can
be depicted simply as an arc. For each quantum set X, the identity binary relation IX on
X is depicted simply as a wire, and the maximum predicate >X is depicted by a “loose
end”, which we will sometimes “pull away”, that is, completely omit. See Figure 1.

In this diagrammatic calculus, the monoidal product of two morphisms, i.e., of two
binary relations, is depicted by placing the corresponding diagrams side by side. Thus, for
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all quantum sets X and Y, we have the equation

�

X�Y
D

�

X

�

Y

because >X�Y D >X � >Y . Similarly, the composition of binary relations is depicted
by placing one diagram above the other and tying together the corresponding wires. For
example, if B is a binary relation from X to Y, then the binary relation �B WD EY ı .B �

IY�/ from X � Y� to 1 is depicted in the following diagram:

B

YX

:

We will often use variables to label the wires of a diagram in order to distinguish var-
ious occurrences of the same quantum set, particularly when depicting the interpretation
of a formula. For example, the relation

J.x; x�; y1; y2; y3/ 2 X �X� � Y � Y � Y j EX.x; x�/K

is depicted in the following diagram:

xx y1 y2 y3

� � �

:

The defining properties of a dagger compact category are such that wires may be
deformed in the intuitive way. Boxes may be moved around or even turned upside down,
which corresponds to dualization in the sense of the dagger compact structure. Thus, for
any binary relation B from a quantum set X to a quantum set Y, we have the following:

B

Y

X

D

B

X Y D B�X Y :

The expression Rel.XIY/ denotes the set of all binary relations from a quantum set
X to a quantum set Y in [30] and in the present paper. For quantum sets X1; : : : ;Xn

and Y1; : : : ;Ym, monoidal closure yields a canonical bijection between Rel.X1 � � � � �

XnIY1 � � � � � Ym/ and Rel.X1 � � � � �Xn � Y�1 � � � � � Y�mI1/, so whether a wire leaves
the diagram upward or downward has no fundamental significance beyond sorting the
factors between the domain and the codomain. Thus, binary relations are all essentially
predicates. Similarly, our wire diagrams are essentially diagrams in a space with no top or
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bottom; each box denotes some predicate, and each emanates wires according to the arity
of that predicate.

One significant advantage of diagrammatic computation is the ease with which we
can permute the variables of a context. Formally, we appeal to the following proposition,
which is proved in Appendix A.5.

Proposition 3.1.1 (Also Proposition A.5.1). Let X1; : : : ;Xn be quantum sets, and let �
be a permutation of ¹1; : : : ; nº. Let U� be the canonical isomorphism [35, Thm. XI.1.1]
from X1 � � � � �Xn to X�.1/ � � � � �X�.n/ in the symmetric monoidal category of quan-
tum sets and binary relations [30, Sec. 3]. Then, �#.R/ D R ı U� for all relations R of
arity .X�.1/; : : : ;X�.n//.

Together, Propositions 2.3.3 and 3.1.1 allow us to quickly compute simplified dia-
grams depicting interpreted formulas. For example, writing

R WD J.x1; x2�; y/ 2 X �X� � Y j EX.x1; x2�/K;

we may compute that

J.x2�; y; x1/ 2 X� � Y �X j EX.x1; x2�/K D

R

x2 y x1

D

x2 y

�

x1

D

x2

�

y x1

:

The weave of wires below the box depicting the relation R depicts the canonical isomor-
phism from X� � Y �X to X �X� � Y that is derived from the symmetric monoidal
structure of the category of quantum sets and binary relations.

3.2. Standard quantifiers

We establish two basic propositions about the standard quantifiers 8 and 9.

Lemma 3.2.1. Let �.x1; : : : ; xn/ be a nonduplicating formula, with x1; : : : ; xn of sorts
X1; : : : ;Xn, respectively. For all m 2 ¹0; : : : ; nº, we have

J.xmC1; : : : ; xn/ 2 XmC1 � � � � �Xn j .8xm 2 Xm/ � � � .8x1 2 X1/ �.x1; : : : ; xn/K

D sup¹R 2 Rel.XmC1; : : : ;Xn/ j >X1
� � � � � >Xm

�R

� J.x1; : : : ; xn/2X1 � � � � �Xn j �.x1; : : : ; xn/Kº:

The special case m D n shows that J.8xn 2 Xn/ � � � .8x1 2 X1/ �.x1; : : : ; xn/K D > if
and only if J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K is the maximum relation of
arity .X1; : : : ;Xn/.

Proof. For each m 2 ¹0; : : : ; nº, write Rm for the left side of the equality. Hence, we are
to show that for all m 2 ¹0; : : : ; nº, we have that

Rm D sup¹R 2 Rel.XmC1; : : : ;Xn/ j >X1
� � � � � >Xm

�R � R0º:
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We proceed by induction on m. The base case is just the obvious equality

R0 D sup¹R 2 Rel.X1; : : : ;Xn/ j R � R0º:

For the induction step, we assume that the desired equality holds for some naturalm� 1 2
¹0; : : : ; n � 1º, and thus, we have the following:

Rm�1 D sup¹R 2 Rel.Xm; : : : ;Xn/ j >X1
� � � � � >Xm�1

�R � R0º;

Rm D sup¹R 2 Rel.XmC1; : : : ;Xn/ j >Xm
�R � Rm�1º:

In particular, we have that

>X1
� � � � � >Xm�1

� >Xm
�Rm � >X1

� � � � � >Xm�1
�Rm�1 � R0:

Now, suppose that R is any other relation that satisfies

>X1
� � � � � >Xm�1

� >Xm
�R � R0:

It follows that >Xm
� R � Rm�1 by the first equation and then that R � Rm by the

second equation. Therefore, Rm is indeed the supremum of the relations R satisfying
>X1

� � � � � >Xm
�R � R0.

Proposition 3.2.2. Let �.x1; : : : ; xn/ and  .x1; : : : ; xn/ be nonduplicating formulas,
with x1; : : : ; xn of sorts X1; : : : ;Xn, respectively. Then,

J.8xn 2 Xn/ � � � .8x1 2 X1/ .�.x1; : : : ; xn/!  .x1; : : : ; xn//K D >

if and only if

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K

� J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K:

Proof. By Lemma 3.2.1, the equation is true if and only if

J�.x1; : : : ; xn/K! J .x1; : : : ; xn/K

is the maximum relation of arity .X1; : : : ;Xn/. This condition is equivalent to the claimed
inequality by a fundamental property of the Sasaki arrow [19].

Proposition 3.2.3. Let �.x1; : : : ; xn/ be a nonduplicating formula, with x1; : : : ; xn of
sorts X1; : : : ;Xn. Then,

J.x2; : : : ; xn/ 2 X2 � � � � �Xn j .9x1 2 X1/ �.x1; : : : ; xn/K

D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K ı .>
�

X1
� IX2

� � � � � IXn
/

D

J�.x1; : : : ; xn/K

�
� � � � � �

:
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Proof. Write

J�.x1; : : : ; xn/K D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K:

We refer to [31, App. C] for the relationship between the adjoint � and the orthogonality
relation ?. We calculate that

J.x2; : : : ; xn/ 2 X2 � � � � �Xn j .9x1 2 X1/ �.x1; : : : ; xn/K

D J.x2; : : : ; xn/ 2 X2 � � � � �Xn j :.8x1 2 X1/:�.x1; : : : ; xn/K

D : sup¹R 2 Rel.X2; : : : ;Xn/ j >X1
�R � J:�.x1; : : : ; xn/Kº

D : sup¹R 2 Rel.X2; : : : ;Xn/ j >X1
�R ? J�.x1; : : : ; xn/Kº

D : sup¹R 2 Rel.X2; : : : ;Xn/ j J�.x1; : : : ; xn/K ı .>X1
�R/� D ?º

D : sup¹R 2 Rel.X2; : : : ;Xn/ j J�.x1; : : : ; xn/K ı .>
�

X1
�R�/ D ?º

D : sup¹R 2 Rel.X2; : : : ;Xn/ j J�.x1; : : : ; xn/K ı .>
�

X1
� IX2

� � � � � IXn
/

ıR� D ?º

D : sup¹R 2 Rel.X2; : : : ;Xn/ j R ? J�.x1; : : : ; xn/K

ı .>
�

X1
� IX2

� � � � � IXn
/º

D ::.J�.x1; : : : ; xn/K ı .>
�

X1
� IX2

� � � � � IXn
//

D J�.x1; : : : ; xn/K ı .>
�

X1
� IX2

� � � � � IXn
/:

Applying diagrammatic reasoning, we find that existential quantifiers commute, as a
corollary of Proposition 3.2.3, and therefore, so do universal quantifiers. If X1 D ‘A for
some ordinary set A, then existential quantification over X1 is equivalent to a disjunction
over A, essentially because the maximum binary relation from a singleton ¹�º to A is the
disjunction of the elements of A, each considered as a binary relation from ¹�º to A. See
Lemma A.6.1.

3.3. Diagonal quantifiers

We now characterize our two defined quantifiers over the diagonal.

Proposition 3.3.1. Let �.x; x�; y1; : : : ; yn/ be a nonduplicating formula, with x of sort
X, with x� of sort X�, and with y1; : : : ; yn of sorts Y1; : : : ; Yn, respectively. Write
J�.x; x�; y1; : : : ; yn/K as an abbreviation for

J.x; x�; y1; : : : ; yn/ 2 X �X� � Y1 � � � � � Yn j �.x; x�; y1; : : : ; yn/K:

Then,

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .8.x D x�/ 2 X �X�/ �.x; x�; y1; : : : ; yn/K

D sup¹R 2 Rel.Y1; : : : ;Yn/ j EX �R � J�.x; x�; y1; : : : ; yn/Kº:
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Proof. We calculate that

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .8.x D x�/ 2 X �X�/ �.x; x�; y1; : : : ; yn/K

D J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .8x� 2 X�/ .8x 2 X/

.EX.x; x�/! �.x; x�; y1; : : : ; yn//K

D sup¹R 2 Rel.Y1; : : : ;Yn/ j >X � >X� �R

� JEX.x; x�/! �.x; x�; y1; : : : ; yn/Kº

D sup¹R 2 Rel.Y1; : : : ;Yn/ j >X � >X� �R

� JEX.x; x�/K! J�.x; x�; y1; : : : ; yn/Kº

D sup¹R 2 Rel.Y1; : : : ;Yn/ j .>X � >X� �R/& JEX.x; x�/K

� J�.x; x�; y1; : : : ; yn/Kº

D sup¹R 2 Rel.Y1; : : : ;Yn/ j .>X � >X� �R/& .EX � >Y1 � � � � � >Yn/

� J�.x; x�; y1; : : : ; yn/Kº

D sup¹R 2 Rel.Y1; : : : ;Yn/ j EX �R � J�.x; x�; y1; : : : ; yn/Kº:

In this context, & denotes the Sasaki projection connective, which is defined by P &Q D

.P _ :Q/ ^Q. For every relation Q, the mapping P 7! P & Q is left adjoint to the
mapping P 7! Q! P [13].

The following theorem serves as a bridge between the semantics defined in Section 2
and the interpretation of wire diagrams in the dagger compact category of quantum sets
and binary relations [30, Sec. 3].

Theorem 3.3.2. From the assumptions of Proposition 3.3.1, we have the following equal-
ity:

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .9.x D x�/ 2 X �X�/ �.x; x�; y1; : : : ; yn/K

D J�.x; x�; y1; : : : ; yn/K ı .E
�

X
� IY1 � � � � � IYn/

D

J�.x; x�; y1; : : : ; yn/K
� � � � � �

:

Proof. Appealing to Proposition 3.3.1 for the second equality, we reason that

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .9.x D x�/ 2 X �X�/ �.x; x�; y1; : : : ; yn/K

D J.y1; : : : ; yn/ 2 Y1�� � ��Yn j :.8.xDx�/2X�X�/:�.x; x�; y1; : : : ; yn/K

D : sup¹R 2 Rel.Y1; : : : ;Yn/ j EX �R � J:�.x; x�; y1; : : : ; yn/Kº

D : sup¹R 2 Rel.Y1; : : : ;Yn/ j EX �R ? J�.x; x�; y1; : : : ; yn/Kº



Discrete quantum structures I: Quantum predicate logic 363

D : sup¹R 2 Rel.Y1; : : : ;Yn/ j J�.x; x�; y1; : : : ; yn/K ı .EX �R/
�
D ?º

D : sup¹R 2 Rel.Y1; : : : ;Yn/ j J�.x; x�; y1; : : : ; yn/K ı .E
�

X
�R�/ D ?º

D : sup¹R 2 Rel.Y1; : : : ;Yn/ j J�.x; x�; y1; : : : ; yn/K

ı .E
�

X
� IY1 � � � � � IYn/ ıR

�
D ?º

D : sup¹R 2 Rel.Y1; : : : ;Yn/ j R ? J�.x; x�; y1; : : : ; yn/K

ı .E
�

X
� IY1 � � � � � IYn/º

D ::.J�.x; x�; y1; : : : ; yn/K ı .E
�

X
� IY1 � � � � � IYn//

D J�.x; x�; y1; : : : ; yn/K ı .E
�

X
� IY1 � � � � � IYn/:

If X D ‘A for some ordinary set A, then existential quantification over the diagonal
of X �X� is equivalent to a disjunction over A. See Lemma A.6.2.

Let X and Y be quantum sets. There is a natural bijective correspondence between
binary relations from X to Y and relations of arity .X;Y�/. It is given by

R 7! EY ı .R � IY�/;

R

X

Y

7! R

X Y

:

Because we regard the distinction between domain wires and codomain wires to be simply
an aid to computation, we view R and �R WD EY ı .R � IY�/ to be essentially identical.
Thus, the following corollary of Theorem 3.3.2 expresses a close connection between
the existential diagonal quantifier and the composition of binary relations between quan-
tum sets.

Corollary 3.3.3. Let X, Y, and Z be quantum sets. Let R be a binary relation from X

to Y, let S be a binary relation from Y to Z, and let T be the binary relation from X to Z

defined by T D S ıR. Then,

J.x; z�/ 2 X �Z� j .9.y D y�/ 2 Y � Y�/ . �R.x; y�/ ^ �S.y; z�//K D �T :

This conclusion clearly recalls the composition of binary relations between ordinary
sets.

Proof of Corollary 3.3.3. We apply Definition 2.3.2, Proposition 3.1.1, and Theorem 3.3.2:

J.x; y�; y; z�/ 2 X � Y� � Y �Z� j �R.x; y�/ ^ �S.y; z�/K

D .J.x; y�/ 2 X � Y� j �R.x; y�/K � >Y � >Z�/

^ .>X � >Y� � J.y; z�/ 2 Y �Z� j �S.y; z�/K/
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D J.x; y�/ 2 X � Y� j �R.x; y�/K � J.y; z�/ 2 Y �Z� j �S.y; z�/K

D
R

yx

S

zy

;

J.x; z�/ 2 X �Z� j .9.y D y�/ 2 Y � Y�/ . �R.x; y�/ ^ �S.y; z�//K

D
R

x

S

z

D
S

R

x z

D �T :

3.4. Functions

Let X and Y be quantum sets. We show that the mapping R 7! �R restricts to a bijective
correspondence between functions from X to Y in the sense of [30, Def. 4.1] and function
graphs of arity .X;Y�/ in the sense of Definition 2.6.1.

Lemma 3.4.1. Let F be a partial function from X to Y in the sense of [30], i.e., a binary
relation from X to Y satisfying the inequality F ı F � � IY . Then, �F is a relation of arity
.X;Y�/ that satisfies condition (2) of Definition 2.6.1. Furthermore, this construction is
bijective.

Proof. Let R D F �, let S D F , and let T D S ıR D F ı F �. First, we observe that the
formulas �R.y; x�/ and �F�.x�; y/ have the same interpretation in any context. It is clearly
sufficient to show that they have the same interpretation in the context .y; x�/ 2 Y �X�:

J.y; x�/ 2 Y �X� j �F�.x�; y/K D
F�

y x

D

F�

y x

D
F �

y x

D J.y; x�/ 2 Y �X� j �R.y; x�/K:

It follows directly from Definition 2.3.2 that we may replace �F�.x�; y/ by �R.y; x�/ in
any formula without altering the interpretation of that formula. Hence, we may apply
Proposition 3.2.2 and Corollary 3.3.3 to reason as follows:

J.8y1 2 Y/ .8y2� 2 Y�/ ..9.x D x�/ 2 X �X�/. �F�.x�; y1/ ^ �F .x; y2�//

! EY.y1; y2�//K D >

” J.y1; y2�/2Y�Y� j .9.xDx�/2X�X�/ . �F�.x�; y1/ ^ �F .x; y2�//K � EY

” J.y1; y2�/2Y�Y� j .9.xDx�/2X�X�/ . �R.y1; x�/ ^ �S.x; y2�//K � EY

” �T � EY D
�IY ” T � IY ” F ı F � � IY :
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Theorem 3.4.2. Let F be a function from X to Y in the sense of [30], i.e., a binary
relation from X to Y satisfying the inequalities F � ıF � IX and F ıF � � IY . Then, �F is
a function graph. Furthermore, this construction is bijective. Applying [30, Thm. 7.4], we
obtain a canonical bijection between function graphs of arity .X;Y�/ and unital normal
�-homomorphisms from `1.Y/ to `1.X/.

Proof. With Lemma 3.4.1 in hand, it remains only to show that F satisfies F � ı F � IX

if and only if J.8x 2 X/ .9y� 2 Y/ �F .x; y�/K D >. As we observed in Section 3.2, this
equality holds if and only if Jx 2X j .9y� 2 Y/ �F .x;y�/K is the maximum predicate>X .
Reasoning diagrammatically, we have that

Jx 2 X j .9y� 2 Y/ �F .x; y�/K D F

�

D F

�

:

We conclude that
J.8x 2 X/ .9y� 2 Y/ �F .x; y�/K D >

if and only if >Y ı F D >X .
Thus, the construction F 7! �F is a bijection between partial functions F satisfying

>Y ı F D >X and function graphs. By [30, Lem. B.4], >Y ı F D >X if and only if the
normal �-homomorphism F ? is unital, and by [30, Lem. 6.4], the latter condition holds if
and only if F � ı F � IX . Therefore, the construction F 7! �F restricts to a bijection from
functions to function graphs.

Having established this one-to-one correspondence between functions and function
graphs, it becomes natural to use functions for function symbols. Indeed, this is what we
have been doing. For each function F from a quantum set X to a quantum set Y and each
function graph G of arity .X;Y�/, the equation G D �F is easily seen to be equivalent to
the equation F D MG via the graphical calculus. We did not directly define our function
symbols to be functions in Section 2.6 to delay drawing from [30], in order to demonstrate
that this notion may be motivated from elementary physical and logical considerations.

3.5. Terms

One effect of Definition 2.7.2 is that nonduplicating terms may be interpreted as compo-
sitions of functions in the expected way.

Definition 3.5.1. Let X1; : : : ;Xn be quantum sets, and let x1; : : : ; xn be distinct variables
of sorts X1; : : : ;Xn, respectively. Let Y be a quantum set, and let t .x1; : : : ; xn/ be a term
of sort Y. We define J.x1; : : : ; xn/ 2 X1 � � � � �Xn j t .x1; : : : ; xn/K to be

.J.x1; : : : ;xn;y�/2X1�� � ��Xn�Y� j t .x1; : : : ;xn/Õ y�K�IY/ı.IX1
�� � ��IXn

�E�Y/;
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where the formula t .x1; : : : ; xn/ Õ y� is defined in Definition 2.7.2. Graphically,

Jt .x1; : : : ; xn/K

xnx1

y

� � �

WD Jt .x1; : : : ; xn/ Õ y�K

xnx1

y

� � �

:

Let F be a function X1 � � � � �Xn! Y. By definition, the formula F.x1; : : : ; xn/Õ
y� abbreviates the nonduplicating formula �F .x1; : : : ; xn; y�/, and therefore,

JF.x1; : : : ; xn/K

xnx1

y

� � �

D J �F .x1; : : : ; xn; y�/K

xnx1

y

� � �

D �F

xnx1

y

� � �

D F

xnx1

y

� � �

D F

xnx1

y

� � �

:

Thus, J.x1; : : : ; xn/ 2 X1 � � � � �Xn j F.x1; : : : ; xn/K D F .
Let i 2 ¹1; : : : ; nº. The variable xi is a term of sort Xi . The formula xi Õ y� abbre-

viates the nonduplicating formula EXi
.xi ; y�/, and therefore,

JxiK

xi xnx1

y

� � � � � �

D JEXi
.xi ; y�/K

xi xnx1

y

� � � � � �

D ��

xi xnx1

y

� � � � � �

� � � � � �
D ��

xi xnx1

y

� � � � � �

� � � � � � :
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Thus,

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j xiK D >X1
� � � � � >Xi�1

� IXi
�>XiC1

� � � � � >Xn
:

This is the projection function Pi WX1 � � � � �Xn ! Xi , which is dual to the canonical
inclusion unital normal �-homomorphism P ?i W `

1.Xi / ,! `1.X1/ x̋ � � � x̋ `
1.Xn/ [30,

Sec. 10] and [31, App. B].

Lemma 3.5.2. Let Y1; : : : ; Ym be quantum sets, and also let R be a relation of arity
.Y1; : : : ;Ym/. For each index i 2 ¹1; : : : ; mº, let ti be a term of sort Yi , whose distinct
variables xi;1; : : : ; xi;ni are of sorts X1;i ; : : : ;Xi;ni , respectively. For each index i 2
¹1; : : : ; mº, let JtiK be an abbreviation for J.xi;1; : : : ; xi;ni / 2 Xi;1 � � � � � Xi;ni j tiK.
Similarly, let JR.t1; : : : ; tm/K be an abbreviation for

J.x1;1; : : : ; x1;n1 ; : : : ; xm;1; : : : ; xm;nm/

2 X1;1 � � � � �X1;n1 � � � � �Xm;1 � � � � �Xm;nm j R.t1; : : : ; tm/K:

If R.t1; : : : ; tm/ is nonduplicating, then

JR.t1; : : : ; tm/K D R ı .Jt1K � � � � � JtmK/:

Proof. Assume that R.t1; : : : ; tm/ is nonduplicating. We calculate that

JR.t1; : : : ; tm/K

D J.9.ym D ym�/ 2 Y � Y�/ � � � .9.y1 D y1�/ 2 Y � Y�/

.R.y1; : : : ; ym/ ^ t1 Õ y1� ^ � � � ^ tm Õ ym�/K

D

Jt1 Õ y1�K

� � �

� � � Jtm Õ ym�K

� � �

JR.y1; : : : ; ym/K
� � �

D

JR.y1; : : : ; ym/K

� � �Jt1K
���

JtmK
���

D R ı .Jt1K � � � � � JtmK/:

Lemma 3.5.3. Let Y1; : : : ; Ym and Z be quantum sets, and let F be a function from
Y1 � � � � � Ym to Z. For each index i 2 ¹1; : : : ; mº, let ti be a term of sort Yi , whose
distinct variables xi;1; : : : ; xi;ni are of sorts X1;i ; : : : ;Xi;ni , respectively. For each index
i 2 ¹1; : : : ; mº, let JtiK be an abbreviation for J.xi;1; : : : ; xi;ni / 2 Xi;1 � � � � �Xi;ni j tiK.
Similarly, let JF.t1; : : : ; tm/K be an abbreviation for

J.x1;1; : : : ; x1;n1 ; : : : ; xm;1; : : : ; xm;nm/

2 X1;1 � � � � �X1;n1 � � � � �Xm;1 � � � � �Xm;nm j F.t1; : : : ; tm/K:
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If F.t1; : : : ; tm/ is nonduplicating, then

JF.t1; : : : ; tm/K D F ı .Jt1K � � � � � JtmK/:

Proof. Assume that F.t1; : : : ; tm/ is nonduplicating. Let X DX1;1 � � � � �X1;n1 � � � � �

Xm;1 � � � � �Xm;nm , and let Y D Y1 � � � � � Ym. We apply Lemma 3.5.2 to calculate that

JF.t1; : : : ; tm/K D .JF.t1; : : : ; tm/ Õ z�K � IZ/ ı .IX �E
�
Z/

D .J �F .t1; : : : ; tm; z�/K � IZ/ ı .IX �E
�
Z/

D .. �F ı .Jt1K � � � � � JtmK � Jz�K// � IZ/ ı .IX �E
�
Z/

D .. �F ı .Jt1K � � � � � JtmK � IZ�// � IZ/ ı .IX �E
�
Z/

D . �F � IZ/ ı .IY �E
�
Z/ ı .Jt1K � � � � � JtmK/

D F ı .Jt1K � � � � � JtmK/:

We may conjugate a term t by conjugating each function symbol and variable that
appears in that term. Formally, if t is of the form F.t1; : : : ; tm/, then we define t� to
be F�.t1�; : : : ; tm�/, and if t is a variable x, then we define t� to be x�, the conjugate
variable. If the term t has variables among x1; : : : ; xn, of sorts quantum sets X1; : : : ;Xn,
respectively, then we may apply Lemma 3.5.3 to show that

J.x1�; : : : ; xn�/ 2 X�1 � � � � �X�n j t�K D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j tK�:

Proposition 3.5.4. Let X1; : : : ;Xn and Y be quantum sets. Let x1; : : : ; xn be distinct
variables of sorts X1; : : : ;Xn, respectively, and let x1�; : : : ; xn� be distinct variables of
sorts X1�; : : : ;Xn�, respectively. Let s and t be terms of sort Y whose free variables are
among x1; : : : ; xn. Then,

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j sK D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j tK

if and only if

J.8.xn D xn�/ 2 Xn �X�n / � � � .8.x1 D x1�/ 2 X1 �X�1 /EY.s; t�/K D >: (�)

Proof. By the duality of diagonal quantifiers (Definition 2.5.1), equation (�) holds if and
only if

J.9.xn D xn�/ 2 Xn �X�n / � � � .9.x1 D x1�/ 2 X1 �X�1 /:EY.s; t�/K D ?

or equivalently
J:EY.s; t�/K
� � � � � �

D ?:

We recognize the diagram on the left as depicting J:EY.s; t�/K ıE
�

X
, for X DX1 � � � � �

Xn. Thus, equation (�) holds if and only if .:JEY.s; t�/K/ ı E
�

X
D ? or equivalently

EX ? :JEY.s; t�/K or equivalently EX � JEY.s; t�/K. By Lemma 3.5.2, we have that
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JEY.s; t�/KDEY ı .JsK� JtK�/, and therefore, equation (�) is equivalent to the inequality

X X

� JsK JtK�

X X

:

Straightening the wires, we conclude that equation (�) is equivalent to IX � JtK� ı JsK.
It is a basic fact about functions between quantum sets that IX � JtK� ı JsK if and only

if JsKD JtK. Indeed, IX � JtK� ı JsK implies that JtK� JtK ı JtK� ı JsK� JsK, and similarly,
it implies that JsK� � JtK� ı JsK ı JsK� � JtK�, so JsK � JtK. Altogether, IX � JtK� ı JsK
implies that JsK D JtK. Conversely, if JsK D JtK, then IX � JtK� ı JsK, by the definition
of a function between quantum sets. Thus, we conclude that equation (�) is equivalent to
JsK D JtK.

A. Appendix

A.1. Nondegenerate equality

We show that the equality relation on a von Neumann algebra is nondegenerate if and only
if that von Neumann algebra is hereditarily atomic.

Lemma A.1.1. Let M be a commutative von Neumann algebra that contains no minimal
projections. There exists no normal state ' on the spatial tensor product M x̋ M such
that '.p ˝ .1 � p// D 0 for every projection p 2M .

Proof. Suppose that we have such a normal state ' on M x̋ M . Let '1 and '2 be the
normal states on M defined by '1.a/ D '.a ˝ 1/ and '2.a/ D '.1˝ a/ for all a 2 M .
For both i 2 ¹1; 2º, let pi be the support projection of 'i , in other words, the smallest
projection in M such that 'i .pi / D 1. It is easy to see that 'i is faithful on piM . Indeed,
for any projection q � pi , if 'i .q/D 0, then 'i .pi � q/D 1, which implies that q D 0, by
the minimality of pi . We conclude that '1 x̋ '2 is a faithful normal state on p1M x̋ p2M
[7, Proposition III.2.2.29].

Our given normal state ' factors through p1M x̋ p2M , as we now show. Indeed, by
our choice of p1 and p2, we have that '.p1 ˝ 1/D 1D '.1˝ p2/. Writing ' as a count-
able linear combination of vector states, we find that '.p1˝p2/D 1 and furthermore that
'..p1 ˝ p2/b/ D '.b/ for all b 2 M x̋ M . Thus, ' does factor through p1M x̋ p2M ,
as claimed.

Finite partitions of the identity 1 2 M into pairwise orthogonal projections form a
directed set ƒ, with finer partitions appearing higher in the order. For each such partition
� 2 ƒ, we define a projection q� D

P
p2� p ˝ p. The net .q� j � 2 ƒ/ is evidently

decreasing, and it therefore has an ultraweak limit q1, also a projection inM x̋ M . By our
assumption on ', we have that '.q�/ D 1 for each partition �, and therefore '.q1/ D 1.
We conclude that '..p1 ˝ p2/q1/ D 1.
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We now obtain a contradiction by showing that .p1 ˝ p2/q1 D 0 as follows:

.'1 x̋ '2/..p1 ˝ p2/q1/ D .'1 x̋ '2/.lim
�
.p1 ˝ p2/q�/

D lim
�
.'1 x̋ '2/..p1 ˝ p2/q�/

D lim
�

X
p2�

'1.p1p/'2.p2p/ D 0:

The final equality is a consequence of the fact that, for both i 2 ¹1; 2º, we can partition
pi into projections p that are arbitrarily small in the sense that each satisfies 'i .p/ � "
for arbitrarily small " > 0. Indeed, pi is the identity of the von Neumann algebra piM ,
which has no atoms and on which 'i is a faithful normal state. Since '1 x̋ '2 is faithful,
we conclude that .p1˝p2/q1 D 0, as claimed. Having obtained a contradiction, we infer
that our opening supposition is false.

Proposition A.1.2. Let M be any von Neumann algebra. Let ı be the largest projection
in the spatial tensor product M x̋ M op such that .p ˝ .1 � p//ı D 0 for all projections
p in M . Then, .p1 ˝ p1/ı ¤ 0 for all nonzero projections p1 in M if and only if M is
hereditarily atomic.

Proof. Let H be the Hilbert space on which M is canonically represented. The von Neu-
mann algebra M op is canonically represented on the conjugate Hilbert space xH , whose
vectors are the same as those ofH but written with a conjugation symbol so that ˛hD x̨ Nh
for all ˛ 2 C and all h 2H . The inner product on xH is defined by h Nh1j Nh2i D hh1jh2i. For
each a 2 M op and each Nh 2 xH , we define a Nh D a�h, where a� is the Hermitian adjoint
of a. It is routine to verify that this defines a faithful representation of M op on xH .

Like any von Neumann algebra, M is the direct sum of a hereditarily atomic von
Neumann algebra M0 and a von Neumann algebra M1 that has no finite type I factors as
a direct summand. Let p0 and p1 be the central projections in M corresponding to M0

and M1, respectively. Hence, M0 D p0M and M1 D p1M .
Assume that M is not hereditarily atomic or, in other words, that p1 is nonzero. By

our assumption on ı, we have that .p0 ˝ p1/ı D 0 and .p1 ˝ p0/ı D 0, and therefore,
ı D .p0 ˝ p0/ı C .p1 ˝ p1/ı. The projection ı1 WD .p1 ˝ p1/ı is in M1 x̋ M

op
1 , and it

satisfies .p ˝ .p1 � p//ı1 D 0 for all projections p in M1.
Assume for contradiction that ı1 is nonzero. It follows that there is a vector w in the

Hilbert space .p1H/˝ .p1 xH/ such that .p˝ .p1 �p//wD 0 for all projections p inM1.
Thus, we have a state ' on M1 x̋ M

op
1 such that '.p ˝ .p1 � p// D 0 for all projections

p in M1.
The algebra M1 need not be commutative, but it contains a unital ultraweakly closed

�-subalgebra that is both commutative and diffuse in the sense that it contains no min-
imal projections. Indeed, the center of M1 is the direct sum of an atomic von Neumann
algebra and a diffuse von Neumann algebra. It follows thatM1 is a direct sum of von Neu-
mann algebras, each of which is either a factor that is not finite type I or a von Neumann
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algebra with diffuse center. Each such direct summand has a diffuse commutative unital
ultraweakly closed �-subalgebra, and hence, so does M1.

Let N be any diffuse commutative unital ultraweakly closed �-subalgebra ofM1. The
normal state ' restricts to a normal state onN x̋ N op satisfying the equation '.p˝ .p1 �
p// D 0 for all projections p in N , and p1 is the multiplicative unit of N because N is a
unital �-subalgebra of M1. Furthermore, since N is commutative, N op D N . Therefore,
we may apply Lemma A.1.1 to obtain a contradiction. We conclude that ı1 D 0, that
is, .p1 ˝ p1/ı D 0. Therefore, if M is not hereditarily atomic, then there does exist a
nonzero projection p1 such that .p1 ˝ p1/ı D 0.

Assume now that M is a hereditarily atomic von Neumann algebra, and let p1 be a
nonzero projection in M . By [30, Prop. 5.4], there exists a set A of finite-dimensional
Hilbert spaces such that M is isomorphic to the `1-direct sum of the operator algebras
L.X/, for X 2 A. Without loss of generality, we may assume that M is equal to such an
`1-direct sum. For each X 2 A, let ŒX� be the corresponding minimal central projection
in M .

Let X1 be such that p1ŒX1� ¤ 0. Choose an orthonormal basis x1; : : : ; xn for X1,
and let

w D

nX
iD1

xi ˝ Nxi 2 X1 ˝ xX1 � H ˝ xH:

Let ŒCw� be the corresponding projection inM x̋ M op. Using standard linear algebra, we
may directly compute hwj.p1 ˝ p1/wi to show that .p1 ˝ p1/w ¤ 0; thus,

.p1 ˝ p1/ŒCw� ¤ 0:

Similarly, for each projection p 2 M , we may directly compute hwj.p ˝ .1 � p//wi to
show that .p ˝ .1� p//w D 0; thus, ŒCw� � ı. Altogether, we find that .p1 ˝ p1/ı D 0
for any nonzero projection p1 in M .

A.2. Weaver’s quantum relations

We substantiate the observation [30] that binary relations between quantum sets are essen-
tially just Weaver’s quantum relations [57]. A quantum relation from a von Neumann
algebraM � L.H/ to a von Neumann algebra N � L.K/ is defined to be an ultraweakly
closed subspace V � L.H;K/ such that N 0 � V �M 0 � V .

For each atom X of a quantum set X, we write incX 2 L.X;
L

At.X// for the corre-
sponding inclusion isometry.

Proposition A.2.1. Let X and Y be quantum sets. Let the von Neumann algebras `1.X/
and `1.Y/ be canonically represented on the Hilbert spaces

L
At.X/ and

L
At.Y/,

respectively. Quantum relations V from `1.X/ to `1.Y/ are in one-to-one correspon-
dence with binary relations R from X to Y. The correspondence is given by R.X; Y / D
inc�Y � V � incX , for X 2 At.X/ and Y 2 At.Y/.
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Proof. For each quantum relation V from `1.X/ to `1.Y/, let RV be the binary relation
from X to Y defined by RV .X; Y /D inc�Y � V � incX , for X 2 At.X/ and Y 2 At.Y/. For
each binary relation R from X to Y, let VR � L.

L
At.X/;

L
At.Y// be defined by

VR D
X
¹incY �R.X; Y / � inc�X j X 2 At.X/; Y 2 At.Y/º;

where the symbol
P

denotes the algebraic span of the union and the line indicates closure
with respect to the ultraweak topology. This is a quantum relation from `1.X/ to `1.Y/
because `1.X/0 is the closed span of the minimal central projections ŒX� WD incX � inc�X
for X 2 At.X/, and it is likewise for `1.Y/0. Indeed, for all atoms X0 2 At.X/ and
Y0 2 At.Y/, we calculate that

ŒY0� � VR � ŒX0� � incY0 �R.X0; Y0/ � inc�X0 D incY0 �R.X0; Y0/ � inc�X0 � VR;

and therefore `1.Y/0 � VR � `1.X/0 � VR.
We show that the two constructions invert each other by direct calculation. For each

binary relation R from X to Y, and all atoms X0 2 At.X/ and Y0 2 At.Y /, we calculate
that

RVR.X0; Y0/ D inc�Y0 � VR � incX0 � inc�Y0 � incY0 �R.X0; Y0/ � inc�X0 � incX0
D R.X0; Y0/

D inc�Y0 � incY0 �R.X0; Y0/ � inc�X0 � incX0 � inc�Y0 � VR � incX0
D RVR.X0; Y0/:

Similarly, for each quantum relation V from `1.X/ to `1.Y/, we calculate that

VRV D
X ®

incY �RV .X; Y / � inc�X j X 2 At.X/; Y 2 At.Y/
¯

D

X ®
incY � inc�Y � V � incX � inc�X j X 2 At.X/; Y 2 At.Y/

¯
D

X ®
ŒY � � V � ŒX� j X 2 At.X/; Y 2 At.Y/

¯
D V:

The last equality can be proved by establishing both inclusions. The inclusion of the left
side into the right side holds because V is a quantum relation. The inclusion of the right
side into the left side holds because the projections ŒX� forX 2 At.X/ sum to the identity,
as do the projections ŒY � for Y 2 At.Y/. Therefore, the constructions R 7! VR and V 7!
RV invert each other.

Proposition A.2.2. The one-to-one correspondence of Proposition A.2.1 is functorial.

Proof. Let X, Y, and Z be quantum sets, let V be a quantum relation from `1.X/ to
`1.Y/, and let W be a quantum relation from `1.Y/ to `1.Z/. In the notation of the
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proof of Proposition A.2.1, we are to show that RW �V D RW ı RV . For all atoms X 2
At.X/ and Z 2 At.Z/, we calculate that

.RW ıRV /.X;Z/ D
X

Y2At.Y/

RW .Y;Z/ �RV .X; Y /

D

X
Y2At.Y/

inc�Z �W � incY � inc�Y � V � incX � inc�Z �W � V � incX

� inc�Z �W � V � incX D RW �V .X;Z/ � inc�Z �W � V � incX

D inc�Z �W � 1
L

At.Y / � V � incX

�

X
Y2At.Y/

inc�Z �W � incY � inc�Y � V � incX

D .RW ıRV /.X;Z/ D .RW ıRV /.X;Z/:

It is immediate from the definition of this one-to-one correspondence in Proposi-
tion A.2.1 that it preserves the partial order relation and the adjoint operation. Thus, we
obtain an enriched equivalence of dagger categories from the category of quantum sets
and binary relations to the category of hereditarily atomic von Neumann algebras and
quantum relations.

A.3. Permutation equivariance

We prove Proposition 2.3.3.

Lemma A.3.1. Let X, Y, and Z be quantum sets.

(1) For every predicate P on X, we have :.P � >Y/ D .:P / � >Y .

(2) For all predicates P1 and P2 on X and all predicates Q1 and Q2 on Y, we have

.P1 �Q1/ ^ .P2 �Q2/ D .P1 ^ P2/ � .Q1 ^Q2/:

(3) Let R be a predicate on X � Y, let Q be the largest predicate on Y such that
>X �Q � R, and let S be the largest predicate on Y � Z such that >X � S �

R � >Z. Then, S D Q � >Z.

Proof. All three claims are established most easily using the bijective correspondence
between the predicates on any quantum set W and the projections in the corresponding
von Neumann algebra `1.W/. Expressed in terms of projections, claims (1) and (2) are
elementary. To prove claim (3), let Q, R, and S correspond to projections q 2 `1.Y/,
r 2 `1.X/ x̋ `1.Y/, and s 2 `1.Y/ x̋ `1.Z/, respectively. The von Neumann algebra
`1.Z/ is canonically represented on a Hilbert space H , the `2-direct sum of the atoms
of Z. If Z has no atoms, then claim (3) holds trivially, so we may assume that H is
nonzero. We are essentially given that

q D sup¹p 2 Proj.`1.Y// j 1˝ p � rº;
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and s D sup¹p 2 Proj.`1.Y/ x̋ `1.Z// j 1˝ p � r ˝ 1º. In particular, 1˝ q � r , so
1˝ q ˝ 1 � r ˝ 1, giving q ˝ 1 � s.

For the opposite inequality, we consider the projection Qs, defined to be the supremum
of all projections p in `1.Y/ x̋ L.H/ satisfying the inequality 1 ˝ p � r ˝ 1, where
L.H/ is the von Neumann algebra of all bounded operators on H . If a projection p
satisfies the inequality 1˝ p � r ˝ 1, then so does the projection .1˝ u�/ � p � .1˝ u/
for every unitary operator u 2 L.H/. It follows that

.1˝ u�/ � Qs � .1˝ u/ D Qs

for all unitaries u 2 L.H/, so Qs is in the commutant .C x̋ L.H//0. Since Qs is also in
`1.Y/ x̋ L.H/, we conclude that Qs is in `1.Y/ x̋ C, a von Neumann subalgebra of
`1.Y/ x̋ `1.Z/. Therefore, s D Qs D p1 ˝ 1, for some projection p1 in `1.Y/. We now
calculate that

1˝ p1 ˝ 1 D 1˝ s � r ˝ 1;

which implies that 1˝ p1 � r , giving us p1 � q, by the definition of q as a supremum of
projections satisfying this inequality. Finally, we obtain s D p1 ˝ 1 � q ˝ 1.

Proposition A.3.2. Let X1; : : : ;Xp be quantum sets, and let x1; : : : ; xp be distinct vari-
ables of sorts X1; : : : ;Xp , respectively. For each permutation � of ¹1; : : : ; pº and each
primitive formula �.x1; : : : ; xn/ with n � p, we have

J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j �.x1; : : : ; xn/K

D .��1/#.J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K � >XnC1
� � � � � >Xp

/:

Proof. The proof proceeds by structural induction. To clarify the calculations, we intro-
duce the notations Yi D X�.i/ and yi D x�.i/ for i 2 ¹1; : : : ; pº.

Suppose that �.x1; : : : ; xn/ is atomic. In that case, �.x1; : : : ; xn/ is necessarily of the
form R.x�.1/; : : : ; x�.m//, for some natural m � n, for some permutation � of the set
¹1; : : : ; nº, and for some relation R of arity .X�.1/; : : : ;X�.m//. We may extend � to a
permutation z� of the set ¹1; : : : ; pº by defining z�.k/ D k for all k in ¹nC 1; : : : ; pº.

We then calculate that

J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j R.x�.1/; : : : ; x�.m//K

D J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j R.xz�.1/; : : : ; xz�.m//K

D J.y1; : : : ; yp/ 2 Y1 � � � � � Yp j R.y.��1ız�/.1/; : : : ; y.��1ız�/.m//K

D .��1 ı z�/#.R � >Y.��1ız�/.mC1/
� � � � � >Y.��1ız�/.p/

/

D .��1/#.z�#.R � >Xz�.mC1/ � � � � � >Xz�.p///

D .��1/#.z�#.R � >X�.mC1/
� � � � � >X�.n/

� >XnC1
� � � � � >Xp

//

D .��1/#.�#.R � >X�.mC1/
� � � � � >X�.n/

/ � >XnC1
� � � � � >Xp

/

D .��1/#.J.x1; : : : ; xn/2X1�� � ��Xn j R.x�.1/; : : : ; x�.m//K � >XnC1
� � � � � >Xp

/:
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Suppose that �.x1; : : : ; xn/ is of the form : .x1; : : : ; xn/ for some nonduplicating
formula  .x1; : : : ; xn/. Then,

J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j : .x1; : : : ; xn/K

D J.y1; : : : ; yp/ 2 Y1 � � � � � Yp j : .y��1.1/; : : : ; y��1.n//K

D :J.y1; : : : ; yp/ 2 Y1 � � � � � Yp j  .y��1.1/; : : : ; y��1.n//K

D :J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j  .x1; : : : ; xn/K

D :.��1/#.J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K � >XnC1
� � � � � >Xp

/

D .��1/#.:.J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K � >XnC1
� � � � � >Xp

//

D .��1/#.:J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K � >XnC1
� � � � � >Xp

/

D .��1/#.J.x1; : : : ; xn/ 2 X1 � � � � �Xn j : .x1; : : : ; xn/K � >XnC1
� � � � � >Xp

/:

We apply Lemma A.3.1 (1) in the second-to-last equality. The case in which �.x1; : : : ; xn/
is of the form  1.x1; : : : ; xn/^ 2.x1; : : : ; xn/ is entirely similar; there, we apply Lemma
A.3.1 (2).

Suppose that �.x1; : : : ;xn/ is of the form .8x0 2X0/ .x0; : : : ;xn/ for some quantum
set X0 and some variable x0 that is distinct from the variables x1; : : : ; xp , and that has
sort X0. We extend the permutation � to a permutation z� of ¹0; : : : ;pº by setting z�.0/D 0,
and we write Y0 D X0 and y0 D x0. We then calculate that

J.x�.1/; : : : ; x�.p// 2 X�.1/ � � � � �X�.p/ j .8x0 2 X0/  .x0; : : : ; xn/K

D J.y1; : : : ; yp/ 2 Y1 � � � � � Yp j .8y0 2 Y0/  .y0; y��1.1/; : : : ; y��1.n//K

D sup¹R 2 Rel¹Y1; : : : ;Ypº j >Y0 �R

� J.y0; : : : ; yp/ 2 Y0 � � � � � Yp j  .y0; y��1.1/; : : : ; y��1.n//Kº

D sup¹R 2 Rel¹X�.1/; : : : ;X�.p/º j >X0
�R

� J.xz�.0/; xz�.1/; : : : ; xz�.p// 2 Xz�.0/ �Xz�.1/ � � � �Xz�.p/ j  .x0; x1; : : : ; xn/Kº

D sup¹R 2 Rel¹X�.1/; : : : ;X�.p/º j >X0
�R

� .z��1/#.J.x0; : : : ; xn/ 2 X0 � � � � �Xn j  .x0; : : : ; xn/K � >XnC1
� � � � � >Xp

/º

D sup¹R 2 Rel¹X�.1/; : : : ;X�.p/º j .z�/#.>X0
�R/

� J.x0; : : : ; xn/ 2 X0 � � � � �Xn j  .x0; : : : ; xn/K � >XnC1
� � � � � >Xp

º

D sup¹R 2 Rel¹X�.1/; : : : ;X�.p/º j >X0
� �#.R/

� J.x0; : : : ; xn/ 2 X0 � � � � �Xn j  .x0; : : : ; xn/K � >XnC1
� � � � � >Xp

º

D .��1/#.sup¹R0 2 Rel¹X1; : : : ;Xpº j >X0
�R0

� J.x0; : : : ; xn/ 2 X0 � � � � �Xn j  .x0; : : : ; xn/K � >XnC1
� � � � � >Xp

º/
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D .��1/#.sup¹R00 2 Rel¹X1; : : : ;Xnº j >X0
�R00

� J.x0; : : : ; xn/ 2 X0 � � � � �Xn j  .x0; : : : ; xn/Kº � >XnC1
� � � � � >Xp

/

D .��1/#.J.x1; : : : ; xn/ 2 X1 � � � � �Xn j .8x0 2 X0/  .x0; : : : ; xn/K

� >XnC1
� � � � � >Xp

/:

We apply Lemma A.3.1 (3) in the second-to-last equality.

A.4. Relating EX and ıM

Let X be a quantum set. The von Neumann algebra `1.X/ x̋ `1.X/op is canonically
isomorphic to `1.X � X�/ via the ultraweakly continuous map � that is defined by
�.a1 ˝ a2/.X1 ˝X

�
2 / D a1.X1/˝ a2.X2/

�, for a1; a2 2 `1.X/ and X1; X2 2 At.X/.
The map � exists and is a unital normal �-homomorphism because the spatial tensor
product of hereditarily atomic von Neumann algebras is also their categorical tensor prod-
uct [17]. Clearly, � maps no minimal central projections to 0, so it is injective on its entire
domain. It is also clearly surjective onto each factor of `1.X �X�/, so it is surjective
onto its entire codomain. Thus, � is an isomorphism.

Hence, we regard the projection ı`1.X/ that was defined in Section 1.1 as an element
of `1.X �X�/. We show that this projection corresponds to the predicate EX in the
sense that EX.X1˝X

�
2 /D L.X1˝X

�
2 ;C/ � ı`1.X/.X1˝X

�
2 / for all X1;X2 2 At.X/.

Lemma A.4.1. Let X be a finite-dimensional Hilbert space, and let �WX ˝ X� ! C
be a functional. Then, � 2 C"X if and only if � � .p ˝ .1 � p/�/ D 0 for all projections
p 2 L.X/.

Proof. Assume that � D ˛"X for some ˛ 2 C, and let p 2 L.X/ be a projection. Let
x1 2 pX and let x�2 2 .1� p/

�X�. Then, �.x1 ˝ x�2 /D ˛hx2jx1i D 0. We conclude that
� vanishes on pX ˝ .1� p/�X� D .p˝ .1� p/�/.X ˝X�/, so � � .p˝ .1� p/�/D 0.

Assume that � � .p ˝ .1 � p/�/ D 0 for all projections p 2 L.X/. Define a 2 L.X/
by hx2jax1i D �.x1 ˝ x�2 / for all x1; x2 2 X . If x1 and x2 are orthogonal, then there is
a projection p 2 L.X/ such that px1 D x1 and px2 D 0, so hx2jax1i D �.x1 ˝ x�2 / D
.� � .p˝ .1�p/�//.x1˝ x

�
2 /D 0. It follows that a 2C1X and therefore that � 2C"X .

Lemma A.4.2. Let X be a quantum set, let r be a projection in `1.X �X�/, and let R
be the corresponding relation of arity .X;X�/, i.e., the relation defined byR.X1˝X�2 /D
L.X1˝X

�
2 ;C/ � r.X1˝X

�
2 /, forX1;X2 2At.X/. Then, r is orthogonal to p˝ .1�p/�

for every projection p 2 `1.X/ if and only if R.X ˝X�/ � C"X for all X 2 At.X/ and
R.X1 ˝X

�
2 / D 0 for all distinct X1; X2 2 At.X/.

Proof. Fix X1; X2 2 At.X/. For all projections p in `1.X/, the condition

r.X1 ˝X
�
2 / � .p ˝ .1 � p/

�/.X1 ˝X
�
2 / D 0

is clearly equivalent to R.X1 ˝ X�2 / � .p.X1/ ˝ .1 � p.X2/
�// D 0. If X1 and X2 are

distinct, then the latter condition holds for all projections p if and only ifR.X1˝X�2 /D 0
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because there is a projection p such that p.X1/ D 1 and p.X2/ D 0. If X1 and X2 are
identical, then by Lemma A.4.1, the latter condition holds for all projections p if and only
if the elements of R.X1 ˝ X�2 / are all scalar multiples of "X1 . We vary X1; X2 2 At.X/
to conclude the statement of the proposition.

Proposition A.4.3. Let X be a quantum set. Then, EX.X1 ˝ X2/ D L.X1 ˝ X2;C/ �
ı`1.X/.X1 ˝X2/ for all X1; X2 2 At.X/.

Proof. The canonical one-to-one correspondence between projections r in `1.X �X�/

and relations R of arity .X;X�/ is an isomorphism of orthomodular lattices. Thus, by
Lemma A.4.2, the largest projection r that is orthogonal to p˝ .1�p/� for all projections
p 2 `1.X/, namely, r D ı`1.X/, corresponds to the largest relation R that is less than
or equal to EX , namely, R D EX . In other words, EX.X1 ˝ X2/ D L.X1 ˝ X2;C/ �
ı`1.X/.X1 ˝X2/ for all X1; X2 2 At.X/, as claimed.

A.5. Canonical isomorphisms

We prove Proposition 3.1.1, which concerns Definition 2.2.4.

Proposition A.5.1. Let X1; : : : ;Xn be quantum sets, and let � be a permutation of
¹1; : : : ; nº. Let U� be the canonical isomorphism [35, Thm. XI.1.1] from X1 � � � � �Xn to
X�.1/ � � � � �X�.n/ in the symmetric monoidal category of quantum sets and binary rela-
tions [30, Sec. 3]. Then, �#.R/ D R ı U� for all relations R of arity .X�.1/; : : : ;X�.n//.

Proof. We first consider the special case that � exchangesm;mC 1 2 ¹1; : : : ; nº, leaving
the other elements fixed. Then,

U� D IX1
� � � � � IXm�1

� BXm;XmC1
� IXmC2

� � � � � IXn
;

where BXm;XmC1
is the braiding from Xm �XmC1 to XmC1 �Xm. By the definition of

this braiding,

BXm;XmC1
.Xm ˝XmC1; XmC1 ˝Xm/ D CbXm;XmC1

for all Xm 2 At.Xm/ and XmC1 2 At.XmC1/, with the other components of BXm;XmC1

vanishing. Here, bXm;XmC1 is the braiding from Xm ˝ XmC1 to XmC1 ˝ Xm in the sym-
metric monoidal category of finite-dimensional Hilbert spaces and linear operators. In
other words, bXm;XmC1 D u� in the notation of Definition 2.2.4.

Let X� DX�.1/ � � � � �X�.n/. We compute that for all X1 2 At.X1/, X2 2 At.X2/,
etc.,

.R ı U�/.X1 ˝ � � � ˝Xn;C/ D
X

X�2At.X� /

R.X� ;C/ � U�.X1 ˝ � � � ˝Xn; X�/

D R.X�.1/ ˝ � � � ˝X�.n/;C/ �Cu�

D �#.R/.X1 ˝ � � � ˝Xn/:
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Therefore, �#.R/DR ıU� whenever � exchanges two consecutive elements of ¹1; : : : ;nº,
leaving the other elements fixed.

The general case follows from the fact that any permutation of ¹0; : : : ; nº is a product
of such 2-cycles. Let qRel be the category of quantum sets and binary relations, and let
FdHilb be the category of finite-dimensional Hilbert spaces and linear operators. For each
permutation � of ¹1; : : : ; nº, we may regard U� as a natural transformation of functors
qReln ! qRel, and similarly, we may regard u� as a natural transformation of functors
FdHilbn! FdHilb. By category theory [35, Thm. XI.1.1], we have that U�2ı�1 D U�1 ı
U�2 and u�2ı�1 D u�1 ı u�2 for all permutations �1 and �2 of ¹1; : : : ; nº, where the
composition symbol denotes the “horizontal” composition of natural transformations [35,
Sec. II.5]. It follows that for all relations R of arity .X.�2ı�1/.1/; : : : ;X.�2ı�1/.n//, we
have that R ı U�2ı�1 D R ı U�1 ı U�2 and similarly that .�2 ı �1/#.R/ D �2#.�1#.R//.

Overall, we find that the set of all permutations � of ¹1; : : : ; nº such that �#.R/D R ı

U� for all n-ary relations R contains all the permutations that exchange two consecutive
elements of ¹1; : : : ; nº and is closed under composition. We conclude that this set consists
of all the permutations of ¹1; : : : ; nº, and the proposition is proved.

A.6. Quantifying over ordinary sets

Let A be a set. We show that existential quantification over ‘A reduces to disjunction in
the expected way. As usual, we view each element a 2 A also as a function ¹�º ! A, and
we identify ‘¹�º with the monoidal unit 1 of the dagger compact category of quantum sets
and binary relations.

Lemma A.6.1. LetA be a set, and let Y1; : : : ;Yn be quantum sets. If �.x;y1; : : : ; yn/ is a
nonduplicating formula with x being a variable of sort ‘A and y1; : : : ; yn being variables
of sorts Y1; : : : ;Yn, respectively, then

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .9x 2 ‘A/�.x; y1; : : : ; yn/K

D

_
a2A

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j �.‘a; y1; : : : ; yn/K:

Similarly, if  .x�; y1; : : : ; yn/ is a nonduplicating formula with x� being a variable of
sort ‘A� and y1; : : : ; yn being variables of sorts Y1; : : : ;Yn, respectively, then

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .9x� 2 ‘A�/ �.x�; y1; : : : ; yn/K

D

_
a2A

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j �.‘a�; y1; : : : ; yn/K:

Proof. This lemma follows from Proposition 3.2.3. The binary relation>�‘A can be written
as a disjunction:

�

D

_
a2A

0B@
‘a

1CA :
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Therefore,

J.9x 2 ‘A/�.x; y1; : : : ; yn/K D
_
a2A

0BB@ J�.x; y1; : : : ; yn/K

‘a � � � � � �

1CCA
D

_
a2A

J�.‘a; y1; : : : ; yn/K:

In the second case, the proof is entirely similar because >�‘A� D
W
a2A ‘a�.

Lemma A.6.2. LetA be a set, and let Y1; : : : ;Yn be quantum sets. Let �.x;x�;y1; : : : ;yn/
be a nonduplicating formula with x being a variable of sort ‘A, x� being a variable of
sort ‘A�, and y1; : : : ; yn being variables of sorts Y1; : : : ;Yn, respectively. Then,

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j .9.x D x�/ 2 ‘A � ‘A�/ �.x; x�; y1; : : : ; yn/K

D

_
s2A

J.y1; : : : ; yn/ 2 Y1 � � � � � Yn j �.‘a; ‘a�; y1; : : : ; yn/K:

Proof. This lemma follows from Theorem 3.3.2. The identity on ‘A can be written as a
disjunction:

‘A D
_
s2A

0BBB@ ‘a
‘a�

1CCCA :
Therefore,

J.9.xDx�/2 ‘A�‘A�/ �.x; x�; y1; : : : ; yn/K D
_
a2A

0BB@ J�.x; x�; y1; : : : ; yn/K

‘a ‘a�
� � � � � �

1CCA
D

_
a2A

J�.‘a; ‘a�; y1; : : : ; yn/K:
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