
Comment. Math. Helv. 72 (1997) 72–83
0010-2571/97/010072-12 $ 1.50+0.20/0
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On the Betti number of the image of a generic map
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Abstract. Let f : M → N be a differentiable map of a closed m-dimensional manifold into an
(m + k)-dimensional manifold with k > 0. We show, assuming that f is generic in a certain
sense, that f is an embedding if and only if the (m−k+ 1)-th Betti numbers with respect to the
Čech homology of M and f(M) coincide, under a certain condition on the stable normal bundle
of f . This generalizes the authors’ previous result for immersions with normal crossings [BS1].
As a corollary, we obtain the converse of the Jordan-Brouwer theorem for codimension-1 generic
maps, which is a generalization of the results of [BR, BMS1, BMS2, Sae1] for immersions with
normal crossings.

Mathematics Subject Classification (1991). Primary 57R35; Secondary 57R40, 57R45,
55N05.
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1. Introduction

Let f : M → N be a differentiable map of a closed m-dimensional manifold into
an n-dimensional manifold with k = n−m > 0. In [BS1], assuming that f is an
immersion with normal crossings, the authors have shown that f is a differentiable
embedding if and only if the (m − k + 1)-th Betti numbers with respect to the
singular homology of M and f(M) coincide and a certain pair of cohomology
classes in Hk(M ; Z2) determined by f coincide. In the course of the proof, we
have essentially used a formula originally due to Whitney [Wh] (see also [He])
which describes the homology class represented by the self-intersection set of f .

The purpose of this paper is to generalize the above mentioned result to generic
differentiable maps in the sense of Ronga [R]. For a precise statement, see §2 (The-
orem 2.2). In fact, Ronga has given a formula for the homology class represented
by the closure of the self-intersection set of a generic map, and this formula has
enabled us to generalize the previous result. However, a straightforward gener-
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alization has not been easy, mainly because of bad topological behaviors of the
image f(M). When f is an immersion with normal crossings, the image f(M) has
a natural stratification into multiple point sets and, in particular, it is triangula-
ble. However, generally speaking, the image f(M) is not even an ANR (absolute
neighborhood retract), even if f is generic in the sense of Ronga. Thus, instead of
the usual Betti numbers with respect to the singular homology, we have used the
Betti numbers with respect to the Čech homology.

As a corollary to our characterization of embeddings, we obtain a converse
of the Jordan-Brouwer theorem for codimension-1 generic maps. In other words,
under a certain homological condition, we show that a generic differentiable map
f : M → N with dimN = dimM + 1 is an embedding if and only if the image
f(M) of f separates N into exactly two connected components (see Corollary
2.6 and Theorem 3.6). Since immersions with normal crossings are generic, this
generalizes the previous results in [BR, BMS1, BMS2, Sae1].

The paper is organized as follows. In §2, we state the main theorems and
the corollaries in a precise manner. We give the proofs of these theorems and
corollaries in §3. We also mention a result (Remark 3.7) about the k-th Betti
number of the complement of the image of a generic map, which is related to a
result of Hirsch [Hi]. In §4, in order to convince the reader that a generic map can
behave badly, we give an example of generic maps whose images are not ANR’s.

Throughout the paper, the homology and cohomology groups have Z2 coeffi-
cients unless otherwise indicated. All manifolds are of class C∞, paracompact and
Hausdorff.

This work has been done during the second author’s stay in ICMSC-USP,
Instituto de Ciências Matemáticas de São Carlos, Universidade de São Paulo,
Brazil. He would like to thank the people there for their hospitality and for many
stimulating discussions. The authors would like to express their thanks to the
referee for his suggestions, especially for his alternative proof of our Lemma 3.1.

2. Statement of the main results

Let f : M → N be a continuous map of an m-dimensional manifold M into an
n-dimensional manifold N . We suppose that k = n−m > 0 and that the map f is
proper. For the moment, we assume no differentiability of f . Let the stable normal
bundle f∗TN ⊕ νM of f be denoted by νf , where νM is the stable normal bundle
of the manifold M . Then we denote by wk(f)(∈ Hk(M)) the k-th Stiefel–Whitney
class of the stable vector bundle νf . Furthermore, we define v(f) ∈ Hk(M) to be
the image of the fundamental class [M ] ∈ Hc

m(M) by the composite

Hc
m(M)

f∗−→ Hc
m(N)

D−1
N−→ Hk(N)

f∗−→ Hk(M),

where Hc
∗ denotes the (singular) homology of the compatible family with respect
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to the compact subsets ([Sp, Chapter 6, Section 3]), and DN denotes the Poincaré
duality isomorphism.

We note that when f is a differentiable immersion, the above definitions of
wk(f) and v(f) coincide with those of wk(νf ) and vk(f) respectively given in [BS1].
See also [LS] and [He, Proposition 4.1]. We also note that, if f is a differentiable
embedding, then wk(f) = v(f), as has been seen in [BS1] (see also [He] and [MS,
Corollary 11.4]). As to the homotopy (or bordism) invariance of wk(f) and v(f),
see [BS2, BS3].

Next we define the class of differentiable maps which we are going to treat in
this paper.

Definition 2.1. Let f : M → N be a proper map of class C2 with dimM <
dimN . We say that f is generic for the double points, if it is so in the sense of
Ronga [R, Définition (p. 228)]; in other words, if the 1-jet extension j1f : M →
J1(M,N) of f is transverse to the submanifolds Σi = {α ∈ J1(M,N)|dim kerα =
i} for all i and if the l-fold product map f l : M l → N l is transverse to the diagonal
δlN of N l off the super diagonal ∆l

M = {(x1, . . . , xl) ∈M l|xi = xj for some i 6= j}
of M l for all l = 2, 3, 4, . . . .

Note that the set of the proper maps of class Cr (2 ≤ r ≤ ∞) which are generic
for the double points is dense in the space Crpr(M,N) of all proper maps of class
Cr of M into N with the Whitney Cr-topology.

In the following, Ȟ∗ and Ȟ∗ will denote the Čech (or Alexander–Čech) coho-
mology and homology respectively (see [ES, Sp, Wa, Gr], for example). For a
topological space X , β̌i(X) will denote the dimension of the vector space Ȟi(X)
over Z2. Here we note that Ȟ∗ and Ȟ∗ are naturally isomorphic to the singular
homology and cohomology respectively for an ANR. In particular, this is valid for
manifolds. We denote by βi(X) the dimension of the singular homology Hi(X)
and by β̃i(X) the dimension of the reduced singular homology H̃i(X).

The main result of this paper is the following.

Theorem 2.2. Let f : M → N be a map of class C2 which is generic for the dou-
ble points, where M is a closed m-dimensional manifold and N is an n-dimensional
manifold with k = n−m > 0. Then f is a differentiable embedding if and only if
wk(f) = v(f) and β̌m−k+1(M) = β̌m−k+1(f(M)).

The following is a direct consequence of Theorem 2.2 and the definition of v(f).

Corollary 2.3. Let f : M → N be a map of class C2 which is generic for
the double points, where M is a closed m-dimensional manifold and N is an n-
dimensional manifold with k = n − m > 0. Suppose that either f∗ : Hk(N) →
Hk(M) or f∗ : Hm(M) → Hm(N) is the zero map. Then f is a differentiable
embedding if and only if wk(f) = 0 and β̌m−k+1(M) = β̌m−k+1(f(M)).
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As to the Betti number of the complement of the image of a map which is
generic for the double points, we have the following.

Corollary 2.4. Let f : M → N be a map of class C2 which is generic for
the double points, where M is a closed m-dimensional manifold and N is an n-
dimensional manifold with k = n − m > 0. Suppose that βk(N) = β2k−1(N) =
β̃2k−2(N) = 0. Then f is a differentiable embedding if and only if wk(f) = 0 and
β̃2k−2(N − f(M)) = βk−1(M).

Remark 2.5. When N = Rn, we have the following: a map f : M → Rn of class
C2 which is generic for the double points of a closed m-dimensional manifold M
with vanishing k-th dual Stiefel–Whitney class w̄k(M)(∈ Hk(M)) is an embedding
if and only if β̃2k−2(Rn − f(M)) = βk−1(M).

In the codimension-1 case (i.e., the case with k = 1), we have the following
converse of the Jordan-Brouwer theorem for maps which are generic for the double
points, which generalizes the results of [BR, BMS1, BMS2, Sae1].

Corollary 2.6. Let f : M → N be a map of class C2 which is generic for the
double points, where M is a closed orientable m-dimensional manifold and N is a
connected (m+1)-dimensional manifold with H1(N) = 0. Then f is a differentiable
embedding if and only if β0(N − f(M)) = β0(M) + 1.

Note that, in the above corollary, w1(f) always vanishes, since M and N are
orientable. Compare Corollary 2.6 with [Sae2]. See also Theorem 3.6 of the present
paper.

3. Proof of the main theorem

Proof of Theorem 2.2. Let f : M → N be a map of class C2 which is generic
for the double points. Set M(f) = {x ∈ M |f−1(f(x)) 6= {x}} and Σ(f) = {x ∈
M |dim ker dfx ≥ 1}, which are called the self-intersection set and the singular set
of f respectively. Then, by Ronga [R, Théorème 2.5], the closure A = M(f) of
M(f) coincides with M(f) ∪Σ(f). (Here we note that, in [R], maps are assumed
to be of class C∞. However, the same argument works also for maps of class C2.)

First we suppose that f is not a differentiable embedding. Then A is not empty.
Consider the following commutative diagram:
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· · · −→ Ȟi+1(A) −−−−→ Ȟi+1(M) −−−−→ Ȟi+1(M,A) −−−−→

(f |A)∗
y f∗

y f∗

y
· · · −→ Ȟi+1(B) −−−−→ Ȟi+1(f(M)) −−−−→ Ȟi+1(f(M), B) −−−−→

Ȟi(A) −−−−→ Ȟi(M) −−−−→ · · ·

(f |A)∗
y f∗

y
Ȟi(B) −−−−→ Ȟi(f(M)) −−−−→ · · · ,

where B = f(A). Note that each row is exact, since (M,A) and (f(M), B) are
compact pairs (see [K, ES]). Furthermore, since f |M −A : M −A→ f(M)−B is
a homeomorphism, we see that f∗ : Ȟi(M,A) → Ȟi(f(M), B) is an isomorphism
for each i (see [ES, Chapter X, §5]). Hence, by a standard argument, we have the
following exact sequence:

Ȟm−k+1(A)→ Ȟm−k+1(B)⊕ Ȟm−k+1(M)→ Ȟm−k+1(f(M))

→ Ȟm−k(A) α−→ Ȟm−k(B)⊕ Ȟm−k(M),

where α = (f |A)∗ ⊕ j∗ and j : A → M is the inclusion map (for example, see
[D, p. 2]). Since A is the image of a closed (m − k)-dimensional manifold by a
differentiable map ([R]), we see that the topological dimension (for a definition, see
[HW]) of A is at most m− k (see [Sar, Theorem 2 (p. 173)] or [C, Proposition 4]).
Hence we have Ȟm−k+1(A) = 0 (see [HW, Theorem VIII 4 (p. 152)]). We also have
Ȟm−k+1(B) = 0, since B is the image of a closed (m − k)-dimensional manifold
by a composite of two differentiable maps. Thus we have the exact sequence

0→ Ȟm−k+1(M)→ Ȟm−k+1(f(M))

→ Ȟm−k(A) α−→ Ȟm−k(B)⊕ Ȟm−k(M).

By [R], there exists a non-zero fundamental class [A] ∈ Hm−k(A) in the singular
homology such that there exists an open dense subset U of A which is a manifold
of dimension m − k and that the image of [A] in Hm−k(A,A − x) ∼= Z2 is the
generator for all x ∈ U . Now consider the following commutative diagram:

Hm−k(A) −−−−→ Ȟm−k(A)y y
Hm−k(A,A− x) −−−−→ Ȟm−k(A,A− x),

where the horizontal homomorphisms are the natural ones and the vertical ones are
induced by the inclusions. Then we see that the lower horizontal homomorphism
is an isomorphism by excision and hence that [A] is non-zero also in Ȟm−k(A).



Vol. 72 (1997) On the Betti number of the image of a generic map 77

Lemma 3.1. We have (f |A)∗[A] = 0 in Ȟm−k(B).

Proof. Set M2(f) = {x ∈ M |f−1(f(x)) = {x, y} with x 6= y and dfx, dfy are
injective}. Note that M2(f) is nothing but the open dense subset U of A de-
scribed above ([R]). Set A′ = A −M2(f). Then we see that A′ = Σ(f) ∪M3(f),
where M3(f) = {x ∈ M |f−1(f(x)) contains at least 3 elements}. Setting S(f) =
f−1(f(Σ(f))), we see that f(A′) = f(Σ(f))∪f(M3(f)−S(f)). Since j1f is trans-
verse to Σi, we see that Σ(f) is a finite disjoint union of differentiable submanifolds
of dimensions at most m − k − 1. Furthermore, since f |(M − S(f)) is a proper
immersion with normal crossings, M3(f)−S(f) = M3(f |(M −S(f))) is a disjoint
union of countable number of manifolds of dimensions at most m−2k ≤ m−k−1.
Thus, using [HW, Theorem III 2], we see that the topological dimension of f(A′)
is at most m− k − 1. This implies that Ȟm−k(f(A′)) = 0.

Now consider the following commutative diagram with exact rows:

Ȟm−k(A′) −−−−→ Ȟm−k(A)
i3−−−−→ Ȟm−k(A,A′)

(f |A′)∗
y (f |A)∗

y (f |A)∗
y

Ȟm−k(f(A′)) −−−−→ Ȟm−k(B)
i4−−−−→ Ȟm−k(B, f(A′)).

Since i4 is injective, in order to show that (f |A)∗[A] = 0 in Ȟm−k(B), we have
only to show that (f |A)∗ ◦ i3([A]) = 0 in Ȟm−k(B, f(A′)).

Lemma 3.2. Let (X,Y ) be a relative manifold; i.e., X is compact and Hausdorff,
Y is closed in X and X−Y is a (topological) manifold. Then we have a canonical
isomorphism Ȟi(X,Y ) ∼= Hc

i (X − Y ).

Proof. Since X−Y is a manifold, there exists a sequence of compact codimension-0
submanifolds K0 ⊂ K1 ⊂ K2 ⊂ · · · such that Kj ⊂ IntKj+1 and that ∪jKj =
X − Y . Then we have the isomorphism Ȟi(X,Y ) ∼= lim←− Ȟi(X,X − IntKj) by the

continuity of the Čech homology theory (see [ES, p. 261], for example). The right
hand side is isomorphic to lim←− Ȟi(X,X −Kj), which is nothing but Ȟc

i (X − Y )

by the definition, where Ȟc
∗ denotes the Čech homology with compact carriers.

Since X − Y is a manifold, which is an ANR, we have the canonical isomorphism
Ȟc
i (X − Y ) ∼= Hc

i (X − Y ). This completes the proof. �

Now since (A,A′) and (B, f(A′)) are relative manifolds by [R], we have the
following commutative diagram, where the horizontal maps are isomorphisms by
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Lemma 3.2:

Ȟm−k(A,A′)
θ1−−−−→ Hc

m−k(A−A′)

(f |A)∗
y y(f |(A−A′))∗

Ȟm−k(B, f(A′))
θ2−−−−→ Hc

m−k(B − f(A′)).

Since f |(A−A′) is a double covering, we see easily that (f |(A−A′))∗◦θ1◦i3([A]) = 0
in Hc

m−k(B−f(A′)). Thus we have (f |A)∗ ◦ i3([A]) = 0. This completes the proof
of Lemma 3.1. �

Remark 3.3. The following alternative proof of Lemma 3.1 has been communi-
cated to the authors by the referee. Let F2(M) be the “fat square” of M ; i.e., it
is the manifold obtained by blowing up the diagonal in M ×M (see [R]). Further-
more, let π : F2(M)→M be the natural map and τ : F2(M)→ F2(M) the natural
involution induced by the map which permutes the factors of M ×M . Then, as is
shown in [R], there exist a closed (m−k)-dimensional submanifold M̃2(f) of F2(M)
and an open dense subset M̃◦2 (f) of M̃2(f) such that π(M̃2(f)) = A = M(f) and
that π|M̃◦2 (f) is an embedding whose image is dense in A. In other words, M̃2(f)
is a desingularization of A. Recall that the fundamental class [A] ∈ Hm−k(A) is
nothing but π∗[M̃2(f)], where [M̃2(f)] ∈ Hm−k(M̃2(f)) is the usual fundamental
class of the manifold M̃2(f). Furthermore, it is easily seen from the construction
that M̃2(f) is invariant under τ . Moreover, the quotient space B̃ = M̃2(f)/τ is a
manifold possibly with boundary and the quotient map γ : M̃2(f)→ B̃ is a double
branched covering branched along the boundary of B̃. Now consider the following
commutative diagram:

M̃2(f)
γ

−−−−→ B̃

π

y yπ′
A

f |A
−−−−→ B,

where π′ : B̃ → B is the natural map induced by π|M̃2(f). Since γ∗[M̃2(f)] = 0
in Hm−k(B̃), we see that (f |A)∗[A] = π′∗(γ∗[M̃2(f)]) = 0. Then it follows easily
that (f |A)∗[A] = 0 also in Ȟm−k(B). This completes the alternative proof.

Now we consider j∗[A] ∈ Ȟm−k(M). Since M is a manifold, which is an
ANR, we have the canonical isomorphism Ȟm−k(M) ∼= Hm−k(M). Then, by the
commutative diagram

Ȟm−k(A)
j∗

−−−−→ Ȟm−k(M)x x
Hm−k(A)

j∗
−−−−→ Hm−k(M),



Vol. 72 (1997) On the Betti number of the image of a generic map 79

where the vertical homomorphisms are the natural ones, we see that j∗[A] ∈
Ȟm−k(M) with [A] ∈ Ȟm−k(A) is identified naturally with j∗[A] ∈ Hm−k(M)
with [A] ∈ Hm−k(A). Then by [R], we see that j∗[A] = DM (wk(f)− v(f)), where
DM : Hk(M)→ Hm−k(M) is the Poincaré duality isomorphism.

Now suppose that wk(f) = v(f). Then we see that [A] is a non-zero element
in kerα, which implies that

dim Ȟm−k+1(M) < dim Ȟm−k+1(f(M)).

Hence we have proved that if f is not a differentiable embedding, then either
wk(f) 6= v(f) or β̌m−k+1(M) 6= β̌m−k+1(f(M)).

If f is a differentiable embedding, then we know that wk(f) = v(f) and we triv-
ially have β̌m−k+1(M) = β̌m−k+1(f(M)). This completes the proof of Theorem
2.2. �

Remark 3.4. We do not know if Theorem 2.2 holds even if we replace β̌m−k+1 by
the usual (m−k+1)-th Betti number with respect to the singular homology. This
is true, if f(M) is an ANR. For example, if f is generic in the sense of [GWPL],
then f(M) is triangulable and is an ANR. For details, see [BS2].

Furthermore, we do not know if Theorem 2.2 holds when M is noncompact and
f is proper. Note that in the proof above, we have essentially used the compactness
of M in order to guarantee that the Čech homology sequences for (M,A) and
(f(M), B) are exact. Note also that the corresponding result for generic maps in
the sense of [GWPL] does hold (see [BS2, §4]).

Remark 3.5. In [N, §3], Nuño Ballesteros considers a class of C∞ proper maps
for which the topological dimension of f(A) is smaller than or equal to m − 1,
where he considers the case k = 1. Although his class is residual in C∞pr (M,N),
maps of this class should satisfy strong transversality conditions, and our class of
the maps which are generic for the double points is much richer. See the example
in §4, for example.

Proof of Corollary 2.4. First note that, since Hk(N) = 0, the hypotheses of Corol-
lary 2.3 are satisfied for f . Now consider the following exact sequence of singular
cohomology:

H̃2k−2(N)→ H̃2k−2(N − f(M))→ H2k−1(N,N − f(M))→ H̃2k−1(N).

Note that H̃2k−2(N) = 0 and H̃2k−1(N) = 0 by our assumptions and the universal
coefficient theorem. Furthermore, we have a canonical isomorphismH2k−1(N,N−
f(M)) ∼= Ȟm−k+1(f(M)) (see [Gr, p. 179]). Thus we have β̃2k−2(N − f(M)) =
β̌m−k+1(f(M)). Note also that β̌m−k+1(M) = βm−k+1(M) = βk−1(M) by
Poincaré duality. Then, combining this with Corollary 2.3, we obtain the con-
clusion. This completes the proof of Corollary 2.4. �
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In the codimension-1 case, using a result of [Sae1], we obtain the following,
which is slightly stronger than Corollary 2.6.

Theorem 3.6. Let f : M → N be a proper map of class C2 which is generic for
the double points, where M and N are connected orientable manifolds of dimen-
sions m and m+1 respectively. We suppose that H1(N ; Z) is a torsion group (i.e.,
every element has finite order) or that f∗[M ] is a torsion element in Hc

m(N ; Z),
where [M ] ∈ Hc

m(M ; Z) is a fundamental class of M . Then f is a differentiable
embedding if and only if β0(N − f(M)) = 2.

Proof. First suppose that f is not a differentiable embedding. Then we have
M(f) ∪ Σ(f) 6= ∅. On the other hand, by [R], we have M(f) ∪ Σ(f) = M2(f).
ThusM2(f) 6= ∅, which implies that f has a normal crossing point of multiplicity 2.
Then by [Sae1] together with our hypotheses, we have β0(N − f(M)) ≥ 2 + 1 = 3.

If f is a differentiable embedding, we see easily that β0(N − f(M)) ≤ 2 and
we also have β0(N − f(M)) ≥ 2 by [Sae1]. This completes the proof. �

Remark 3.7. In [Hi], Hirsch has shown that, if f : M → N is a codimension-
k proper C2-immersion and Hk(N) = 0, then Hk−1(N − f(M)) is non-trivial.
This is valid also for maps of class C2 which are generic for the double points.
More precisely, let f : M → N be a map of class C2 which is generic for the
double points, where M is a closed m-dimensional manifold, N is an n-dimensional
manifold with k = n −m > 0, dimHk−1(N) is finite, and Hk(N) = 0. Then we
have the following.
(1) We always have

βk−1(N − f(M))(= βk−1(N) + β̌m(f(M)))
≥ βk−1(N) + β0(M).

(2) When k = 1 and M is orientable, the equality holds in (1) if and only if f is a
differentiable embedding.
(3) When k ≥ 2, the equality in (1) always holds.
We can prove the above facts using the techniques developed in this section and
we omit the proof.

4. Example

In this section we give an example of a map which is generic for the double points
and whose image is not an ANR. In particular, this is an example of a map which
is generic for the double points but not generic in the sense of [GWPL, BS2].

We will construct a smooth map f : (S2 × S1)](S2 × S1) → S3 × S1 with
the desired property. Let ϕ : S2 → S3 be the stable map whose image is as
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in Figure 1. Note that ϕ has exactly two singular points, which are cross cap
points. Now consider a smooth family of embeddings ψt : S2 → S3 (t ∈ R)
whose images intersect ϕ(S2) as in Figure 2. Note that, for every t, the map
ϕ ∪ ψt : S2 ∪ S2 → S3 is generic for the double points. Now choose an arbitrary
smooth function α : S1 → R and consider the smooth map

F = (ϕ× id) ∪Ψ : (S2 × S1) ∪ (S2 × S1) −→ S3 × S1,

where Ψ : S2×S1 → S3×S1 is the smooth map defined by Ψ(x, y) = (ψα(y)(x), y).
Finally we perform the connected sum operation to F so that it creates no new
multiple points nor singular points. The resulting map is denoted by f : (S2 ×
S1)](S2 × S1) → S3 × S1. Note that f is always generic for the double points.
However, f is not generic in the sense of [GWPL] if α(S1) contains 0. Furthermore,
the closure A = M(f) of the self-intersection set of f consists of “two parts”, each
of which is a 1-parameter family of 1-dimensional objects parametrized by S1.
More precisely A = ∪y∈S1(Ay ∪ By), where Ay and By are as in Figure 3. Note
that σi ∈ Σ(f) (i = 1, 2, . . . , 6), f(s1) = f(σ3), f(s2) = f(σ4), f(t1) = f(t3) =
f(t5), and f(t2) = f(t4) = f(t6). For example, if we take a smooth function
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α : S1 → R such that α−1((−∞, 0)) has infinitely many components, then H∗(A)
is not finitely generated, and consequently A is not an ANR. In this case, the
image f((S2×S1)](S2×S1)) is not an ANR, either. If we take a smooth function
α : S1 → R such that α(y) ≥ 0 for all y ∈ S1 and α−1(0) is a Cantor set, we see
that A−M2(f) has uncountably many connected components.

More generally, using a smooth function β : M → R of a smooth closed
manifold M , we can construct a smooth map (S2 ×M)](S2 ×M) → S3 ×M
which is generic for the double points but which is not generic in the sense of
[GWPL].
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