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Symmetric and non-symmetric quantum Capelli
polynomials

Friedrich Knop*

Abstract. We introduce families of symmetric and non-symmetric polynomials (the quantum
Capelli polynomials) which depend on two parameters g and t. They are defined in terms of van-
ishing conditions. In the differential limit (¢ = ¢® and ¢ — 1) they are related to Capelli identities.
It is shown that the quantum Capelli polynomials form an eigenbasis for certain g-difference op-
erators. As a corollary, we obtain that the top homogeneous part is a symmetric/non-symmetric
Macdonald polynomial. Furthermore, we study the vanishing and integrality properties of the
quantum Capelli polynomials.
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1. Introduction

Generalizing the classical Capelli identity has recently attracted a lot of interest
([HU], [OK], [O]], [Sa], [WUN]). In several of these papers it was realized, in various
degrees of generality, that Capelli identities are connected with certain symmetric
polynomials which are characterized by their vanishing at certain points. From
this point of view, these polynomials have been constructed by Sahi [Sa] and were
studied in [KS].

The purpose of this paper is twofold: we quantize the vanishing condition in
a rather straightforward manner and obtain a family of symmetric polynomials
which is indexed by partitions and which depends on two parameters ¢, t. As in
[KS], their main feature is that they are non-homogeneous and one of our principal
results states that the top degree terms are the Macdonald polynomials. It is an
interesting problem whether these quantized Capelli polynomials are indeed con-
nected with quantized Capelli identities (see [WUN]) as it is in the classical case.
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But the main progress over [KS] is the introduction of a family of non-sym-
metric polynomials which are also defined by vanishing conditions. They are non-
homogeneous and their top degree terms turns out to be the non-symmetric Mac-
donald polynomials. To prove this, we introduce certain difference operators of
Cherednik type of which our polynomials are a simultaneous eigenbasis. Because
of these operators, the non-symmetric functions are much easier to handle than the
symmetric ones. Moreover, the latter can be obtained by a simple symmetrization
process.

More specifically, the non-symmetric vanishing conditions are as follows: For
A€ A:=N"let |\ :==> A\ and let wy be the shortest permutation such that
w;l()\) is a partition (i.e., a non-increasing sequence). Let ¢ and ¢ be two formal
parameters and consider the vector o := (1, =172 ,t*"+1). Then we prove
that for every A\ € A there is a polynomial Ey(z1,... ,2,), unique up to a scalar
factor, which is of degree |A| and which satisfies the following condition:

E\(¢"wu(p)) =0 for all p € A with |p| < |A| and p # A.

We show that the affine Hecke algebra acts on these polynomials in a natural
way and that there are Cherednik-type operators of which they are simultaneous
eigenfunctions. This gives the link to the theory of homogeneous (symmetric or
not) Macdonald polynomials.

Furthermore, in this paper we show two results which are in a way dual to
each other: the polynomial E) contains, in general, much fewer monomials than
there are of degree |A| (triangularity) and it vanishes at many more points than
required by definition (extra vanishing). The extra vanishing is expressed in terms
of an order relation on A which generalizes the order of partitions by inclusion of
diagrams.

Later we prove that the quantized Capelli polynomials can be expressed in
terms of their highest degree component (a Macdonald polynomial) and certain
difference operators (inversion formula). This is used to transfer previous integral-
ity results of mine, [Kn], to the case of Capelli polynomials.

In the final section, we discuss the transition from the quantum to the classical
case. For this we put t = ¢" and let ¢ tend to one.
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2. The vanishing condition

Let A := N™ and AT C A the subset of partitions. For A = (\;) € A we write
Al :==>", A and I(A) := max{i | \; # 0} (with I(0) = 0).
Let k be a field of characteristic zero and P := k[z1,... , z,]| the polynomial

ring and P’ = k[zl,zfl, ... Zn, 22 Y] the ring of Laurent polynomials. To each
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A € A corresponds a monomial z* = IL zf‘ Fix two non-zero elements ¢ and ¢ of
k. Throughout the paper we assume that q*t® # 1 for all integers a,b > 1.

The symmetric group W := S,, acts in the obvious way on A and P. Every
X € A contains a unique partition AT in its W-orbit. Let wy € W be the shortest
permutation such that wy(AT) = A. For all A € A and = = (z;),y = (y;) € k" let
¢ := (¢™) and zy := (x;y;). Consider the element ¢ := (1,¢71,¢72,... .t ") ¢
k™.

For every A € A we define \ := w,\(q’\+ 0). More concretely, \; = ¢*it % where

kizki(/\):#{jzl,...,i—1|)\j2)\i}+#{j:i+1,...,7’L|)\j>)\i}.

The following simple lemma, is fundamental:

2.1. Lemma. For A\ € A with A\, # 0 let \* := (A, — 1, A1,..., A1) Then

A\* = (j\n/q,/_\l, - 7/\n—1)-
Proof. Follows easily from the definition. O

2.2. Theorem. Ford € N let S(n,d) be the set of all X where X\ € A and |\| < d.
Let f : S(n,d) — k be a mapping. Then there exists a unique polynomial f € P

of degree at most d such that f(z) = f(z) for all z € S(n,d).

Proof. The cardinality of S(n,d) equals the dimension of the space of polynomials
of degree at most d. Hence existence of f will imply its uniqueness.

To show existence, we proceed by induction on n + d. Every polynomial can
be uniquely written as

1, y2n) =921, s 2n-1) + (20 — t_"+1)h(zn/q,zl,22, e Zn1)-

Consider first the set So of X € S(n,d) with A, =0, i.e., A, =t "L, Then, as z
runs through Sy, 2’ := (21, ..., 2,_1) will run through S(n — 1, d). By induction,
one can choose g such that f takes the required values at Sg.

Consider now the set S of remaining points A\ with )\, # 0. By the lemma,
as z runs through S, (z2,,/q, 21, 22, .. , zn—1) Will run through S(n,d — 1). The
factor z, —t~"t1 = X, —t="*1 is not zero by the choice of ¢ and ¢. By induction,
we can find h of degree at most d — 1 with arbitrary values at S(n,d — 1). So f
exists. g

There is also a statement for symmetric polynomials which is the quantized
version of a theorem of Sahi [Sa]. For A € AT let my be the corresponding
monomial symmetric polynomial.

2.3. Theorem. For d € N let ST (n,d) be the set of all X\ = ¢*p where A € AT
and |\ < d. Let f: ST(n,d) — k be a mapping. Then there exists a unique
polynomial f € P of degree at most d such that f(z) = f(z) for all z € ST(n,d).
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Proof. The proof is completely analogous to that in [Sa]. Again, only existence has
to be proved. Let g — g1 be the linear map from symmetric polynomials in n — 1
variables to those with n variables which sends my(z1 — Lz — t‘”"’l)
to myo(z1 — t‘”"’l, R t‘”"’l). This map preserves degrees and satisfies
gt (21,0 s 201, )=g(z1,...,2n_1). We construct f by setting

flz1, .y z0) =g (21,... , 2 H 2 —t7"TOh(21/q, .. 2 /),

where g7 and h are symmetric. Then, as above, evaluation at A € ST (n,d) with
An = 0 gives g. Evaluation at the other points gives h. |

We obtain the following Theorem/Definition:

2.4. Theorem. a) For every A € A there is a unique polynomial Ex with Ex (i) =
0 for all p € A with |u| < |A|, p # A and which has an expansion Ex =3 ex, 2"
with exy = 1.
b) For every A € AT there is a unique symmetric polynomial Py with Py (i) = 0
for all p € AT with |u| < |\, p# X and which has an expansion Py = > Py
with pax = 1.

Proof. By Theorem 2.2, there is a polynomial E) satisfying the vanishing condition
with Ex(A) # 0. We have to show that it contains 2* with a non-zero coefficient.
Let

Ez\(zla e 7Zn) = 9(21, e 7Zn—1) + (Zn - t_n+1)h(zn/Q7 21y %2y 7Zn—1)-

If A, =0, then g = Ey with A = (A1,...,\,_1). By induction, g, and therefore
f, contains z*. If \,, # 0 then ¢ = 0 and h a multiple of E\-. We conclude again
by induction.

The proof in the symmetric case is analogous. O

Our proof actually gives a bit more. Consider the operators

Af(z1y...y2n) = f(zn/q, 21,y Zn_1),
and ® := (z, —t~"*1)A. Then we have

2.5. Corollary. For A € A with A, # 0 let \* = (A, — 1, A1,... , A\n_1). Then
Ex = ¢ 1®(Ey.)

For A € A let Py C P be the set of polynomials of degree at most || which
vanish at all i with |u| < |A| and p &€ WA. Of course, Py depends only on A™T.

2.6. Corollary. We have P = @ cp+Pr. The set {Eyx | w € W} forms a basis
of Px. Moreover, Py N PW = kPy.
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Proof. Follows directly from the definition. O

We conclude this section by giving two examples. For & € N we define the ¢-
factorial polynomial as [z; k], := (2 — 1)(z — q) ... (2 — ¢*~1). Then the following
is obvious.

2.7. Proposition. Let t = 1. Then Ex(z;q,1) = [z1;M1]q---[2n; An]q and
Py(z;q,1) is the symmetrization of it.

Now we consider the case t = ¢ in the symmetric case. For A € AT we
define the g-factorial Schur function as sx(z;q) := a~ ! det[z;; Aj +n — jlg where
a=[[;.;(zi — ;) is the Vandermonde determinant.

2.8. Proposition. Lett =¢q. Then P\(z;q,q) = q*(”*l)P“ﬁA(q”*lz; q).

Proof. The proof is the same as in the classical case [KS] Prop.3.3. O

3. Hecke operators

In this section, we are constructing operators which are adapted to the decompo-
sition P = @ cp+Pxr. Let s; € W be the i-th simple reflection. Then
Ni = (2 — zi41) " H(1 — 1)
is a well defined operator on P. We define the Hecke operators
H; =58 — (1 —t)N;z =ts; — (1 —t)z; Ny,
H;:=s;—(1—t)zi:1N; = ts; — (1 — t)N;zi41.
They satisfy the relations H; — H; =t — 1 and H;H; = t. In particular, both H;

and —H; satisfy the equation (z + 1)(z —t) = 0. In addition the braid relations

hold _
HHi 1H; = Hiy1HHi11 1=1,...,n—2

HiHj:HjHi |Z—j|>1
This means that the algebra H generated by the H; is the Hecke algebra of the
root system A, _;. For details see [Ch], [M2], or [Kn].

3.1. Lemma. Let u € A and f € P'. Then H;f(i) and H;f(fi) are linear
combinations of f(ii) and f(3;f) where the coefficients are independent of f.

Proof. We have

Hof () = 51— (1— Oz N () = oD gy P i g

i — Bigq Hy — M1 '
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If p; # pig1 then s;fi = 5;. Otherwise, Ji; — tfi; 11 = 0 by definition of fi. ]
3.2. Corollary. For every A € AT holds HPx C Phy.

3.3. Corollary. Let X be an operator in the algebra A generated by the H;, z;,
and ® (respectively in the both sided ideal APA). Let X € A and f € P'. Then
X f(A) is a linear combination of f(fi) where pp € A and |p| < || (respectively

lul < |AL)-

3.4. Corollary. Let A € A with \; = \j11. Then H;(E\) = E\ and H;(E\) =
tE.

Proof. Let us consider E := H;(Fy) and p € A with |u| < |A| and p # A. Since
also sij # A, we obtain E\ (i) = Ex(5if1) = 0, hence E(fi) = 0. This means that
FE is a multiple of F). Evaluation at z = A implies that the factor is t. O
For i =1,... ,n we define the Cherednik operators
fi_l =H,.. .Hn,lAHl oH .
Their relevance will become clear later. Furthermore, we define the operators
Sii=z 42z 'H,. . H, (®H,...H; 4

which are a priori only well-defined on Laurent polynomials. The following rela-
tions are easily established (see [Kn] §3)

H= =Z1H;, i=1,...,n—1; H,E; =E5;H;, j#i,i+1
3.5. Lemma. The operators =; act on P.
Proof. Since =; = tilﬁiEHlﬁi it suffices to consider the case i = n. Because
S = (o — 2 g ) e
the assertion follows from the following claim:
&l =t""1f modz, forall feP
We write f = g for f =g mod z,. First we show by induction
()  AHy...Hf=t"1As;...sf.

We have AHy ... H;f =t""2Asy...5,_1(ts;—(1—t)z;N;) f. Then (x) follows from
ASy ... Si12i =q LzpAsy ... si1.
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For i =n — 1, (%) reads &, 1 f = t"1Asy...5,_1f. The claim follows from

Asy...sp_1f(2) = fz1,. . 2021, 20/q) = f(2).
|

The =; are inhomogeneous versions of the Cherednik operators. Observe, that
degZ;(f) < deg f for all f € P. The main result of this paper is

3.6. Theorem. The Ey form a simultaneous eigenbasis for the =Z;. More precise-
~—1
lyy, Ei(Ex) =X\, Ex forallAeANandi=1,... n.

Proof. Let d := |A| and write Z; = z; ' + X;. Then Z,(E)\) = 2, 'Ex + Xi(E»).
Since E) vanishes in S(n,d — 1), Lemma 3.1 implies that X;(E)) vanishes in
S(n,d). Hence, Z;(F») vanishes for all p € S(n,d) with p # A. This implies that

. 3. . ;-1
Zi(Ey) = cE) for some ¢ € k. Evaluation at z = X implies ¢ = \; . O
3.7. Corollary. The operators Z1,... ,2, commute pairwise.
Next we consider the non-homogeneous analogues of the Macdonald operators:

3.8. Corollary. Letp € PV. Then =, := p(Z1,...,Z,) commutes with all H;.
—1
Moreover, Z,(Py) =p(A ")Px.

T -1
Proof. E, acts on P, as scalar multiplication by p(A ). O

3.9. Theorem. Let E) be the top homogeneous part of Ex. Then f;l(l_?,\) =

s—1+= . = . . . .
A; Ex. This means, that E is a non-symmetric Macdonald polynomial. Simi-
larly, the top homogeneous part Py of Py is a symmetric Macdonald polynomial.

Proof. We have =, = &, L plus terms which decrease the degree. Therefore, al-
so B = & 1 plus degree decreasing operators. The theorem follows since the
Macdonald polynomials are characterized as eigenfunctions of the &;. O

There is a (partial) order relation on A. First, recall the usual order on the set
AT: we say A > p if

Mt+X+. o+ N>pur+pe+...+p; foralli=1,... n.
This order relation is extended to all of A as follows. For every A € A there is a

unique partition A* in the orbit WA. For all permutations w € W with A = wA™
there is a unique one, denoted by wy, of minimal length. We define A > p if either
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AT > pt or At = uT and wy < w,, in the Bruhat order of W. In particular, AT
is the unique mazimum of W A.
1
3.10. Lemma. The operators Z; are triangular. More precisely, Z;(2*) = A A
DN WL
P<A TAR

Proof. For this we write Z; = zi_l +H;...H,_1(1 - t’”Jrlz;l)AHl L H =
5{1 +Y; where Y; = z;l —tHE, . ..I?n,lzglAHl ...H;_1. Tt is well known
that &~ s triangular (see [M2]) with the given coefficient of z*. Since Y; decreases

the degree it suffices to show that pu* < At for each monomial z* occuring in
Y;(2*). But that is easy to check. O

3.11. Theorem. For every A € A there is the expansion Ey = 22+ .ca expzt.

pn<A
Similarly, if X € AT then Py =mx+ Y .cat DMy

JTEPN

Proof. By the triangularity and diagonalizability of Z; there must be an eigenfunc-

-1
tion of the stated form with eigenvalue A; . Thus, it equals E. O

4. The extra vanishing theorem

We are going to introduce another (partial) order relation on A which extends the
containment relation on partitions. Let A, € A. Then we say A<y if there is a
permutation 7 € W such that A; < i) if ¢ <7(i) and A < pur() if @ > w(i). In
this case we call 7 a defining permutation for Axp.

4.1. Lemma. If Ay and |A| > |p| then A = p.

Proof. All inequalities \; < [ (i) MUS the equalities. This can only happen if
i > 7(4) for all ¢ which implies 7 = id and A = p. O

If A and p are partitions then Ay is just the usual inclusion relation among
diagrams but in general “<” it is finer than “C”.

We proceed by describing the minimal elements lying above A. For a subset
I={i,... i, of {1,... ,n} with ¢; < ... < i, we define the cyclic permutation
Ty iy > dp_1 ... — i1 — i, and ¢f(N\) ;== pu € A by

Lei)=Xi  GE€L, i
i, :A11+17

Clearly, A < ¢y(\) with the defining permutation 7;. Conversely,
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4.2. Lemma. Let \,u € A with A < p. Then there is I such that cr(A\)<p.

Proof. Let 7 be a defining permutation of Axu. If 7 = id then \; < u; for some ¢
and we can choose I = {i}. Assume from now on 7 # id.

Let 71 be minimal with 7(iy) # 1. Then necessarily w(i1) > i;. Put i :=
7*=1(i1) and let 7 > 2 be minimal with i, 1 > i,. Then we havei; < i, < ... < ia.
Now we take I := {i1,4,,...,i2} (note that 4, might be equal to i1). Then, it
follows from g5, > Ay +1, pi; > i, etc. that cr(A)=<p with defining permutation

-1
T . O

The next lemma shows that one doesn’t have to check all permutations to show
A .

4.3. Lemma. Let A\, € A with AxXu. Then © = wuw;1 is a defining permuta-
tion.

Proof. First note that 7 is the permutation with k;(A) = k(;) () for all i (with
k; as in section 2). Fixing 7 like that certainly defines a new order relation <’
which is coarser than <. To show that these relations coincide it suffices to show
Ax'cr(N) for all 1.
For this we may assume that I is maximal among all J with p := c;(X) = ¢;(N).

This means that

)‘i#)‘il forz':l,...,il—l;

/\175)\1'2 fori=di1+1,...,i0 —1;

etc.

Ai i, fori=d,_1+1,...,i —1;

NiF#E N, +lfori=d.+1,...,n.
In this case one verifies easily

kij(u) Zkij+1()\) j: 1,... ,7“—1; kir(,u) :kil()‘)

and k; (i) = ki(\) otherwise, i.e., w,wy ! = . O
Definition. A subset S C A is called closed if A € S and Ay implies p € S. If

that is the case let Is C P be the ideal of functions f which vanish in all A with
AeANS.

4.4. Theorem. Let S C A be a closed subset. Then E;(Is) C Ig for all i =
1,...,n.

Proof. Let pn € A\ S and f € Is. We have to show that Z; f(f) = 0. The definition
of Z; shows that =; f() is a linear combination of f(&) and terms of the form

Yy =0j.. .op_1A07 .. -O'i—lf(:u)
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where each operator o; is either s; or 1. This shows that y = f(\) with g = ¢;(\)
for some I and A € A. Since S is closed we have A € A\ S and therefore, y = 0.0

Now we show the extra vanishing theorem:
4.5. Theorem. Let A\, u € A with A\ Lu. Then Ex(n) = 0.

Proof. Consider the closed subset S = {v € A | Av}. We have to show Ej € Is.
For generic ¢ and t there is a function f € Is with f(A) # 0. Indeed, take for
example

1@ =T | 1 enai 2y TT onlahi ' z)

meW | i<m(i) i>m (i)

where @ (2) == (z = 1)(z — ¢ 1) ... (2 — ¢ *F1). Since Ig is Z;-stable there is
Ey € Ig with Ex (\) # 0. In particular, || < |A|. On the other hand, Ey (N) #0
implies M € S, i.e. AxX)\. Therefore, ' = A (Lemma 4.1). O

4.6. Theorem. Let S C A be closed. Then Is = ®rcskE).

Proof. By Theorem 4.4, we have Is = @xeskEy for some subset S’ C A. Let
A € 8. Then Ex(\) # 0 implies A € S, hence S’ C S. Conversely, let A € S and
€ A\ S. Then Ey(fi) = 0 by the extra vanishing theorem. Hence E € Ig and
Ae s O

4.7. Corollary. Let ExE, =)_, cX, E,. Then c§, =0 unless A, u<v.

Proof. Let S be the set of v € A with Axv. Then by Theorem 4.5 and Theorem
4.6, the principal ideal PE) is contained in @, cskF,. This shows A\xv whenever
c,, # 0. The relation p<v follows by symmetry. O

The whole discussion has also a symmetric counterpart. As already mentioned,
on AT the order relation < is just inclusion of diagrams. Then everything works
for this order relation. See [KS] for the precise statements.

5. The inversion formula and integrality results

We have seen that the Macdonald polynomials are obtained from the E) or Py
by taking the top homogeneous part. In this section we show how to invert this
process.

The Capelli polynomials Ey and the Macdonald polynomials E form two bases
of P. Define ¥ € Endy, P by U(E)) = E\. Another way to describe ¥ is as follows:
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Let P4 be the set of polynomials of degree d which vanish in S(n,d — 1) and
let Py the set of homogeneous polynomials of degree d. Then taking the top
degree term gives an isomorphism ¥’ : Py = Pg4. Since ¥/ maps Ey to Ey we see
v =yl

The next theorem tells us that Capelli and Macdonald polynomials are essen-
tially the same up to base change by W.

5.1. Lemma. The following table gives for an operator A its intertwined operator
VAP, 3
A H, &' d:=z,A 2z

(3

YAP-L H; =, o 2 — =1

—_
—

In particular, the operators z; — _i_l commute pairwise.

Proof. The endomorphism ¥ maps an eigenvectors of &~ ! to an eigenvector of
E; with the same eigenvalue. Thus we obtain W¢;~ L' — 2,0, For f € Pg holds
H;f € Pgand V' (H;f) = H;V'(f). Hence, H; commutes with ¥.

We have ®(P;) C Pyi1 (Corollary 2.5) and therefore ¥/ (®(f)) = ®(¥/(f)) for
all fePy.

Next consider A € A with \,, # 0 and \* as in Lemma 2.1. Then ¢’ 1®(E,-) =
Ey and ¢*~'®(Ey-) = E ([Kn] Thm. 4.1). This implies Y& = ®U.

Finally, for z; observe first that =; is diagonalizable with non-zero eigenvalues.
Hence = ! exists.

According to the definition of =;, we have

ZiEi —1= Hz .. .Hn_1¢H1 .. -Hi—l-

Hence, by Corollary 3.3 and Theorem 3.6, the operator z; — E;l = (z;E; — 1)5;1

maps Py into Pg41. Looking at the top homogeneous term we see W'((z; —

=70 ) = 2V(f). O

Remark. The discussion above shows that Macdonald polynomials and Capel-
li polynomials are just two different views of the same picture. Both have their
virtues: the main structure governing Macdonald polynomials is Cherednik’s scalar
product on P. By transport of structure via ¥ also the Capelli polynomials are
orthogonal with respect to a certain scalar product but unfortunately an explic-
it formula for it is not known. On the other hand, the scalar product has its
replacement in the vanishing conditions which turn out to be just as good.

Observe that = 1'is no difference operator anymore. Therefore, we introduce

the operator S := t_(g)El ...Zp which acts on Py as scalar multiplication by
q¢~%. It intertwines with the operator S = A™ which acts on Py by ¢~¢. Now
observe that Z; := (z; — =, 1)S is a difference operator which corresponds on the

homogeneous side to z;S = ¢Sz;.
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Now we can state the inversion formula:

5.2. Theorem. a) The operators Z1,... , Z, commute pairwise.

b) Let f be homogeneous of degree d. Then V(f) = q(g)f(Zl, ooy Zn) 1 (where
1 € P denotes the unity).

Proof. Since f is homogeneous of degree d, we obtain f = q(g)f(zzg) - 1. Thus b)
follows by applying W. O

This formula can be used to lift results for Macdonald polynomials to Capelli
polynomials. As an example, we investigate integrality properties.
For this we use a different normalization of E). Recall, that the diagram of
A € A is the set of points (usually called bozes) s = (i,) € Z? such that 1 <i<n
and 1 < j < \;. For each box s we define the arm-length a(s) and leg-length I(s)
as
a(s) =X —j
U(is):=#{k=1,...,i—1]7 <X +1<\}
"(s)i=#{k=i+1,...,n|j <X <N}
I(s) :=1'(s) +1"(s)

If A € AT is a partition then I’(s) = 0 and I”(s) = I(s) is just the usual leg-length.

We define
£y = H(l _ qa(s)Jrltl(s)Jrl)E/\'
SEX
Pyo= [[ - "W Py
SEX

With this normalization, we obtain:
5.3. Proposition. The coefficients of £ and Py are in Z[q,q_l,t,t_l].

Proof. The leading terms £, and P, have coefficients in Z[g,t] by Corollary 5.2
and Theorem 6.1 of [Kn]. The result follows from the fact that the operators Z;
are defined over Z[g, ¢~ 1, t,t71]. O
This result can be improved. For m = 1,... ,n we define the operators
Ap = HmHm—i-l o Hp 1@
Ay o= HoFopsr .. Hy 1 ®
Then we have the following recursion relation:

5.4. Theorem. Let A\ € A with m := [(\) > 0. Put \* := (A, — 1, A1,
An—1,0,...,0). Then Ex = ¢ A, — Mnt™Ap]Exne.
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Proof. Apply ¥ to both sides of the corresponding formula in [Kn] Theorem 5.1.00

5.5. Corollary. Let £\ = Zu expzt and Py = Zu prumy- Then

e)\p"pAu c ti(nil)(‘Alflul)Z[q’ t].

Proof. The operators H; and H; are defined over Z[t]. Since ® = (z, —t "T1)A,
the recursion formula implies ey, € t*Z[q, ¢~ 1, ¢] with k = (n — 1)(|]\| — |u|). To
show that no negative powers of ¢ appear observe that z1=21 —1=Hy ... H,_1®.
Therefore,

P e(E) = P Y L HT ()T - DE

The claim follows from XI = ¢’ 1t7F for some k € N.
The assertion for Py follows by symmetrization as in the proof of [Kn] Theo-
rem 6.1. |

Remark. The assertion of the last theorem is equivalent to

t("_l)"\lé’A(tl_"zl, ... ,tl_”zn) € Zlg, t, z].

6. The classical limit

Let a be a formal parameter. If one puts ¢ = t* and lets t go to 1 then (1—t)*|)“7_3>\

converges to the Jack polynomial J /ga) (z). In this final section, I will discuss the
analogue for our non-homogeneous Macdonald polynomials. For this it is a bit
more convenient to set ¢t = ¢" and let ¢ tend to 1. Then a and r are related by
a=1/r.

We introduce the following notation: Let p(q,t) € Q(q,t), po € Q and k € N.

Then we write p ﬁ)po if lirri €7(<17q"')
q%

1
= po. For example, ¢*t* — 1 =5 a + br. (In

q—1)*
purely algebraic terms, 1irri p(g,q") means: write p(q,t) in terms of z := ¢ — 1 and
q—)
ri= % and put z =0.)

q -
As g — 1, the points A all collapse to 1. Therefore, we introduce the function

pqe(x) == 2:% and the affine transformation ¢q(z) = (@q(21), ... ,@q(2n)). Set

0 = (0,—r,... = (n — 1)r). Then we have 0N\ 07X where A == A + W) 0.
Conversely, we can write A = ¢*.
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The action of ¢4 on P is given by ¢, f(z) = f(apgl(z)). We extend our notation

as follows: if X (g,t) and X (r) are operators on P then we write X (q,t) ﬂX(r)
if for all f € P

lim (¢ - 1) F0aX(q,q") ey ' f = X(r)f.

For example, if X(¢,t) is the multiplication operator by g¢(z;q,t) then
gqu(q,qT)goq_l is multiplication by @49 = g o goq_l. In this way, gﬂgo has
to be understood. Since qu_l(x) = (¢ — 1)z + 1 we obtain, for example, z; Ory

while z; — 1i>zi. ~ ~ ~
Define the operators Af(z) := f(zn—1,21,... ,2,—1) and ® := (z,+(n—1)r)A.

6.1. Lemma. We have AKA and ® iﬂi)

Proof. We have <qu<p;1f(z) = f(¥(zn),21,--. ,2n—1) where ¥(2) = z,/q —

1/q O, zn — 1. Moreover, zn(goq’l(z)) —t = (g 1)z, + (1 -t 1 Zn +
(n—1)r. O

6.2. Theorem. For every A € A there is a unique polynomial E\ = of degree ||

and 2*-coefficient equal to 1 which vanishes at all i with |u| < |\ and p # X.

IALr ~
Moreover, E) —‘>EA.

Proof. Repeat the proof of Theorem 2.2 with respect to vanishing at ¢4 (\). Then
one sees, by induction, that the limit ¢ — 1 exists. O

In the limit ¢ — 1, the symmetric version has been already treated in [KS]. As
above we obtain

6.3. Theorem. For every A € AT there is a unique polynomial Py of degree |A|

which vanishes at all fi = p+ o where u € A+ with |u| < |\| and u # X. Moreover,

Al,r =~
P)\LP)\.

Next we study the limit of the Hecke operators. Let o; := s; — rN;.

6.4. Lemma. We have Hi,ﬁi Mai and H; — H; ir,
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Proof. First observe that s; commutes with ¢,. Moreover,

(1— ¢yt 1o l-tlg-Vzy+1 or -7 ’
Zi — Zit1 q—1  zi—z41 Zi — Zit+1
This implies the claim for H,. For H;, use H; = H,+t—1. O

The braid relations for the H; imply them for the ;. Moreover, from HH, =t
we deduce o2 = 1. Hence we obtain

6.5. Corollary. The mapping s; — o; extends uniquely to an action of W on P.

Remark. It is not difficult to see that the standard action of W and the one
defined above are conjugated by an element U € Endpw P = M, (P"). It would
be interesting to find such a U explicitly. Note however that U is not uniquely
determined.

Observe that_ the commutation Eelations ziv1H; = H,z; can we rewritten as
(zi41 — 1)H; = H;(2; — 1) — (H; — H;) which implies

24103 = 02, — T} zjo; = 0525, J#i,1+ 1

Therefore, the o; and z; generate a graded Hecke algebra.
We now consider the limit of the Cherednik operators. Let

i =2 —0;...0n0_1P01...0,_1.

[1]:

Then we have

. —_ 1, = = 7 N
6.6. Theorem. Fori=1,...,n holds =; — 1 LN Moreover, =, E\ = \;E)
for all A € A. In particular, the Z; commute pairwise.

1,r

r r r o= -1 ~
Proof. Follows from zi_l _qln —z;, Hj 0—’>Ui, P 1—’><I>, and A\  —1-—-\. 0O

6.7. Corollary. The top homogeneous part of Py and Ey is a Jack polynomial
and Opdam’s non-symmetric analogue [Op], respectively.

The extra vanishing theorem goes through verbatim:

6.8. Theorem. Let \, ;1 € A with X £p. Then Ex(j1) = 0.
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For the inversion formula we introduce

Zii=2,—2,=0;...0n,_1P01...0;_1.

Furthermore, let ¥ : P — P be the linear automorphism which maps the leading
term of F to E). Then we obtain

6.9. Theorem. We have Ziizi. Moreover, Z; ¥ = Uz and the inversion
formula holds: V(f) = f(Z1,...,Zn) 1 for all f € P.

Finally, as for integrality, we choose the following normalizing factors:

&y = H ((a(s)+ 1)+ (I(s) + I)T)E,\.

SEX

Py = H (a(s) + (I(s) + 1)7“)]5/\

SEX

With this normalization, we obtain:

6.10. Theorem. We have &, QW’T(—l)Wé}\ and Py

2l)\"r(—l)p“fj)\. Moreover,

the coefficients of Ex and Py are in Z[r].
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