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Abstract. We introduce families of symmetric and non-symmetric polynomials (the quantum
Capelli polynomials) which depend on two parameters q and t. They are defined in terms of van-
ishing conditions. In the differential limit (q = tα and t→ 1) they are related to Capelli identities.
It is shown that the quantum Capelli polynomials form an eigenbasis for certain q-difference op-
erators. As a corollary, we obtain that the top homogeneous part is a symmetric/non-symmetric
Macdonald polynomial. Furthermore, we study the vanishing and integrality properties of the
quantum Capelli polynomials.
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1. Introduction

Generalizing the classical Capelli identity has recently attracted a lot of interest
([HU], [Ok], [Ol], [Sa], [WUN]). In several of these papers it was realized, in various
degrees of generality, that Capelli identities are connected with certain symmetric
polynomials which are characterized by their vanishing at certain points. From
this point of view, these polynomials have been constructed by Sahi [Sa] and were
studied in [KS].

The purpose of this paper is twofold: we quantize the vanishing condition in
a rather straightforward manner and obtain a family of symmetric polynomials
which is indexed by partitions and which depends on two parameters q, t. As in
[KS], their main feature is that they are non-homogeneous and one of our principal
results states that the top degree terms are the Macdonald polynomials. It is an
interesting problem whether these quantized Capelli polynomials are indeed con-
nected with quantized Capelli identities (see [WUN]) as it is in the classical case.
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But the main progress over [KS] is the introduction of a family of non-sym-
metric polynomials which are also defined by vanishing conditions. They are non-
homogeneous and their top degree terms turns out to be the non-symmetric Mac-
donald polynomials. To prove this, we introduce certain difference operators of
Cherednik type of which our polynomials are a simultaneous eigenbasis. Because
of these operators, the non-symmetric functions are much easier to handle than the
symmetric ones. Moreover, the latter can be obtained by a simple symmetrization
process.

More specifically, the non-symmetric vanishing conditions are as follows: For
λ ∈ Λ := Nn let |λ| :=

∑
λi and let wλ be the shortest permutation such that

w−1
λ (λ) is a partition (i.e., a non-increasing sequence). Let q and t be two formal

parameters and consider the vector % := (1, t−1, t−2, . . . , t−n+1). Then we prove
that for every λ ∈ Λ there is a polynomial Eλ(z1, . . . , zn), unique up to a scalar
factor, which is of degree |λ| and which satisfies the following condition:

Eλ(qµwµ(%)) = 0 for all µ ∈ Λ with |µ| ≤ |λ| and µ 6= λ.

We show that the affine Hecke algebra acts on these polynomials in a natural
way and that there are Cherednik-type operators of which they are simultaneous
eigenfunctions. This gives the link to the theory of homogeneous (symmetric or
not) Macdonald polynomials.

Furthermore, in this paper we show two results which are in a way dual to
each other: the polynomial Eλ contains, in general, much fewer monomials than
there are of degree |λ| (triangularity) and it vanishes at many more points than
required by definition (extra vanishing). The extra vanishing is expressed in terms
of an order relation on Λ which generalizes the order of partitions by inclusion of
diagrams.

Later we prove that the quantized Capelli polynomials can be expressed in
terms of their highest degree component (a Macdonald polynomial) and certain
difference operators (inversion formula). This is used to transfer previous integral-
ity results of mine, [Kn], to the case of Capelli polynomials.

In the final section, we discuss the transition from the quantum to the classical
case. For this we put t = qr and let q tend to one.
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2. The vanishing condition

Let Λ := Nn and Λ+ ⊆ Λ the subset of partitions. For λ = (λi) ∈ Λ we write
|λ| :=

∑
i λi and l(λ) := max{i | λi 6= 0} (with l(0) = 0).

Let k be a field of characteristic zero and P := k[z1, . . . , zn] the polynomial
ring and P ′ := k[z1, z

−1
1 , . . . , zn, z

−1
n ] the ring of Laurent polynomials. To each
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λ ∈ Λ corresponds a monomial zλ =
∏
i z
λi
i . Fix two non-zero elements q and t of

k. Throughout the paper we assume that qatb 6= 1 for all integers a, b ≥ 1.
The symmetric group W := Sn acts in the obvious way on Λ and P . Every

λ ∈ Λ contains a unique partition λ+ in its W -orbit. Let wλ ∈W be the shortest
permutation such that wλ(λ+) = λ. For all λ ∈ Λ and x = (xi), y = (yi) ∈ kn let
qλ := (qλi) and xy := (xiyi). Consider the element % := (1, t−1, t−2, . . . , t−n+1) ∈
kn.

For every λ ∈ Λ we define λ := wλ(qλ
+
%). More concretely, λi = qλit−ki where

ki = ki(λ) = #{j = 1, . . . , i− 1 | λj ≥ λi}+ #{j = i+ 1, . . . , n | λj > λi}.

The following simple lemma is fundamental:

2.1. Lemma. For λ ∈ Λ with λn 6= 0 let λ∗ ..= (λn − 1, λ1, . . . , λn−1). Then
λ∗ = (λn/q, λ1, . . . , λn−1).

Proof. Follows easily from the definition. �

2.2. Theorem. For d ∈ N let S(n, d) be the set of all λ where λ ∈ Λ and |λ| ≤ d.
Let f : S(n, d) → k be a mapping. Then there exists a unique polynomial f ∈ P
of degree at most d such that f(z) = f(z) for all z ∈ S(n, d).

Proof. The cardinality of S(n, d) equals the dimension of the space of polynomials
of degree at most d. Hence existence of f will imply its uniqueness.

To show existence, we proceed by induction on n + d. Every polynomial can
be uniquely written as

f(z1, . . . , zn) = g(z1, . . . , zn−1) + (zn − t−n+1)h(zn/q, z1, z2, . . . , zn−1).

Consider first the set S0 of λ ∈ S(n, d) with λn = 0, i.e., λn = t−n+1. Then, as z
runs through S0, z′ := (z1, . . . , zn−1) will run through S(n− 1, d). By induction,
one can choose g such that f takes the required values at S0.

Consider now the set S1 of remaining points λ with λn 6= 0. By the lemma,
as z runs through S1, (zn/q, z1, z2, . . . , zn−1) will run through S(n, d − 1). The
factor zn− t−n+1 = λn− t−n+1 is not zero by the choice of q and t. By induction,
we can find h of degree at most d − 1 with arbitrary values at S(n, d − 1). So f
exists. �

There is also a statement for symmetric polynomials which is the quantized
version of a theorem of Sahi [Sa]. For λ ∈ Λ+ let mλ be the corresponding
monomial symmetric polynomial.

2.3. Theorem. For d ∈ N let S+(n, d) be the set of all λ = qλ% where λ ∈ Λ+

and |λ| ≤ d. Let f : S+(n, d) → k be a mapping. Then there exists a unique
polynomial f ∈ P of degree at most d such that f(z) = f(z) for all z ∈ S+(n, d).
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Proof. The proof is completely analogous to that in [Sa]. Again, only existence has
to be proved. Let g 7→ g+ be the linear map from symmetric polynomials in n− 1
variables to those with n variables which sends mλ(z1− t−n+1, . . . , zn−1− t−n+1)
to mλ,0(z1 − t−n+1, . . . , zn − t−n+1). This map preserves degrees and satisfies
g+(z1, . . . , zn−1, t

−n+1) = g(z1, . . . , zn−1). We construct f by setting

f(z1, . . . , zn) = g+(z1, . . . , zn) +
n∏
i=1

(zi − t−n+1)h(z1/q, . . . , zn/q),

where g+ and h are symmetric. Then, as above, evaluation at λ ∈ S+(n, d) with
λn = 0 gives g. Evaluation at the other points gives h. �

We obtain the following Theorem/Definition:

2.4. Theorem. a) For every λ ∈ Λ there is a unique polynomial Eλ with Eλ(µ) =
0 for all µ ∈ Λ with |µ| ≤ |λ|, µ 6= λ and which has an expansion Eλ =

∑
µ eλµz

µ

with eλλ = 1.
b) For every λ ∈ Λ+ there is a unique symmetric polynomial Pλ with Pλ(µ) = 0
for all µ ∈ Λ+ with |µ| ≤ |λ|, µ 6= λ and which has an expansion Pλ =

∑
µ pλµmµ

with pλλ = 1.

Proof. By Theorem 2.2, there is a polynomial Eλ satisfying the vanishing condition
with Eλ(λ) 6= 0. We have to show that it contains zλ with a non-zero coefficient.
Let

Eλ(z1, . . . , zn) = g(z1, . . . , zn−1) + (zn − t−n+1)h(zn/q, z1, z2, . . . , zn−1).

If λn = 0, then g = Eλ′ with λ′ = (λ1, . . . , λn−1). By induction, g, and therefore
f , contains zλ. If λn 6= 0 then g = 0 and h a multiple of Eλ∗ . We conclude again
by induction.

The proof in the symmetric case is analogous. �

Our proof actually gives a bit more. Consider the operators

∆f(z1, . . . , zn) := f(zn/q, z1, . . . , zn−1),

and Φ := (zn − t−n+1)∆. Then we have

2.5. Corollary. For λ ∈ Λ with λn 6= 0 let λ∗ = (λn − 1, λ1, . . . , λn−1). Then
Eλ = qλn−1Φ(Eλ∗)

For λ ∈ Λ let Pλ ⊆ P be the set of polynomials of degree at most |λ| which
vanish at all µ with |µ| ≤ |λ| and µ 6∈Wλ. Of course, Pλ depends only on Λ+.

2.6. Corollary. We have P = ⊕λ∈Λ+Pλ. The set {Ewλ | w ∈ W} forms a basis
of Pλ. Moreover, Pλ ∩ PW = kPλ.
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Proof. Follows directly from the definition. �

We conclude this section by giving two examples. For k ∈ N we define the q-
factorial polynomial as [z; k]q := (z − 1)(z − q) . . . (z − qk−1). Then the following
is obvious.

2.7. Proposition. Let t = 1. Then Eλ(z; q, 1) = [z1;λ1]q . . . [zn;λn]q and
Pλ(z; q, 1) is the symmetrization of it.

Now we consider the case t = q in the symmetric case. For λ ∈ Λ+ we
define the q-factorial Schur function as sλ(z; q) := a−1 det[zi;λj + n − j]q where
a =

∏
i<j(zi − zj) is the Vandermonde determinant.

2.8. Proposition. Let t = q. Then Pλ(z; q, q) = q−(n−1)|λ|sλ(qn−1z; q).

Proof. The proof is the same as in the classical case [KS] Prop.3.3. �

3. Hecke operators

In this section, we are constructing operators which are adapted to the decompo-
sition P = ⊕λ∈Λ+Pλ. Let si ∈W be the i-th simple reflection. Then

Ni := (zi − zi+1)−1(1− si)
is a well defined operator on P . We define the Hecke operators

Hi := si − (1− t)Nizi = tsi − (1− t)ziNi,
Hi := si − (1− t)zi+1Ni = tsi − (1− t)Nizi+1.

They satisfy the relations Hi −Hi = t− 1 and HiHi = t. In particular, both Hi

and −Hi satisfy the equation (x + 1)(x− t) = 0. In addition the braid relations
hold

HiHi+1Hi = Hi+1HiHi+1 i = 1, . . . , n− 2
HiHj = HjHi |i− j| > 1

This means that the algebra H generated by the Hi is the Hecke algebra of the
root system An−1. For details see [Ch], [M2], or [Kn].

3.1. Lemma. Let µ ∈ Λ and f ∈ P ′. Then Hif(µ) and Hif(µ) are linear
combinations of f(µ) and f(siµ) where the coefficients are independent of f .

Proof. We have

Hif(µ) = [si − (1− t)zi+1Ni]f(µ) =
(t− 1)µi+1
µi − µi+1

f(µ) +
µi − tµi+1
µi − µi+1

f(siµ).
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If µi 6= µi+1 then siµ = siµ. Otherwise, µi − tµi+1 = 0 by definition of µ. �

3.2. Corollary. For every λ ∈ Λ+ holds HPλ ⊆ Pλ.

3.3. Corollary. Let X be an operator in the algebra A generated by the Hi, zi,
and Φ (respectively in the both sided ideal AΦA). Let λ ∈ Λ and f ∈ P ′. Then
Xf(λ) is a linear combination of f(µ) where µ ∈ Λ and |µ| ≤ |λ| (respectively
|µ| < |λ|).

3.4. Corollary. Let λ ∈ Λ with λi = λi+1. Then Hi(Eλ) = Eλ and Hi(Eλ) =
tEλ.

Proof. Let us consider E := Hi(Eλ) and µ ∈ Λ with |µ| ≤ |λ| and µ 6= λ. Since
also siµ 6= λ, we obtain Eλ(µ) = Eλ(siµ) = 0, hence E(µ) = 0. This means that
E is a multiple of Eλ. Evaluation at z = λ implies that the factor is t. �

For i = 1, . . . , n we define the Cherednik operators

ξ−1
i = Hi . . .Hn−1∆H1 . . .Hi−1.

Their relevance will become clear later. Furthermore, we define the operators

Ξi := z−1
i + z−1

i Hi . . .Hn−1ΦH1 . . .Hi−1

which are a priori only well-defined on Laurent polynomials. The following rela-
tions are easily established (see [Kn] §3)

HiΞi = Ξi+1Hi, i = 1, . . . , n− 1; HiΞj = ΞjHi, j 6= i, i+ 1.

3.5. Lemma. The operators Ξi act on P.

Proof. Since Ξi = t−1HiΞi+1Hi it suffices to consider the case i = n. Because

Ξn := (zn − t−n+1)z−1
n (ξ−1

n − tn−1) + tn−1,

the assertion follows from the following claim:

ξ−1
n f = tn−1f mod zn for all f ∈ P

We write f ≡ g for f = g mod zn. First we show by induction

(∗) ∆H1 . . .Hif ≡ ti−1∆s1 . . . sif.

We have ∆H1 . . .Hif ≡ ti−2∆s1 . . . si−1(tsi−(1−t)ziNi)f . Then (∗) follows from
∆s1 . . . si−1zi = q−1zn∆s1 . . . si−1.
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For i = n− 1, (∗) reads ξ−1
n f ≡ tn−1∆s1 . . . sn−1f . The claim follows from

∆s1 . . . sn−1f(z) = f(z1, . . . , zn−1, zn/q) ≡ f(z).

�

The Ξi are inhomogeneous versions of the Cherednik operators. Observe, that
deg Ξi(f) ≤ deg f for all f ∈ P . The main result of this paper is

3.6. Theorem. The Eλ form a simultaneous eigenbasis for the Ξi. More precise-
ly, Ξi(Eλ) = λ

−1
i Eλ for all λ ∈ Λ and i = 1, . . . , n.

Proof. Let d := |λ| and write Ξi = z−1
i + Xi. Then Ξi(Eλ) = z−1

i Eλ + Xi(Eλ).
Since Eλ vanishes in S(n, d − 1), Lemma 3.1 implies that Xi(Eλ) vanishes in
S(n, d). Hence, Ξi(Eλ) vanishes for all µ ∈ S(n, d) with µ 6= λ. This implies that
Ξi(Eλ) = cEλ for some c ∈ k. Evaluation at z = λ implies c = λ

−1
i . �

3.7. Corollary. The operators Ξ1, . . . ,Ξn commute pairwise.

Next we consider the non-homogeneous analogues of the Macdonald operators:

3.8. Corollary. Let p ∈ PW . Then Ξp := p(Ξ1, . . . ,Ξn) commutes with all Hi.

Moreover, Ξp(Pλ) = p(λ
−1

)Pλ.

Proof. Ξp acts on Pλ as scalar multiplication by p(λ
−1

). �

3.9. Theorem. Let Eλ be the top homogeneous part of Eλ. Then ξ−1
i (Eλ) =

λ
−1
i Eλ. This means, that Eλ is a non-symmetric Macdonald polynomial. Simi-

larly, the top homogeneous part Pλ of Pλ is a symmetric Macdonald polynomial.

Proof. We have Ξn = ξ−1
n plus terms which decrease the degree. Therefore, al-

so Ξi = ξ−1
i plus degree decreasing operators. The theorem follows since the

Macdonald polynomials are characterized as eigenfunctions of the ξi. �

There is a (partial) order relation on Λ. First, recall the usual order on the set
Λ+: we say λ ≥ µ if

λ1 + λ2 + . . .+ λi ≥ µ1 + µ2 + . . .+ µi for all i = 1, . . . , n.

This order relation is extended to all of Λ as follows. For every λ ∈ Λ there is a
unique partition λ+ in the orbit Wλ. For all permutations w ∈W with λ = wλ+

there is a unique one, denoted by wλ, of minimal length. We define λ ≥ µ if either
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λ+ > µ+ or λ+ = µ+ and wλ ≤ wµ in the Bruhat order of W . In particular, λ+

is the unique maximum of Wλ.

3.10. Lemma. The operators Ξi are triangular. More precisely, Ξi(zλ) = λ
−1
i zλ+∑

µ<λ cλµz
µ.

Proof. For this we write Ξi = z−1
i + Hi . . .Hn−1(1 − t−n+1z−1

n )∆H1 . . .Hi−1 =
ξ−1
i + Yi where Yi = z−1

i − t−n+1Hi . . .Hn−1z
−1
n ∆H1 . . .Hi−1. It is well known

that ξ−1
i is triangular (see [M2]) with the given coefficient of zλ. Since Yi decreases

the degree it suffices to show that µ+ < λ+ for each monomial zµ occuring in
Yi(zλ). But that is easy to check. �

3.11. Theorem. For every λ ∈ Λ there is the expansion Eλ = zλ+
∑

µ∈Λ
µ<λ

eλµz
µ.

Similarly, if λ ∈ Λ+ then Pλ = mλ +
∑

µ∈Λ+
µ<λ

pλµmµ.

Proof. By the triangularity and diagonalizability of Ξi there must be an eigenfunc-
tion of the stated form with eigenvalue λ

−1
i . Thus, it equals Eλ. �

4. The extra vanishing theorem

We are going to introduce another (partial) order relation on Λ which extends the
containment relation on partitions. Let λ, µ ∈ Λ. Then we say λ4µ if there is a
permutation π ∈ W such that λi < µπ(i) if i < π(i) and λi ≤ µπ(i) if i ≥ π(i). In
this case we call π a defining permutation for λ4µ.

4.1. Lemma. If λ4µ and |λ| ≥ |µ| then λ = µ.

Proof. All inequalities λi ≤ µπ(i) must the equalities. This can only happen if
i ≥ π(i) for all i which implies π = id and λ = µ. �

If λ and µ are partitions then λ4µ is just the usual inclusion relation among
diagrams but in general “4” it is finer than “⊆”.

We proceed by describing the minimal elements lying above λ. For a subset
I = {i1, . . . , ir} of {1, . . . , n} with i1 < . . . < ir we define the cyclic permutation
πI : ir 7→ ir−1 7→ . . . 7→ i1 7→ ir and cI(λ) := µ ∈ Λ by

µπI(i)= λi i ∈ I, i 6= i1;
µir = λi1 + 1;
µi = λi i /∈ I.

Clearly, λ ≺ cI(λ) with the defining permutation πI . Conversely,
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4.2. Lemma. Let λ, µ ∈ Λ with λ ≺ µ. Then there is I such that cI(λ)4µ.

Proof. Let π be a defining permutation of λ4µ. If π = id then λi < µi for some i
and we can choose I = {i}. Assume from now on π 6= id.

Let i1 be minimal with π(i1) 6= i1. Then necessarily π(i1) > i1. Put ik :=
πk−1(i1) and let r ≥ 2 be minimal with ir+1 > ir. Then we have i1 ≤ ir < . . . < i2.
Now we take I := {i1, ir, . . . , i2} (note that ir might be equal to i1). Then, it
follows from µi2 ≥ λi1 + 1, µi3 ≥ λi2 etc. that cI(λ)4µ with defining permutation
ππ−1

I . �

The next lemma shows that one doesn’t have to check all permutations to show
λ4µ.

4.3. Lemma. Let λ, µ ∈ Λ with λ4µ. Then π = wµw
−1
λ is a defining permuta-

tion.

Proof. First note that π is the permutation with ki(λ) = kπ(i)(µ) for all i (with
ki as in section 2). Fixing π like that certainly defines a new order relation 4′
which is coarser than 4. To show that these relations coincide it suffices to show
λ4′cI(λ) for all I.

For this we may assume that I is maximal among all J with µ := cI(λ) = cJ(λ).
This means that

λi 6= λi1 for i = 1, . . . , i1 − 1;
λi 6= λi2 for i = i1 + 1, . . . , i2 − 1;
etc.
λi 6= λir for i = ir−1 + 1, . . . , ir − 1;
λi 6= λi1 + 1 for i = ir + 1, . . . , n.

In this case one verifies easily

kij (µ) = kij+1(λ) j = 1, . . . , r − 1; kir (µ) = ki1(λ)

and ki(µ) = ki(λ) otherwise, i.e., wµw−1
λ = πI . �

Definition. A subset S ⊆ Λ is called closed if λ ∈ S and λ4µ implies µ ∈ S. If
that is the case let IS ⊆ P be the ideal of functions f which vanish in all λ with
λ ∈ Λ \ S.

4.4. Theorem. Let S ⊆ Λ be a closed subset. Then Ξi(IS) ⊆ IS for all i =
1, . . . , n.

Proof. Let µ ∈ Λ\S and f ∈ IS . We have to show that Ξif(µ) = 0. The definition
of Ξi shows that Ξif(µ) is a linear combination of f(µ) and terms of the form

y := σi . . . σn−1∆σ1 . . . σi−1f(µ)
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where each operator σj is either si or 1. This shows that y = f(λ) with µ = cI(λ)
for some I and λ ∈ Λ. Since S is closed we have λ ∈ Λ \ S and therefore, y = 0.�

Now we show the extra vanishing theorem:

4.5. Theorem. Let λ, µ ∈ Λ with λ 64µ. Then Eλ(µ) = 0.

Proof. Consider the closed subset S = {ν ∈ Λ | λ4ν}. We have to show Eλ ∈ IS .
For generic q and t there is a function f ∈ IS with f(λ) 6= 0. Indeed, take for
example

f(z) :=
∏
π∈W

 ∏
i<π(i)

ϕλi+1(λ
−1
i zπ(i))

∏
i≥π(i)

ϕλi(qλ
−1
i zπ(i))


where ϕk(z) := (z − 1)(z − q−1) . . . (z − q−k+1). Since IS is Ξi-stable there is
Eλ′ ∈ IS with Eλ′(λ) 6= 0. In particular, |λ′| ≤ |λ|. On the other hand, Eλ′(λ′) 6= 0
implies λ′ ∈ S, i.e. λ4λ′. Therefore, λ′ = λ (Lemma 4.1). �

4.6. Theorem. Let S ⊆ Λ be closed. Then IS = ⊕λ∈SkEλ.

Proof. By Theorem 4.4, we have IS = ⊕λ∈S′kEλ for some subset S′ ⊆ Λ. Let
λ ∈ S′. Then Eλ(λ) 6= 0 implies λ ∈ S, hence S′ ⊆ S. Conversely, let λ ∈ S and
µ ∈ Λ \ S. Then Eλ(µ) = 0 by the extra vanishing theorem. Hence Eλ ∈ IS and
λ ∈ S′. �

4.7. Corollary. Let EλEµ =
∑
ν c

ν
λµEν . Then cνλµ = 0 unless λ, µ4ν.

Proof. Let S be the set of ν ∈ Λ with λ4ν. Then by Theorem 4.5 and Theorem
4.6, the principal ideal PEλ is contained in ⊕ν∈SkEν . This shows λ4ν whenever
cνλµ 6= 0. The relation µ4ν follows by symmetry. �

The whole discussion has also a symmetric counterpart. As already mentioned,
on Λ+ the order relation 4 is just inclusion of diagrams. Then everything works
for this order relation. See [KS] for the precise statements.

5. The inversion formula and integrality results

We have seen that the Macdonald polynomials are obtained from the Eλ or Pλ
by taking the top homogeneous part. In this section we show how to invert this
process.

The Capelli polynomials Eλ and the Macdonald polynomials Eλ form two bases
of P . Define Ψ ∈ Endk P by Ψ(Eλ) = Eλ. Another way to describe Ψ is as follows:
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Let Pd be the set of polynomials of degree d which vanish in S(n, d − 1) and
let Pd the set of homogeneous polynomials of degree d. Then taking the top
degree term gives an isomorphism Ψ′ : Pd ∼→ Pd. Since Ψ′ maps Eλ to Eλ we see
Ψ′ = Ψ−1.

The next theorem tells us that Capelli and Macdonald polynomials are essen-
tially the same up to base change by Ψ.

5.1. Lemma. The following table gives for an operator A its intertwined operator
ΨAΨ−1.

A Hi ξ−1
i Φ := zn∆ zi

ΨAΨ−1 Hi Ξi Φ zi − Ξ−1
i

In particular, the operators zi − Ξ−1
i commute pairwise.

Proof. The endomorphism Ψ maps an eigenvectors of ξ−1
i to an eigenvector of

Ξi with the same eigenvalue. Thus we obtain Ψξ−1
i = ΞiΨ. For f ∈ Pd holds

Hif ∈ Pd and Ψ′(Hif) = HiΨ′(f). Hence, Hi commutes with Ψ.
We have Φ(Pd) ⊆ Pd+1 (Corollary 2.5) and therefore Ψ′(Φ(f)) = Φ(Ψ′(f)) for

all f ∈ Pd.
Next consider λ ∈ Λ with λn 6= 0 and λ∗ as in Lemma 2.1. Then qλn−1Φ(Eλ∗) =

Eλ and qλn−1Φ(Eλ∗) = Eλ ([Kn] Thm. 4.1). This implies ΨΦ = ΦΨ.
Finally, for zi observe first that Ξi is diagonalizable with non-zero eigenvalues.

Hence Ξ−1
i exists.

According to the definition of Ξi, we have

ziΞi − 1 = Hi . . .Hn−1ΦH1 . . .Hi−1.

Hence, by Corollary 3.3 and Theorem 3.6, the operator zi − Ξ−1
i = (ziΞi − 1)Ξ−1

i

maps Pd into Pd+1. Looking at the top homogeneous term we see Ψ′((zi −
Ξ−1
i )f) = ziΨ′(f). �

Remark. The discussion above shows that Macdonald polynomials and Capel-
li polynomials are just two different views of the same picture. Both have their
virtues: the main structure governing Macdonald polynomials is Cherednik’s scalar
product on P . By transport of structure via Ψ also the Capelli polynomials are
orthogonal with respect to a certain scalar product but unfortunately an explic-
it formula for it is not known. On the other hand, the scalar product has its
replacement in the vanishing conditions which turn out to be just as good.

Observe that Ξ−1
i is no difference operator anymore. Therefore, we introduce

the operator S := t−(n2)Ξ1 . . .Ξn which acts on Pd as scalar multiplication by
q−d. It intertwines with the operator S = ∆n which acts on Pd by q−d. Now
observe that Zi := (zi − Ξ−1

i )S is a difference operator which corresponds on the
homogeneous side to ziS = qSzi.
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Now we can state the inversion formula:

5.2. Theorem. a) The operators Z1, . . . , Zn commute pairwise.
b) Let f be homogeneous of degree d. Then Ψ(f) = q(

d
2)f(Z1, . . . , Zn) · 1 (where

1 ∈ P denotes the unity).

Proof. Since f is homogeneous of degree d, we obtain f = q(
d
2)f(ziS) · 1. Thus b)

follows by applying Ψ. �

This formula can be used to lift results for Macdonald polynomials to Capelli
polynomials. As an example, we investigate integrality properties.

For this we use a different normalization of Eλ. Recall, that the diagram of
λ ∈ Λ is the set of points (usually called boxes) s = (i, j) ∈ Z2 such that 1 ≤ i ≤ n
and 1 ≤ j ≤ λi. For each box s we define the arm-length a(s) and leg-length l(s)
as

a(s) ..= λi − j
l′(s) ..= #{k = 1, . . . , i− 1 | j ≤ λk + 1 ≤ λi}
l′′(s) ..= #{k = i+ 1, . . . , n | j ≤ λk ≤ λi}
l(s) ..= l′(s) + l′′(s)

If λ ∈ Λ+ is a partition then l′(s) = 0 and l′′(s) = l(s) is just the usual leg-length.
We define

Eλ :=
∏
s∈λ

(1− qa(s)+1tl(s)+1)Eλ.

Pλ :=
∏
s∈λ

(1− qa(s)tl(s)+1)Pλ.

With this normalization, we obtain:

5.3. Proposition. The coefficients of Eλ and Pλ are in Z[q, q−1, t, t−1].

Proof. The leading terms Eλ and Pλ have coefficients in Z[q, t] by Corollary 5.2
and Theorem 6.1 of [Kn]. The result follows from the fact that the operators Zi
are defined over Z[q, q−1, t, t−1]. �

This result can be improved. For m = 1, . . . , n we define the operators

Am := HmHm+1 . . .Hn−1Φ

Am := HmHm+1 . . .Hn−1Φ

Then we have the following recursion relation:

5.4. Theorem. Let λ ∈ Λ with m := l(λ) > 0. Put λ∗ := (λm − 1, λ1, . . . ,
λm−1, 0, . . . , 0). Then Eλ = qλm−1[Am − λmtmAm]Eλ∗ .
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Proof. Apply Ψ to both sides of the corresponding formula in [Kn] Theorem 5.1.�

5.5. Corollary. Let Eλ =
∑
µ eλµz

µ and Pλ =
∑
µ pλµmµ. Then

eλµ, pλµ ∈ t−(n−1)(|λ|−|µ|)Z[q, t].

Proof. The operators Hi and Hi are defined over Z[t]. Since Φ = (zn − t−n+1)∆,
the recursion formula implies eλµ ∈ t−kZ[q, q−1, t] with k = (n− 1)(|λ| − |µ|). To
show that no negative powers of q appear observe that z1Ξ1 − 1 = H1 . . .Hn−1Φ.
Therefore,

qλm−1Φ(Eλ∗) = qλm−1H−1
n−1 . . .H

−1
1 (z1(λ

∗
1)−1 − 1)Eλ∗ .

The claim follows from λ
∗
1 = qλm−1t−k for some k ∈ N.

The assertion for Pλ follows by symmetrization as in the proof of [Kn] Theo-
rem 6.1. �

Remark. The assertion of the last theorem is equivalent to

t(n−1)|λ|Eλ(t1−nz1, . . . , t
1−nzn) ∈ Z[q, t, zi].

6. The classical limit

Let α be a formal parameter. If one puts q = tα and lets t go to 1 then (1−t)−|λ|Pλ
converges to the Jack polynomial J(α)

λ (z). In this final section, I will discuss the
analogue for our non-homogeneous Macdonald polynomials. For this it is a bit
more convenient to set t = qr and let q tend to 1. Then α and r are related by
α = 1/r.

We introduce the following notation: Let p(q, t) ∈ Q(q, t), p0 ∈ Q and k ∈ N.

Then we write p
k,r−→ p0 if lim

q→1
p(q,qr)
(q−1)k = p0. For example, qatb − 1

1,r−→ a + br. (In

purely algebraic terms, lim
q→1

p(q, qr) means: write p(q, t) in terms of x := q− 1 and

r := t−1
q−1 and put x = 0.)

As q → 1, the points λ all collapse to 1. Therefore, we introduce the function
ϕq(x) := x−1

q−1 and the affine transformation ϕq(z) := (ϕq(z1), . . . , ϕq(zn)). Set

%̃ := (0,−r, . . . − (n − 1)r). Then we have ϕq(λ)
0,r−→ λ̃ where λ̃ := λ + wλ%.

Conversely, we can write λ = qλ̃.
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The action of ϕq on P is given by ϕqf(z) = f(ϕ−1
q (z)). We extend our notation

as follows: if X(q, t) and X(r) are operators on P then we write X(q, t)
k,r−→X(r)

if for all f ∈ P

lim
q→1

(q − 1)−kϕqX(q, qr)ϕ−1
q f = X(r)f.

For example, if X(q, t) is the multiplication operator by g(z; q, t) then

ϕqX(q, qr)ϕ−1
q is multiplication by ϕqg = g ◦ ϕ−1

q . In this way, g
k,r−→ g0 has

to be understood. Since ϕ−1
q (x) = (q − 1)x + 1 we obtain, for example, zi

0,r−→ 1

while zi − 1
1,r−→ zi.

Define the operators ∆̃f(z) := f(zn−1, z1, . . . , zn−1) and Φ̃ := (zn+(n−1)r)∆̃.

6.1. Lemma. We have ∆
0,r−→ ∆̃ and Φ

1,r−→ Φ̃.

Proof. We have ϕq∆ϕ−1
q f(z) = f(ψ(zn), z1, . . . , zn−1) where ψ(z) = zn/q −

1/q
0,r−→ zn − 1. Moreover, zn(ϕ−1

q (z))− t−n+1 = (q − 1)zn + (1− t−n+1)
1,r−→ zn +

(n− 1)r. �

6.2. Theorem. For every λ ∈ Λ there is a unique polynomial Ẽλ = of degree |λ|
and zλ-coefficient equal to 1 which vanishes at all µ̃ with |µ| ≤ |λ| and µ 6= λ.

Moreover, Eλ
|λ|,r−→ Ẽλ.

Proof. Repeat the proof of Theorem 2.2 with respect to vanishing at ϕq(λ). Then
one sees, by induction, that the limit q → 1 exists. �

In the limit q → 1, the symmetric version has been already treated in [KS]. As
above we obtain

6.3. Theorem. For every λ ∈ Λ+ there is a unique polynomial P̃λ of degree |λ|
which vanishes at all µ̃ = µ+% where µ ∈ Λ+ with |µ| ≤ |λ| and µ 6= λ. Moreover,

Pλ
|λ|,r−→ P̃λ.

Next we study the limit of the Hecke operators. Let σi := si − rNi.

6.4. Lemma. We have Hi,Hi
0,r−→σi and Hi −Hi

1,r−→ r.
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Proof. First observe that si commutes with ϕq. Moreover,

(1− t) zi+1
zi − zi+1

ϕ−1
q =

1− t
q − 1

(q − 1)zi+1 + 1
zi − zi+1

0,r−→ −r
zi − zi+1

.

This implies the claim for Hi. For Hi, use Hi = Hi + t− 1. �

The braid relations for the Hi imply them for the σi. Moreover, from HiHi = t
we deduce σ2

i = 1. Hence we obtain

6.5. Corollary. The mapping si 7→ σi extends uniquely to an action of W on P.

Remark. It is not difficult to see that the standard action of W and the one
defined above are conjugated by an element U ∈ EndPW P ∼= Mn!(PW ). It would
be interesting to find such a U explicitly. Note however that U is not uniquely
determined.

Observe that the commutation relations zi+1Hi = Hizi can we rewritten as
(zi+1 − 1)Hi = Hi(zi − 1)− (Hi −Hi) which implies

zi+1σi = σizi − r; zjσi = σizj , j 6= i, i+ 1.

Therefore, the σi and zj generate a graded Hecke algebra.
We now consider the limit of the Cherednik operators. Let

Ξ̃i := zi − σi . . . σn−1Φ̃σ1 . . . σi−1.

Then we have

6.6. Theorem. For i = 1, . . . , n holds Ξi − 1
1,r−→−Ξ̃i. Moreover, Ξ̃iẼλ = λ̃iẼλ

for all λ ∈ Λ. In particular, the Ξ̃i commute pairwise.

Proof. Follows from z−1
i − 1

1,r−→−zi, Hi
0,r−→σi, Φ

1,r−→ Φ̃, and λ
−1 − 1

1,r−→−λ̃. �

6.7. Corollary. The top homogeneous part of P̃λ and Ẽλ is a Jack polynomial
and Opdam’s non-symmetric analogue [Op], respectively.

The extra vanishing theorem goes through verbatim:

6.8. Theorem. Let λ, µ ∈ Λ with λ 64µ. Then Ẽλ(µ̃) = 0.
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For the inversion formula we introduce

Z̃i := zi − Ξ̃i = σi . . . σn−1Φ̃σ1 . . . σi−1.

Furthermore, let Ψ̃ : P → P be the linear automorphism which maps the leading
term of Ẽλ to Ẽλ. Then we obtain

6.9. Theorem. We have Zi
1,r−→ Z̃i. Moreover, Z̃iΨ̃ = Ψ̃zi and the inversion

formula holds: Ψ(f) = f(Z̃1, . . . , Z̃n) · 1 for all f ∈ P.

Finally, as for integrality, we choose the following normalizing factors:

Ẽλ :=
∏
s∈λ

(
(a(s) + 1) + (l(s) + 1)r

)
Ẽλ.

P̃λ :=
∏
s∈λ

(
a(s) + (l(s) + 1)r

)
P̃λ

With this normalization, we obtain:

6.10. Theorem. We have Eλ
2|λ|,r−→ (−1)|λ|Ẽλ and Pλ

2|λ|,r−→ (−1)|λ|P̃λ. Moreover,
the coefficients of Eλ and Pλ are in Z[r].
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