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For a fixed Turaev shadow Jones-Vassiliev invariants
depend polynomially on the gleams

Urs Burri

Abstract. We use Turaev’s technique of shadows and gleams to parametrize the set of all knots
in S3 with the same Hopf projection. We show that the Vassiliev invariants arising from the
Jones polynomial Jt(K) are polynomials in the gleams, i.e., for n ≥ 2, the n-th order Vassiliev
invariant un, defined by Jex(K) =

∑∞
n=0 un(K)xn, is a polynomial of degree 2n in the gleams.
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Introduction

In Turaev’s seminal paper Shadow links and face models of statistical mechanics
[T] knots and links in S1-fibred 3-manifolds over oriented surfaces are present-
ed by their Turaev shadows and gleams. Using these ideas we give an explicit
parametrization K, see Section 1, of the set of all knots in the 3-sphere S3 which
project under the Hopf map onto a fixed Turaev shadow s on the two-sphere. Let
e be the number of double points of the Turaev shadow s. The map

K : Ze × Z −→ {K ⊂ S3 | K knot with generic Hopf projection s}

may also be viewed as a suitable parametrization of the lattice of admissible
gleams. In Theorem 3.3 we give an explicit formula for the second order Vas-
siliev invariant v2. The map v2 ◦ K : Ze × Z −→ Z is a polynomial of degree 4
given by

v2 ◦ K(x1, . . . , xe, xf )=
e∑
i=1

(
1
2

(αi+δixf )(x2
i −xi)−

1
6
xi(2x2

i −3xi+ 1) + µixi

)

+
∑

1≤i<j≤e
cijxixj +

1
24
xf (xf − 1)(xf + 1)(xf + 2) + v2(K(0, . . . , 0, 0))
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where the coefficients are easily computable from s. As a by-product we obtain a
formula for v2 for standard knot diagrams on R2. The maybe best known Vassiliev
invariants are related to the Jones polynomial Jt(K) ∈ Z[t, t−1] of a knot K by
expanding this Laurent polynomial, after the substitution t = ex, into the power
series

∑∞
n=0 un(K)xn. The main result of this paper is to give a constructive

proof that the n-th order Vassiliev invariant un is a polynomial of degree 2n in
the gleams.

Theorem 3.6. The function

un ◦ K : Ze × Z −→ Q

is a polynomial of degree 2n.

The first version of this paper was written in March ’95. In June ’95 two new
results were obtained. Goussarov [G] showed that n-th order Vassiliev invariants
are polynomials of degree ≤ 2n in the gleams. This proved a conjecture by O.
Viro in 1990 that Vassiliev invariants depend polynomially on the gleams. Inde-
pendently Shumakovitch [S] found a shadow formula for v2 with very interesting
coefficients.

1. The parametrization K

In this section we give an explicit parametrization K of the set of all knots in the
3-sphere S3 which project under the Hopf map onto a fixed Turaev shadow s on
the two-sphere. We identify S3 with the unit sphere in C2 and the Hopf fibration
is induced by the intersection with complex lines through the center. We denote
the Hopf map by H. First we have to fix some additional data. Let s be the image
of a generic immersion from S1 to S2, the fixed Turaev shadow. Generic means
that the curve s has no triple points and no selftangency points. The closure
of a connected component of the complement of the curve s is called region. The
number of double points e and the number of regions r of the curve s are related by
r = e+ 2. After having fixed a region and an interior point, say∞, of this region,
we identify S2 with R2∪{∞}. We fix a disc D ⊂ R2 which contains s. In the solid
torus H−1(D) we fix a normal cylinder N , homeomorphic to D × [0, π] and such
that the Hopf fibres either do not intersect this cylinder or intersect N in vertical
segments d × [0, π], d ∈ D. Knots in N which project onto s can be presented
by standard knot diagrams with the usual over and under crossing information.
For technical reasons we also fix an extra point Pf on s which is incident to the
unbounded region and orient s in such a way that the unbounded region lies on
the right hand side when we pass through Pf . In Figure 1, on the left hand side,
we see a piece of a knot, passing through H−1(small disc) and intersecting the
oriented Hopf fibre over P . The processes of positive and negative fibre fusions,
respectively, are indicated in the same figure.
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The point P we marked on s is also called blowing-up point. Given n ∈ Z, to
perform n fibre fusions in a blowing-up point P means to choose |n| different
points on s, very close to P , and to make for each of these points a positive or
negative fibre fusion if n is positive or negative, respectively. Now we can define
the map

K : Ze × Z −→ {K ⊂ S3 | K knot with generic Hopf projection s} .

Let K(0, . . . , 0, 0) be the knot in N with negative crossings only. Now take this
knot and perform the fibre fusions shown in Figure 2 near each double point Pi,
i ∈ {1, . . . , e} and in Pf to obtain the knot K(x1, . . . , xe, xf ).

P
i

P
f

– fibre fusionsx
i

x
f
fibre fusions

xi fibre
fusions

Figure 2

Note that this knot is well defined only up to vertical isotopy, i.e., isotopy where
each point of the knot moves along the fibre. We will see in the next section that,
up to vertical isotopy, the map K is surjective. This could also be shown directly
using the vertical isotopies indicated in Figure 3.

Example. In Figure 4 we see the trivial curve s with no double point and the
knot K(3) which projects under the Hopf map onto s. The sequence of knots
xf 7−→ K(xf ) will be very important later. For xf ∈ {−2,−1, 0, 1} we obtain the
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trivial knot, and for xf ≥ 2, K(xf ) is the torus knot T (xf , xf +1) which is isotopic
to K(−1− xf ).

The map K has several important properties. The knots K(. . . , xi+ 1, . . . , xf )
and K(. . . , xi, . . . , xf ) differ by a positive crossing change. After the vertical
isotopy indicated in Figure 5 it is sufficient to consider what happens inside Ti :=
H−1(Di). We see that the loop can be moved back to the normal cylinder by a
vertical isotopy.
This also shows that if xi ∈ {0, 1} for all i ∈ {1, . . . , e}, then, after a vertical iso-
topy, K(x1, . . . , xe, 0) lies in N and K(x1, . . . , xe, xf ) = K(x1, . . . , xe, 0) # K(xf ).
For the sake of simplicity, we denote by K(. . . , xi + 1

2 , . . . , xf ) the singular knot
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with positive and negative resolutionK(. . . , xi+1, . . . , xf ) and K(. . . , xi, . . . , xf ),
respectively.

2. Turaev’s construction

We shall only describe Turaev’s construction for the special case of links in S3

which project under the Hopf mapH to S2. For generalizations and details we refer
to [T]. We consider a link L ⊂ S3 which generically projects underH to S2. We can
vertically isotop this link to L′ such that any two pre-images of any double point
lie opposite in the Hopf fibre. Let q : S3 −→ RP3 be the canonical two-sheeted
covering and let h′ be the circle bundle induced by the commutative diagram
H = h′ ◦ q. The graph q(L′) is mapped bijectively onto H(L) by h′. The inverse
bijection r : H(L) −→ q(L′) is a section of h′ over H(L). The restriction of h′ to
a region X is a trivial bundle. We identify it with the projection S1 ×X −→ X .
Denote by αX the degree of the composition of r|∂X : ∂X −→ S1 ×X with the
projection S1 × X −→ S1. This is the obstruction to extend r|∂X over X . Let
βX be the number of corners (counted with multiplicities) of the region X . The
gleam of X is defined to be βX−αX

2 . It is an integer, independent of the choice
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of L′ and the trivialisation of h′. The total gleam is defined by the sum of the
gleams over all regions, minus twice the number of double points. Each double
point contributes to 4 corners, so the total gleam equals −1

2
∑
X αX . The sum of

the obstructions αX can be identified with χ(h′) = 2χ(H) = −2, where χ(ξ) is the
Euler number of the two dimensional real vector bundle associated to the oriented
circle bundle ξ. The Turaev shadow H(L) together with its (integer) gleams is
called the shadow of L and denoted by S(L), its total gleam equals one. We call
two shadows equivalent if they can be transformed to each other by a finite number
of shadow moves, see Figure 6. The local gleams x, y, z, . . . are arbitrary integers,
but 0, 1 and 2 play a distinguished role.
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z t
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1z–1 x+y–1 t–1

x
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z2

2
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v
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t
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Figure 6

Theorem 2.1 (Turaev [T]). Two generic links L1, L2 ⊂ S3 are ambient isotopic
if and only if their shadows S(L1), S(L2) are equivalent. The map L 7−→ S(L)
induces a bijective correspondence between the set of isotopy types of links in S3

and equivalence classes of shadows.

Note that there also exists an oriented version for this theorem, where the
links and the corresponding Turaev shadows are oriented. The orientation of
the fixed Turaev shadow s was chosen only for technical reasons. The proof of
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this theorem shows that the set of links, which has as Hopf projection the same
fixed generic collection of loops, is parametrized by the gleams. For the gleams
there is only one restriction, the total gleam has to be equal to one. For the
case of knots with Turaev shadow s, this lattice of admissible gleams is given by
{(g1, . . . , gr) ∈ Zr |

∑r
j=1 gj − 2e = 1}.

Theorem 2.2. The map

K : Ze × Z −→ {K ⊂ S3 | K knot with generic Hopf projection s}

described above is surjective up to vertical isotopy.

Before we prove this theorem, let us study the gleams of K(x1, . . . , xe, xf ).
The local gleams of K(0, . . . , 0, 0) are given by the following rule:

11

0

0

Figure 7

To obtain the gleam of a region we have to sum up these local gleams and we have
to add one to the gleam of the unbounded region. Firstly we may assume that the
normal cylinder N is exactly half of H−1(D) and secondly that for a knot in N
the lower branch near a crossing point lies in the meridional disc D×{0} and the
upper branch in D × {π}. Then everything follows directly from the definition of
the gleams. The local gleams of fibre fusions are shown on the left hand side of
Figure 8. On the right hand side, we see the local gleams of the fibre fusions near
the double point Pi.

pos. fibre fusions

neg. f. f.

+xi

+xi

–x
i

–x
i

–1

–1

+1

+1

Figure 8

Proof of Theorem 2.2. We observe that we can realize all admissible gleams of s
using the following trick:
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�

Moreover, for a fixed Turaev shadow s, the gleam of a knot of a region mi-
nus the gleam of K(0, . . . , 0, 0) of the same region is a Z-linear combination of
x1, . . . , xe, xf . The transition matrix depends on s and on the choices of ∞ and
Pf . This shows that a knot invariant I is a polynomial of degree m in the gleams
if and only if I ◦ K is a polynomial of degree m.

3. The main results

In this section we examine how knot invariants depend on the gleams. Given
a G-valued knot invariant I, where G is an abelian group, what does the map
I ◦ K : Ze × Z −→ G look like?

As we will also deal with derivatives, i.e., finite differences, of functions defined
on the lattice Ze × Z, we introduce the notation ∆xj (I ◦ K)(. . . , xj , . . . ) for the
difference (I ◦ K)(. . . , xj + 1, . . . )− (I ◦ K)(. . . , xj , . . . ).

We shall use the following result:

Theorem 3.1 (Birman, Lin [B-L]). Let K be a knot and let Jt(K) be its one-
variable Jones polynomial. Let Ux(K) be obtained from Jt(K) by replacing the
variable t by ex. Using the power series expansion of ex to express Ux(K) as a
power series in x:

Ux(K) =
∞∑
n=0

un(K)xn .

Then u0(K) = 1 and un(K), n ≥ 1 is a Vassiliev invariant of order n.

Example. We consider again the sequence of knots xf 7→ K(xf ). We try to
examine how Jones–Vassiliev invariants depend on xf . We use the fact that the
one-variable Jones polynomial Jt of the torus knot T (p, p+ 1), p ≥ 2, is given by
the following formula of Jones [J]

Jt(T (p, p+ 1)) =
tp(p−1)/2(1− tp+1 − tp+2 + t2p+1)

1− t2 .
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We calculate:

Jt(T (p, p+ 1)) = tp(p−1)/2(tp +
p−1∑
k=0

(tk − t2k+1)) ,

and get, for p ≥ 2, Ux(T (p, p+ 1)) =
∑∞
n=0 un(p)xn, where

un(p) =
n∑
j=0

(p(p− 1))n−j

2n−jj!(n− j)!

(
p∑

k=0

kj −
p−1∑
k=0

(2k + 1)j
)
.

The function un is a polynomial of degree 2n in p for p ≥ 2. Extended to a
polynomial defined on Z, un has the symmetry un(p) = un(−1 − p), i.e., un ◦ K
is a polynomial in xf of degree 2n. As expected, we have u1(p) = 0. For u2 we
get the nice expression u2(p) = −1

8p(p− 1)(p+ 2)(p+ 1), and hence: u2(K(xf )) =
−1

8xf (xf − 1)(xf + 1)(xf + 2).

Theorem 3.2. Let vn be a G-valued Vassiliev invariant of order n. For each
choice of indices with 1 ≤ i1 < . . . < in ≤ e we have

∆xi1
∆xi2

. . .∆xin (vn ◦ K)(x1, x2, . . . , xe, xf ) = ci1i2...in ,

where ci1i2...in is the value of vn on an n-singular knot with the same chord di-
agram as the curve s, where only the chords corresponding to the double points
Pi1 , . . . , Pin are considered.

An example for n = 3 is shown in Figure 10:

Pi2

Pi1

t
–1( )Pi1

t
–1( )Pi2

t
–1( )Pi2

t
–1( )Pin

t
–1( )Pin

t
–1( )Pi1

t

Pin

Figure 10

Proof. Let 1 ≤ i1 < . . . < in ≤ e. The n-singular knots K(. . . , xi1 + 1
2 , . . . , xin +

1
2 , . . . , xf ) have the same chord diagram for all x1, . . . , xe, xf ∈ Z. The value of
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the n-th order Vassiliev invariant vn is constant on these singular knots. On the
other hand, using the Vassiliev skein relation, we get

vn(K(. . . , xi1 +
1
2
, . . . , xin +

1
2
, . . . , xf )) =

∑
(εi1 ,... ,εin)∈{0,1}n

(−1)n−(εi1+...+εin)vn(K(. . . , xi1 + εi1 , . . . , xin + εin , . . . , xf )) =

∆xi1
. . .∆xin (vn ◦ K)(x1, x2, . . . , xe, xf ) .

�

Example. It is well known that the first order Vassiliev invariant v1 is trivial. We
want to check how strong our techniques are. We apply Theorem 3.2. It follows
that for all i ∈ {1, . . . , e} we have ∆xi(v1 ◦ K)(x1, . . . , xe, xf ) = 0. Remember
that v1 of a 1-singular knot is zero, because the chord diagram has an isolated
chord. This shows that (v1 ◦ K)(x1, . . . , xe, xf ) is a function, let us say g, of xf
only. Now it is sufficient to find x1, . . . , xe ∈ {0, 1} such that K(x1, . . . , xe, 0) is
the trivial knot. Then

K(x1, . . . , xe, xf ) = (trivial knot) # K(xf ) ,

which implies that g(xf ) is determined by the values on the sequence K(xf ).

For the next theorem we need the following definition of µi, δi, αi, cij . Splicing
the curve s in Di as in Figure 11, we obtain two curves Ai and Bi and define
µi := −1

2 |Ai ∩ Bi|. This number is equal to the linking number of the two-
component link obtained by splicing K(0, . . . , 0, 1

2 , 0, . . . , 0, 0), see Figure 11:

Pi Pi

Di Di
Ai Bi

Figure 11

The integer δi is defined by δi := +1 if Pf ∈ Bi and δi := −1 if Pf ∈ Ai. The
coefficient αi is defined to be the difference of the two winding numbers ind(Bi, Pi)
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and ind(Ai, Pi). Let τ : S1 −→ S2 be a parametrization of s. For i 6= j, cij is
equal to zero or one according to Figure 12.

Let v2 denote the second-order Vassiliev invariant which can be identified with
the coefficient of z2 of the Alexander-Conway polynomial ∇K(z) ∈ Z[z]. We know
that v2 = −1

3u2.

Theorem 3.3. The function v2 ◦K : Ze ×Z −→ Z is a polynomial of degree four
given by:

(v2 ◦K)(x1, x2, . . . , xe, xf ) = −1
6

e∑
i=1

xi(2x2
i − 3xi + 1) +

1
2

e∑
i=1

(αi + δixf )(x2
i −xi)

+
∑

1≤i<j≤e
cijxixj +

e∑
i=1

µixi +
1
24
xf (xf − 1)(xf + 1)(xf + 2) + v2(K(0, . . . , 0, 0)).

We obtain a formula for v2 for standard knot diagrams on the plane. All knot
diagrams on R2 with knot projection s can be encoded using K. We put xf = 0
and xi = 0 or 1 if the i-th crossing is negative or positive, respectively.

Corollary 3.4. The following formula for v2 of standard knot diagrams holds
true:

v2(K(x1, x2, . . . , xe, 0)) =
∑

1≤i<j≤e
cijxixj +

e∑
i=1

µixi + v2(K(0, . . . , 0, 0)),

where the last term can be calculated using the same formula, by choosing x1, . . . ,
xe ∈ {0, 1} such that K(x1, x2, . . . , xe, 0) is trivial.

Corollary 3.5. The numbers cij, µi are related by

∑
1≤i<j≤e

cij +
e∑
i=1

µi = 0 .
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Proof of Corollary 3.5. The knot K(1, . . . , 1, 0) is the mirror image of
K(0, . . . , 0, 0), but v2 cannot distinguish them, i.e., v2(K(1, . . . , 1, 0)) =
v2(K(0, . . . , 0, 0)) and we are done. �

Proof of Theorem 3.3. We fix i ∈ {1, . . . , e} and study the function

xi 7→ v2(K(0, . . . , 0, xi, 0, . . . , 0, 0)) .

We calculate
xi 7→ ∆xiv2(K(0, . . . , 0, xi, 0, . . . , 0, 0)) =

v2(K(0, . . . , 0, xi + 1, 0, . . . , 0, 0))− v2(K(0, . . . , 0, xi, 0, . . . , 0, 0)) .

This difference is equal to the linking number of the two-component link obtained
by splicing the singular knot K(0, . . . , 0, xi + 1

2 , 0, . . . , 0, 0) at the singular point.
Since the linking number of a link is the sum of any set of crossing indices whose
switchings unlink it, we can calculate this linking number explicitly. It consists of
three terms. First we observe that inside Ti := H−1(Di) we have the linked fibres
from the xi positive and negative fibre fusions we made near Pi. The first term of
the linking number calculates the linking of these fibres, the second one measures
how the curves Ai and Bi wind around Ti and the third one does not depend on
xi. We obtain

−x2
i + αixi + µi ,

see Figure 13:

T
i

A
i B

i

D
i

D

Figure 13
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Now we determine ∆xiv2(K(x1, . . . , xi, . . . , xe, 0)). The quadratic term −x2
i re-

mains unchanged, because this contribution to the linking is determined by what
happens inside the solid torus Ti. The astonishing thing is that the linear term
αixi as well remains unchanged. We give two independent proofs of this fact.

The first proof: The fibres of the fibre fusions near a double point Pj , j 6= i,
are linked with the fibres in Ti. But there is no contribution to the linking which
grows linearly in xi, because one half of them is run through in the positive sense
and the other half in the negative sense.

The second proof: Here we use the fact that v2 is a Vassiliev invariant. Using
Theorem 3.2, we know that for j 6= i, 1 ≤ j ≤ e we have

∆xj∆xiv2(K(x1, . . . , xi, . . . , xe, 0)) = cij .

This means that the coefficient of the linear term does not depend on xj .
The above implies

∆xiv2(K(x1, . . . , xi, . . . , xe, 0)) = −x2
i + αixi + Fi(x1, . . . , x̂i, . . . , xe, 0) ,

where Fi(x1, . . . , x̂i, . . . , xe, 0) does not depend on xi. Now we let xf run as well.
The Hopf fibre over Pf is linked with the solid torus Ti, which implies

∆xiv2(K(x1, . . . , xi, . . . , xe, xf )) = −x2
i+(αi+δixf )xi+Fi(x1, . . . , x̂i, . . . , xe, xf ).

For j 6= i, 1 ≤ j ≤ e, the equation

∆xj∆xiv2(K(x1, . . . , xi, . . . , xe, xf )) = cij

implies that

Fi(x1, . . . , x̂i, . . . , xe, xf ) = ci1x1 + . . .+ ĉiixi + . . .+ ciexe + hi(xf ) ,

where hi depends on xf only. We integrate and get

xi 7→ v2(K(x1, . . . , xi, . . . , xe, xf )) = −1
6
xi(2x2

i − 3xi+ 1) +
1
2

(αi + δixf )(x2
i −xi)

+ci1x1xi + . . .+ ̂ciixixi + . . .+ ciexexi + hi(xf )xi +Gi(x1, . . . , x̂i, . . . , xe, xf ) ,

where Gi is the integration constant. But this result holds for every i ∈ {1, . . . , e}.
We obtain

(v2 ◦K)(x1, x2, . . . , xe, xf ) = −1
6

e∑
i=1

xi(2x2
i − 3xi + 1) +

1
2

e∑
i=1

(αi + δixf )(x2
i −xi)

+
∑

1≤i<j≤e
cijxixj +

e∑
i=1

hi(xf )xi + g(xf ) .
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It remains to determine hi and g. We have

v2(K(0, . . . , 0, xf)) = g(xf ) .

Furthermore we know that K(0, . . . , 0, xf ) = K(0, . . . , 0, 0)#K(xf ) and that v2 is
additive under connected sum, which implies that

g(xf ) = v2(K(0, . . . , 0, 0)) +
1
24
xf (xf − 1)(xf + 1)(xf + 2) .

From

K(0, . . . , 0, 1, 0, . . . , 0, xf ) = K(0, . . . , 0, 1, 0, . . . , 0, 0)#K(xf ) ,

and
v2(K(0, . . . , 0, 1, 0, . . . , 0, xf )) = hi(xf ) + g(xf ) ,

we find

hi(xf ) = v2(K(0, . . . , 0, 1, 0, . . . , 0, 0))− v2(K(0, . . . , 0, 0)) = µi .

�

Theorem 3.6. Let us define un as in Theorem 3.1. The function

un ◦ K : Ze × Z −→ Q

is a polynomial of degree 2n.

Proof. The proof is by induction. We need the following result:

Proposition 3.7 (Birman, Lin [B-L]). Let K+, K−, K∞ be knots which are
defined by immersions which agree everywhere except near a single crossing. Let
λ be the linking number of the 2-component link K0. Then for every n ≥ 2 the
following formula holds:

un(K+)− un(K−) = un−1(K−)− un−1(K∞) +
1 + (3λ)n − (3λ+ 1)n

n!

+
n−2∑
j=2

uj(K−) + uj(K∞)[(3λ)n−j − (3λ+ 1)n−j ]
(n− j)! .
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K+ K– K0 K¥

Figure 14

First we translate this formula into our language. The four immersions K+,
K−, K0, K∞, which agree everywhere near a single crossing, are shown in Fig-
ure 14.
Let us consider the singular knot K := K(x1, . . . , xi+ 1

2 , . . . , xe, xf ). It is easy to
see that K+ = K(x1, . . . , xi + 1, . . . , xe, xf ) and K−= K(x1, . . . , xi, . . . , xe, xf ).
We already encountered K0 in the proof of Theorem 3.3. It follows that λ =
∆xiv2(K(x1, . . . , xi, . . . , xe, xf )) =

−x2
i + (αi + δixf )xi + ci1x1 + . . .+ ĉiixi + . . .+ ciexe + µi .

For K∞ the situation is somewhat more difficult, but with the help of the map
K we will be able to describe K∞. We define Ksi as before but, instead of the
curve s, we now use the curve si obtained from the curve s by making an∞-splice
at the double point Pi. The double points P1, . . . , P̂i, . . . , Pe of si have the same
names as those of s. The orientation is chosen in such a way that s and si run
through Pf in the same sense. There are two possibilities for the orientations of
the branches in Di, see Figure 15:

Di
Di Di

or

Figure 15

We shade two of the four local regions at any double point as shown in Figure 16
and compare these shadings of s and si in the example shown in Figure 17.
For j ∈ {1, . . . , e} \ {i}, we define xj as xj if the two shadings in Pj coincide and
as 1− xj , if they are opposite. A good approximation for K∞ is given by

Ksi(x1, . . . , x̂i, . . . , xe, xf ) ,
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but the effect of the fibre fusions indicated in Figure 18 has not yet been taken
into account.
We can do ±2xi more fibre fusions in Pf and move them towards Di using the
trick in Figure 9. We give an example for the same curve as before. In Figure 19
we indicate that we have to take the following entries for Ks1 to get K∞:

K∞ = Ks1(x̂1, x2, 1− x3 + x1, 1− x4 + x1, xf + 2x1) .

With this choice, the gleams of corresponding regions on the left and right hand
side coincide, see Figure 19.
Now we are ready to prove the theorem for n = 3. For i ∈ {1, . . . , e} we have

∆xiu3(K(x1, . . . , xe, xf )) = u2(K(x1, . . . , xe, xf ))−u2(K∞)+
1 + (3λ)3 − (3λ+ 1)3

3!
.
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So ∆xi(u3 ◦K) is a polynomial of degree ≤ 4 in x1, . . . , xf . We conclude that, up
to an integration constant Gi(x1, . . . , x̂i, . . . , xe, xf ), the map xi 7−→ (u3 ◦ K) is
a polynomial of degree ≤ 5 in x1, . . . , xf . But this is true for all i ∈ {1, . . . , e},
which implies that u3 ◦ K is a polynomial of degree ≤ 5 in x1, . . . , xf plus a
function, let us say g(3), which depends on xf only. We choose x1, . . . , xe ∈ {0, 1}
such that the knot K(x1, . . . , xe, 0) is trivial. For this choice of x1, . . . , xe we get:
(u3 ◦ K)(x1, . . . , xe, xf ) = u3(K(xf )) = a polynomial of degree ≤ 5 in xf plus
g(3)(xf ). This implies that g(3) is a polynomial of degree 6 in xf , because we have
shown in the first example of this section, that u3(K(xf )) is a polynomial of degree
6 in xf .

Let us suppose now that for all m ≤ n the map um◦K is a polynomial of degree
2m. We want to show that un+1 ◦K is a polynomial of degree 2(n+ 1). Using the
induction hypothesis and the result in Proposition 3.7 we see at once that for all
i ∈ {1, . . . , e} the map ∆xi(un+1◦K) is a polynomial of degree ≤ 2n in x1, . . . , xf .
This implies that un+1 ◦ K is a polynomial of degree ≤ 2n+ 1 in x1, . . . , xf plus
a function, let us say g(n+1), which depends on xf only. We conclude, as above,
that g(n+1) is a polynomial of degree 2(n+ 1) in xf , which proves the theorem.�
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