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Abstract. Let Γ\X be the Borel–Serre compactification of an arithmetic quotient Γ\X of a
symmetric space of noncompact type. We construct natural tilings Γ\X =

∐
P

Γ\XP (depending
on a parameter b) which generalize the Arthur–Langlands partition of Γ\X. This is applied to
yield a natural piecewise analytic deformation retraction of Γ\X onto a compact submanifold
with corners Γ\X0 ⊂ Γ\X. In fact, we prove that Γ\X0 is a realization (under a natural
piecewise analytic diffeomorphism) of Γ\X inside the interior Γ\X. For application to the theory
of harmonic maps and geometric rigidity, we prove this retraction and diffeomorphism have finite
energy except for a few low rank examples. We also use tilings to give an explicit description of
a cofinal family of neighborhoods of a face of Γ\X, and study the dependance of tilings on the
parameter b and the degeneration of tilings.
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0. Introduction

Let X = G/K be a symmetric space of noncompact type and let Γ ⊂ G be a
discrete arithmetic group of isometries. Suppose that Γ\X is noncompact. In order
to introduce the main subject of this paper, tilings of locally symmetric spaces,
we first consider the following problem: find an explicit deformation retract r′ :
Γ\X → Γ\X0 ⊂ Γ\X which has compact image. Equivalently, find a Γ-equivariant
retract r : X → X0 where X0 ⊆ X is Γ-invariant and compact modulo Γ.

One approach is given by Raghunathan [40] (see also Harder [27]), who con-
structs a smooth function h : Γ\X → R with compact sublevel sets and with no
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critical points outside a compact subset. A retraction is then obtained by flowing
backwards along the gradient field of h. Moreover, one can use h to compactify
Γ\X by attaching a smooth boundary corresponding to h = ∞. But for many
applications this is insufficient since h and the retract are neither very explicit nor
canonical.

To explain our approach, we recall the construction of the more natural com-
pactification of Borel and Serre [12] in which Γ\X is realized as the interior of a
real analytic manifold with corners Γ\X. To every parabolic Q-subgroup P ⊆ G
there is associated a free geodesic action of a torus AP ∼= (R>0)r on X and a
subgroup 0P ⊂ P whose orbits (called canonical cross-sections) are orthogonal
to the geodesic action. Thus there is a canonical decomposition X ∼= AP × e(P )
(depending only a choice of basepoint) where e(P ) is a homogeneous space for 0P .
Now the construction of X proceeds in three steps:

(1) Enlarge AP to AP ∼= (R>0 ∪ {∞})r—a model “corner”.
(2) Use AP and the above decomposition to induce a partial bordification as-

sociated to P , namely, X ∼= AP × e(P ) ⊆ AP × e(P ) ≡ X(P ).
(3) For P ⊆ R, there is a natural inclusion X(R) ⊆ X(P ) as an open submani-

fold with corners; let X be the union of the bordifications X(P ) associated
to all P .

In other words, X has been formed from X by (for each P ) going to {∞}r under
the geodesic action of AP and there attaching a copy of e(P ) as a codimension r
boundary face.

Thus the corners of X are a reflection of geometric structure that exists in the
interior, and we want a retract that extends to X and preserves this structure.
In particular, X0 should also be a manifold with corners whose boundary faces
∂PX0 lie in canonical cross-sections {bP } × e(P ). Here lies much of the difficulty
of our problem: a tubular neighborhood of e(P ) in X would easily allow one to
move e(P ) into the interior. But the natural tubular neighborhood (a,∞]r× e(P )
of e(P ) in X(P ) does not in general extend to a tubular neighborhood of e(P ) in
X. This is because in general the canonical functions on X ∼= AP × e(P ) induced
by the coordinates on AP (given by roots) do not agree with those for a smaller
parabolic.

Nonetheless such retractions exist. Their existence is equivalent to the existence
of certain decompositions X =

∐
P XP which we will call tilings and which will

be our primary object of study. These tilings are characterized by certain simple
properties and behave naturally under automorphisms of G. In this paper we will
first define the concept of a tiling axiomatically and prove that tilings exist; then
we will deduce the existence of the retractions.

The simplest example of a tiling is where X is the upper half plane and Γ =
SL(2,Z). Here XP is an open horocyclic neighborhood of the rational boundary
point which the maximal parabolic P fixes; these are all Γ-translates of each other.
The set XG = X0 is the complement of all these open horoballs; see Figure 1. The
situation in the general Q-rank 1 case is not very different.
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X0

Figure 1.
The tiling for the upper half plane, Γ = SL(2,Z)

In higher rank, however, the geometry of the tilings is more interesting; the
Q-rank 2 case is represented in Figure 2. The intersection of XP with each AP
fiber is an open acute cone defined by the roots of P—the strictly dominant cone;
the retraction maps XP onto ∂PX0 by collapsing these cones. On the other hand,
the intersection of X0 with each AP fiber is not contained in the negative of the
dominant cone, but rather the negative of the closed obtuse cone corresponding
to the dual basis (the codominant cone). This situation is forced upon us by the
requirements we have placed on r and illustrates the beginning of the difficulties
mentioned above.

If one restricts to the interior X and requires that the faces of X0 lie near
infinity, the existence of such tilings is not new. They occur in the theory of
the trace formula and were constructed by Arthur [1] in the adelic case follow-
ing Langlands [31]; a construction within the axiomatic framework considered by
Langlands (which includes the case of arithmetic groups) was given by Osborne
and Warner [39].

In this paper we begin (after some background material in §1) with an ax-
iomatic definition of tilings in §2 and deduce some basic properties. The actual
construction proceeds in three steps, occuring in §§3–5 respectively, which mirror
those in the construction of X:

(1) Construct a model tiling of AP ,
∐
R⊇P 〈AP 〉R. This is an extension of

Langlands’s geometric partition of AP .
(2) Shift this tiling of AP by a parameter bP ∈ AP and use the decomposition

X(P ) ∼= AP × e(P ) to induce a tiling X(P ) =
∐
R⊇P X(P )R ≡

∐
R⊇P bP ·

〈AP 〉R × e(P ). We call this the tiling associated to P .
(3) Intersect the tilings associated to all parabolics, that is, define XR ≡⋂

P⊆RX(P )R. If the parameters bP are sufficiently large and suitably
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(P = Q1 ∩Q3)

e(P ) e(Q1)
e(P ′)

(P ′ = Q1 ∩Q2)

XP

XQ1

XP ′

e(Q3) e(Q2)

XQ3 XQ2

X0

Figure 2.
The tiling in the Q-rank 2 case1

(The tiles been separated slightly to indicate the boundaries.)

Γ-invariant and compatible, this will be a Γ-invariant tiling of X.

Tilings have many applications other than for the trace formula—some requir-
ing the extension to X and some concerned with X0 collapsing into the interior.
Here are a few examples we will consider in this paper.

Finite energy retractions
We have already indicated that a tiling may be used to construct a deformation
retraction of Γ\X with compact image; this is done in §6. The explicit nature
of this map enables us to determine in §7 precisely when it has finite energy: for
irreducible Γ\X the retraction has finite energy except in a few low rank cases;
in fact, if we simply require a weaker condition of almost finite energy, the only
exception is when G = SL(2,R). Thus any map of Γ\X to a Riemannian manifold
N may be deformed to one that factors through the compact set Γ\X0 and thus
has finite energy (aside from the above exceptions).

As Borel has indicated, this result has important applications in the harmonic
map approach to geometric rigidity. The motivation is that when Γ\X is compact
andN has nonpositive curvature, a map Γ\X → N may be deformed to a harmonic
map. Then results proved by Corlette [17] (for real rank one) and independently
by Mok, Siu, Yeung [38] and Jost and Yau [29] (for higher rank) show that in
most cases such harmonic maps are actually totally geodesic embeddings. The
obstruction to carrying out such an argument when Γ\X is noncompact has been

1This depiction of a 2 dimensional slice accurately illustrates the corner angles within X of
the tiles. (The metric and hence the angles are not defined on X \ X.) The picture does not
represent the analytic structure correctly, however; in particular, the lower boundary of XQ1
does not, if naturally extended, meet e(Q2) and e(Q3) as one might think. For other depictions,
see Figures 3 and 4.
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the existence of a finite energy map which could then be deformed into a harmonic
map. In real rank one, Corlette uses the well-known structure of the cusps [19] to
show a finite energy retraction exists; our work handles the general case. (Indeed,
a recent preprint of Jost and Li [28] shows that even our condition of almost finite
energy is sufficient for the construction of a harmonic map.)

In the compact case, the above results together with the analogous nonar-
chimedean version due to Gromov and Schoen [25] yield a new proof of Margulis’s
theorem on arithmeticity of lattices; in the real rank one case it extends Margulis’s
work. Unfortunately, the present paper cannot be used for this purpose since we
already assume Γ is arithmetic and rely on the reduction theory for arithmetic
groups [9]. On the other hand, since by Margulis’s theorem [35] the only nonarith-
metic irreducible lattices occur in groups of real rank 1 and the cusps of such Γ\X
are understood by [19], our results hold true for arbitrary lattices. See also [37]
and [30] for other work on the application of harmonic maps to geometric rigidity,
as well as [7], [8], [16], and [18] where results on geometric rigidity are obtained
by other means.

Diffeomorphisms
Another application of tilings (and our initial motivation) is to construct a canon-
ical piecewise analytic diffeomorphism Γ\X → Γ\X0; this is done in §6 along with
the retraction. Thus Γ\X0 is actually a natural realization of the Borel–Serre com-
pactification within Γ\X . This diffeomorphism is the first step in our approach to
the conjecture of Rapoport [41] and Goresky and MacPherson [21] on the inter-
section cohomology of the reductive Borel–Serre compactification, which we will
discuss elsewhere.

Neighborhoods
The difficulty of finding natural neighborhoods of the closed boundary faces e(P )
of Γ\X was mentioned previously. We will see in §8 that tilings can be applied
to yield an explicit cofinal family of (Γ∩P )-invariant neighborhoods of e(P ) with
piecewise analytic boundaries. In the hermitian symmetric case these reduce to
the “adapted cores” of [43, §4] which played a crucial role in Saper and Stern’s
proof of Zucker’s conjecture.

Collapsing Γ\X
A particular tiling is determined by specifying how far the maximal faces of X0 lie
from the maximal faces of X; this is measured by a parameter b = (bQ)Q, where
bQ ∈ AQ and Q runs over maximal parabolic Q-subgroups. (Of course for the
tiling to be Γ-invariant, b must satisfy an appropriate Γ-invariance condition.) As
the bQ tend to ∞, the tiling degenerates by having Γ\X0 expand to fill up the
entire space. However, it is also of interest to study degenerations of tilings in the
opposite sense, when the boundary faces of Γ\X0 collapse inward. In Figure 1,
this means that the horocycles expand until they touch as pictured in Serre [45].
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As a start toward such a study, we consider in §9 the space of all parameters b
for which tilings exist. For such a parameter (with b not necessarily large) it is not
clear that the tiling is obtained as in step (3) of the construction above. Fortunately
this step is not used when working with tilings (at least not in the applications
above); instead one uses the existence of the tiling and the property that in certain
cylindrical sets, the tiling agrees with a tiling associated to a parabolic (as in
step (2)). We will show that this property holds for all tilings. We also give a
criterion for a parameter to admit a tiling; from this we find that the space of
such parameters is open and invariant under the action of the dominant cone in a
maximal Q-split torus.

Further degeneration is also conceivable, in which the boundary faces of Γ\X0
do not merely touch, but begin to flatten out against each other until Γ\X0 col-
lapes onto a lower dimensional subspace. We do not consider this in the current
paper, but it is reasonable to speculate that such a process would yield retrac-
tions generalizing those in the work of Ash [2] (the “well-rounded retract”, special
cases of which were constructed previously by Mendoza [36] and Soulé [46]) and
MacPherson and McConnell [34]. Such retractions have applications to the coho-
mology of arithmetic groups and the theory of exact fundamental domains. In this
connection, we note the recent paper of Ash and McConnell [3] in which the de-
formation retraction onto the well-rounded retract is extended to the Borel–Serre
compactification.

The present paper is set in the context of symmetric spaces and semisimple
groups. However all the results generalize without difficulty to the case of homo-
geneous spaces of type S −Q [12, §2.3]; we leave this to the reader.

We finally note that other interesting decompositions of X are possible. The
constructions of Harder [27, §1.2] may be used to construct a partition of X which
is different from the tilings considered here. This has been carried out by Grayson
[22], [23], who uses an approach to reduction theory via semistability (see [5]) and
finds an explicit and canonical partition and retraction. Grayson was also motivat-
ed by [26] and Stuhler [47], [48]. Also the recent paper of Leuzinger [33] constructs
an exhaustion of X by regions analogous to our X0 by geometric means.2

My indebtedness to the published work of many mathematicians is already
apparent from the above. I would like to express my deep thanks to Armand
Borel for his interest and encouragement of this work. I would also like to thank
Shing-Tung Yau who first asked me whether finite energy retractions with compact
image exist, and conjectured that they did for rank > 2. Also conversations with
Bill Casselman, Pat Eberlein, David Morrison, Jürgen Rohlfs, Rick Schoen, and
Joachim Schwermer were very helpful. Mark Goresky made several suggestions

2 In [33] the regions are denoted X(s), where s is a sufficiently large real parameter. They
correspond here to the central tiles X0 for a family of tilings whose parameters are t · b, where
b is fixed and t belongs to a strictly dominant 1-parameter subgroup of a maximal Q-split torus.
(See §6 where such regions are denoted X0,t.)
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for revisions to a very early version of this paper [42] which were greatly appreci-
ated. Finally I would like to thank Mark McConnell and especially the referee for
extremely valuable suggestions regarding the exposition and organization.

1. Background

In order to set notation, we briefly recall without proofs some standard facts
regarding algebraic groups over Q, the geodesic action, and the Borel–Serre com-
pactification.

Algebraic groups
Let G be the identity component of the real points of a semisimple algebraic group
defined over Q and let Γ ⊂ GQ be an arithmetic subgroup. Lie algebras will be
denoted by the corresponding lower case gothic letter, e.g., g. We denote by P
the set of parabolic Q-subgroups of G (including G itself) and by P1 the set of
maximal proper parabolic Q-subgroups. By a parabolic (resp. maximal parabolic)
we always mean an element of P (resp. P1). We will reserve the letter Q to
denote a maximal parabolic. If R, S ∈ P , we denote by R ∨ S the smallest
parabolic containing R ∪ S.

For a parabolic P , let NP be the unipotent radical of P and let AP be the
identity component of the maximal Q-split torus in the center of P/NP . The
parabolic rank of P (denoted P-rankP ) is dimAP . Conjugation by g ∈ GQ allows
us to canonically identify AP and AgP [12, §4.2]. (We denote conjugation as
gP = P g

−1
= gPg−1, for example.) Let 0P ⊆ P be the subgroup { p ∈ P |

|pχ| = 1 for all χ ∈MorQ(P,GL1) } as in [12, §1.1]; 0P contains NP as well as any
compact or arithmetic subgroup of P [12, §1.2]. We write ΓP ≡ Γ ∩ P ⊂ 0P .

Let ∆P denote the simple “roots” of the adjoint action of (a lift of) AP on
nP ; we view elements of ∆P both as characters of AP and as elements of a∗P . Let
∆̂P = {βα}α∈∆P

be the dual basis of a∗P relative to a Weyl group invariant inner
product. For a parabolic R ⊇ P , the group AR may be canonically identified with
a subgroup of AP [12, §3.11]; let ∆R

P ⊆ ∆P denote those roots restricting to 1 on
AR. The set ∆R

P is called the type of R (relative to P ). Then AR =
⋂
α∈∆R

P
Kerα

and we define ARP =
⋂
γ /∈∆R

P
Kerβγ . This yields an orthogonal decomposition

AP ∼= AR ×ARP ; (1.1)

we denote the corresponding decomposition of a ∈ AP by aRaR, and similarly for
elements of aP or a∗P . For Q a maximal parabolic it is convenient to denote by βQ
the unique element of ∆̂Q. Thus we have ∆̂R = {βQ}Q⊇R, while if P ⊆ R, the
dual basis to ∆R

P of aRP
∗ is ∆̂R

P = {βRQ}Q⊇P,Q6⊇R.
We omit the subscript P in all these notations when P is minimal, and similarly

we omit the superscript when it is G. Sometimes (particularly in §3) we use the
type of R as a subscript or superscript, instead of R itself.
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Let (S,∆) be any pair (ARP ,∆
R
P ). We call a ∈ S dominant (with respect to

∆) if aα ≥ 1 for all α ∈ ∆; a is codominant (with respect to ∆) if aβα ≥ 1 for
all α ∈ ∆. If these inequalities are strict for all α, we say a is strictly dominant
(resp. strictly codominant). The strictly dominant cone is denoted S(1) and in
general for b ∈ S, set S(b) = b ·S(1). We will also transfer this terminology to s or
(by using the inner product) to s∗. The dominant functionals in s∗ form a convex
cone generated by ∆̂, while the codominant functionals form the dual convex cone
generated by ∆.

Geodesic action
Let X = G/K be a Riemannian symmetric space of noncompact type, where
K ⊂ G is a maximal compact subgroup stabilizing a fixed basepoint x ∈ X . P
acts transitively on X , so z ∈ X may be expressed as z = px with p ∈ P . The
geodesic action of AP [12, §3.2] is defined by

ao z = paxx (a ∈ AP , z ∈ X),

where ax ∈ AP,x is the unique lift of a ∈ AP to P stable under the Cartan
involution associated to x [12, §§1.6, 1.8]. The geodesic action commutes with the
usual action of P [12, §3.2], and for P ⊆ R ∈ P , the geodesic action of AR is the
restriction of the geodesic action of AP [12, §3.11].

Let AP × 0P act on X by the product of the geodesic action and the usual
action for 0P . Then there is an analytic isomorphism

(aP , qP ) : X −̃→ AP × e(P ) (1.2)

of (AP × 0P )-homogeneous spaces [12, §3.8], where e(P ) = AP \X is the quotient
under the geodesic action. We normalize (1.2) such that aP (x) = 1, where x is our
fixed basepoint. In other words, X is a trivial principal AP -bundle with canonical
cross-sections given by orbits of 0P . We will often treat (1.2) as an identification
with the parabolic being clear from the context.

Borel–Serre compactification
The bordification X may now be defined by a three step procedure:

(1) The roots ∆P induce an isomorphism AP
∼→ (R>0)∆P by a 7→ (aα)α∈∆P

.
Thus we may naturally embed AP into a semigroup AP ∼= (R>0 ∪ {∞})∆P

[12, §4.4]; the inverses of the root coordinates on AP yield a real analytic
structure.

(2) A partial bordification X(P ) (the corner associated to P ) is obtained as
X(P ) ≡ AP×APX , or equivalently by extending (1.2) to (aP , qP ) : X(P ) ∼→
AP × e(P ) [12, §5.1]. We identify e(P ) with {∞}∆P × e(P ).

(3) For parabolics P ⊆ R, there is a natural inclusion of X(R) into X(P ) as
an open subset [12, §5.3]. One defines X ≡

⋃
P∈P X(P ) to have the unique
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structure of analytic manifold with corners so that each X(P ) is an open
submanifold with corners [12, §7.1]. Note that X may be decomposed as∐
P∈P e(P ), where e(G) = X .

The action of GQ on X extends to X [12, §7.6]. Γ acts properly on X and Γ\X
is compact [12, §9.3]; we denote the quotient map π : X → Γ\X.

We denote topological closure by cl(·), however in the case of cl(e(P )) ⊆ X , one
writes e(P ) to emphasize that this space may also be constructed analogously to X
by letting P take the role of G [12, §7.3(i)]. (One must work in the wider context
of homogeneous spaces of type S −Q [12, §2.3].) The association P 7→ e(P ) is an
inclusion preserving, GQ-equivariant bijection between P and the closed boundary
faces of X [12, §7.4].

2. Tilings of X

In this section we define the concept of tilings and prove some of their basic
properties. A construction of tilings will be given in §§3–5.

Definition 2.1. A tiling of X is a cover X =
∐
P∈P XP by disjoint sets (called

tiles), having the following properties:
(i) The central tile X0 ≡ XG is a closed, codimension 0 submanifold with

corners contained in X . Its closed boundary faces {∂PX0} may be indexed
by P ∈ P so that P 7→ ∂PX0 is an inclusion preserving bijection.

(ii) Each boundary face ∂PX0 lies in a canonical cross-section {bP } × e(P ).
(iii) Each tile XP is obtained from ∂PX0 by flowing out under the geodesic

action of the cone AP (1), that is, XP = AP (1) o∂PX0.
The tiling is called Γ-invariant if γ ·XP = XγP for all γ ∈ Γ and P ∈ P .

Remark. We similarly define the concept of a tiling of e(P ), X(P ), AP , etc. In
the first case, we restrict the indexing set to parabolics contained in P ; in the
latter two cases, we restrict the indexing set to parabolics containing P .

The following basic properties of a tiling are analogues of properties of the
decomposition X =

∐
P∈P e(P ) of [12].

Proposition 2.2. A tiling X =
∐
P∈P XP satisfies the following properties:

(i) Each tile XP is a codimension 0 submanifold with corners.
(ii) The closures of any two tiles are either disjoint or intersect in a common

closed boundary face. More precisely, for P , P ′ ∈ P,

cl(XP ) ∩ cl(XP ′) =

{
cl(AP∨P ′(1)) o ∂P∩P

′
X0 if P ∩ P ′ ∈ P,

∅ otherwise.
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If the tiling is Γ-invariant, then furthermore:
(iii) Γ\X0 is compact.
(iv) For all P ∈ P, the natural projection ΓP \ cl(XP ) = AP (1) o ΓP \∂PX0 →

π(cl(XP )) is a homeomorphism.

Proof. Part (i) follows easily from the definitions. For (ii) note that by Defi-
nition 2.1(iii), XP = AP (1) o ∂PX0, and thus after taking closure, cl(XP ) =
cl(AP (1)) o ∂PX0. However cl(AP (1)) =

∐
R⊇P AR(1). Furthermore, ∂PX0 ⊆

∂RX0 for R ⊇ P by Definition 2.1(i). Thus we may compute

cl(XP ) =
∐
R⊇P

AR(1) o ∂PX0 ⊆
∐
R⊇P

XR. (2.1)

Hence for P , P ′ ∈ P ,

cl(XP ) ∩ cl(XP ′) =
∐

R⊇P∪P ′
(AR(1) o∂PX0) ∩ (AR(1) o ∂P

′
X0)

=
∐

R⊇P∪P ′
AR(1) o(∂PX0 ∩ ∂P

′
X0).

By Definition 2.1(i), this last expression is empty unless P ∩P ′ ∈ P , in which case
it is equal to ∐

R⊇P∪P ′
AR(1) o ∂P∩P

′
X0 = cl(AP∨P ′(1)) o∂P∩P

′
X0.

This finishes the proof of (ii).
Now assume the tiling is Γ-invariant. Since Γ\X0 is a closed subset of the

compact space Γ\X, (iii) is clear. Finally for (iv), let x, y ∈ cl(XP ) and say
γx = y for γ ∈ Γ. Then cl(XP ) ∩ cl(XγP ) = cl(XP ) ∩ γ · cl(XP ) 6= ∅. By (ii),
P ∩ γP ∈ P which implies P = γP and thus γ ∈ ΓP . �

Definition 2.6. The parameter of a tiling is the collection b = (bQ)Q∈P1 from
Definition 2.1. The space of all parameters is denoted B ≡

∏
Q∈P1

AQ ∼= (R>0)P1 .

Remark. (1) Note that we only include bQ in b for Q maximal since the canonical
cross-section {bP} × e(P ) is determined as the intersection of the canonical cross-
sections {bQ} × e(Q) for Q ⊇ P . Also note that our assignment of parameters to
a tiling depends on our fixed basepoint.

(2) When dealing with families of tilings, it will be helpful to use the action of
the maximal torus A on B given by t · (bQ)Q∈P1 ≡ (tQ · bQ)Q∈P1 .

A tiling is uniquely determined by its parameter b ∈ B (for later use, we in
fact prove a more general result):
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Proposition 2.4. Let b ∈ B be a parameter and M ⊆ X an open subset. There is
at most one decomposition M =

∐
R∈PMR for which MR ⊆ X(R) is cl(AR(1))-

invariant and satisfies

MR = (AR(bR)× qR(MR)) ∩M. (2.2)

Proof. Clearly MP ∩ e(R) = ∅ unless P ⊆ R, in which case it equals qR(MP ).
Thus M ∩ e(R) =

∐
P∈PMP ∩ e(R) =

∐
P⊆R qR(MP ), and consequently

qR(MR) = (M ∩ e(R)) \
⋃
P(R

qR(MP ). (2.3)

Equations (2.2) and (2.3) determine MR directly for R minimal, and by recursion
on parabolic rank in general. �

Corollary 2.5. At most one tiling of X exists for a given parameter b ∈ B.

Proof. Apply the proposition withM = X andMR = XR; the required hypotheses
follow from Definition 2.1(ii)(iii). �

We now consider the naturality of tilings and their parameters under auto-
morphisms of G and in particular, how Γ-invariance of a tiling is reflected in its
parameter. Let φ : G → G be an automorphism defined over Q. Then φ acts on
X , viewed as the space of maximal compact subgroups of G. Define an action of
φ on B by

φ · (bQ)Q∈P1 = (c(φ,Q)φ(bQ))φ(Q)∈P1
,

where we set
c(φ, P ) = aφ(P )(φ · x).

(We have to be careful since φ may move the fixed basepoint x.) When φ is the
inner automorphism induced by an element g ∈ GQ, we simply write g · b and
c(g, P ).

Proposition 2.6. φ induces an automorphism of B. If {XR}R∈P is a tiling
(resp. Γ-invariant tiling) with parameter b, then {φ ·XR}φ(R)∈P is a tiling (resp.
φ(Γ)-invariant tiling) with parameter φ · b.

Proof. The action of φ transforms a canonical cross-section {a}× e(P ) to a canon-
ical cross-section {c(φ, P )φ(a)} × e(φ(P )). Now use the definition and Corol-
lary 2.5. �

Corollary 2.7. A tiling is Γ-invariant if and only if its parameter b satisfies

bγQ = c(γ,Q) · bQ (2.4)
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for all γ ∈ Γ and Q ∈ P1.

Let BΓ ⊂ B be the subspace of parameters satisfying (2.4); we call these the
Γ-invariant parameters. Such a parameter is determined by a choice of bQ for
each Γ-conjugacy class of maximal parabolic subgroups:

Proposition 2.8. Let R1(Γ) be a set of representatives of Γ-conjugacy classes
of maximal parabolics. The natural map BΓ →

∏
Q∈R1(Γ)AQ

∼= (R>0)R1(Γ) is a
bijection.

Proof. The map is clearly injective; we need to show it is surjective. Consider
(bQ)Q∈R1(Γ). For Q ∈ R1(Γ) and γ′ running over a set of representatives of
Γ/ΓQ, set bγ′Q = c(γ′, Q) · bQ. Note that if γ ∈ Γ is such that γQ = γ′Q, then

γ′−1
γ ∈ ΓQ ⊆ 0Q. Thus c(γ,Q) = c(γ′, Q) and so bγQ = c(γ,Q) · bQ as well. �

3. Construction of tilings, I: Tilings of AP

In this section and the following two we will demonstrate that tilings ofX with pa-
rameter b exist, provided b is sufficiently large and Γ-invariant. Our construction
has three parts, mirroring the three steps in the construction of the Borel–Serre
bordification X. In this first part we begin by recalling the tiling of AP (or equiv-
alently aP ) due to Langlands, and show it extends to an analytic tiling of AP
(Corollary 3.8); it is necessary and actually simpler to work in a more general
context.

Let (V,∆) be a pair consisting of a finite dimensional real vector space with
inner product (·, ·) and a basis ∆ for the dual inner product space V ∗. We assume
that

(α, α′) ≤ 0 (α 6= α′ ∈ ∆). (3.1)

For example, (a,∆) satisfies (3.1) since ∆ is the basis of the Q-root system of G.
More generally, we may consider (aRP ,∆

R
P ) for parabolics P ⊆ R:

Lemma 3.1 ([13, IV, 6.4)]. For I ⊆ ∆ the pairs (VI ,∆I) ≡ (
⋂
α∈I Kerα, {γI}γ/∈I)

and (V I ,∆I) ≡ (
⋂
γ /∈I Kerβγ , I) satisfy the hypothesis (3.1) of this section. The

respective dual bases are ∆̂I ≡ {βγ}γ/∈I and ∆̂I ≡ {βIα}α∈I.

Note that we are applying to V the notation introduced in (1.1) and following,
except that instead of using parabolics as subscripts and superscripts, we use
subsets of ∆ (the type). Thus we have an orthogonal decomposition

V = VI ⊕ V I (3.2)
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for any I ⊆ ∆.
We will often use the following facts regarding dominance and codominance

and their behavior under this decomposition:

Lemma 3.2. The dominant cone is contained within the codominant cone. The
various βα’s are mutually acute (or orthogonal). If λ ∈ V ∗ is (strictly) dominant
(resp. codominant) with respect to ∆, then λI ∈ V ∗I is (strictly) dominant (resp.
codominant) with respect to ∆I . If λ is (strictly) dominant with respect to ∆, then
λI ∈ V I∗ is (strictly) dominant with respect to ∆I .

Proof. The first assertion is [13, IV, §6.2] and the second follows from the first.
The rest is obvious except for the (strict) dominance assertion for λI , which follows
from [13, IV, §6.5(2)] (and the following remark). �

Remark 3.3. (i) It is not the case that λ ∈ V ∗ codominant implies that λI ∈ V I∗
is codominant with respect to ∆I . In fact, if γ /∈ I, then γI = −

∑
α∈I cαβ

I
α, where

cα = −(γ, α) ≥ 0. Thus γI is antidominant with respect to ∆I .
(ii) By the lemma, the notion of dominance or codominance for a functional

in V ∗I ⊆ V ∗ is the same with respect to ∆I or with respect to ∆. Likewise, a
functional in V I∗ is codominant with respect to ∆I if and only if it is codominant
with respect to ∆. Thus in these cases, we shall not mention the basis.

Define
〈V 〉∆ = { v ∈ V | βα(v) ≤ 0 for all βα ∈ ∆̂ };

the closed boundary faces of 〈V 〉∆ are

∂I〈V 〉∆ ≡ 〈V 〉∆ ∩ V I = { v ∈ V I | βIα(v) ≤ 0 for all βIα ∈ ∆̂I }

for I ⊆ ∆. Consider the set obtained by flowing out orthogonally from ∂I〈V 〉∆
via the cone VI(0):

〈V 〉I ≡ VI(0) + ∂I〈V 〉∆. (3.3)

In other words,

〈V 〉I = { v ∈ V | γI(v) > 0 for all γI ∈ ∆I , and βIα(v) ≤ 0 for all βα ∈ ∆̂I }.
(3.4)

At one extreme, 〈V 〉∅ is the open strictly dominant cone, while at the oth-
er, 〈V 〉∆ is the negative of the closed codominant cone. In general, by one of
Langlands’s “geometric lemmas”, the various 〈V 〉I ’s are disjoint and fill up V (see
Figure 3 for an example):

Lemma 3.4 ([32, Lemma 4.4], [13, IV, §6.11)]. V =
∐
I⊆∆〈V 〉I .
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α′

βα′

βα

α

〈V 〉{α}

〈V 〉{α,α′}

〈V 〉∅

〈V 〉{α′}

(a) ∆ and ∆̂ for B2 (b) V =
∐
I⊆∆〈V 〉I

(The tiles are separated slightly to
indicate the boundaries.)

Figure 3.
The tiling for the root system B2

It is clear that this is a tiling of V in the sense of Definition 2.1 (appropriately
modified).

Lemma 3.5. For K ⊆ ∆ the tiling for (VK ,∆K) is given by 〈VK〉IK = 〈V 〉I ∩VK
for IK ⊆ ∆K . Here I ⊇ K and IK is its projection (excluding 0) into ∆K .

For K ⊆ ∆ the tiling for (V K ,∆K) is given by 〈V K〉I = 〈V 〉KI for I ⊆ ∆K .
Here 〈V 〉KI is the image of 〈V 〉I under the orthogonal projection onto V K .

Proof. For I ⊇ K, the decomposition (3.2) of VK associated to IK ⊆ ∆K is VK =
VI ⊕ (V I ∩ VK). The lemma for VK follows by intersecting this with (3.3). Now
the decomposition of V K associated to I ⊆ ∆K is V K = (VI ∩ V K)⊕ V I . Again
the lemma follows from this and (3.3); it is only necessary to check that v 7→ vK

takes VI(0) onto (VI ∩ V K)(0) = { vK ∈ VI ∩ V K | γI(vK) > 0 for all γI ∈ ∆K
I }.

To check this, observe that γI(vK) = γI(v) for γI ∈ ∆K
I , so the image of VI(0) lies

in (VI ∩ V K)(0). Conversely, to show any vK ∈ (VI ∩ V K)(0) is in the image, we
need to find v = vK + vK ∈ VI(0); in other words, we need γI(vK) + γI(vK) > 0
for all γI ∈ ∆I \∆K

I . Such a vK ∈ VK can be found since ∆I \∆K
I restricts to a

basis of V ∗K . �

We now extend this tiling of V to one of a bordification V . There is an isomor-
phism V ∼= R∆ via the linear coordinates v 7→ (α(v))α∈∆. Define V ∼= (R∪{∞})∆

to be the semigroup obtained by allowing these coordinates independently to attain
∞. V is given an analytic structure by means of the coordinates v 7→ (e−α(v))α∈∆.
(With this definition, the diffeomorphism exp : aP → AP extends to an analytic
diffeomorphism exp : aP → AP .) For I ⊆ ∆, define V I similarly with respect to
the basis ∆I of V ∗I . Clearly there is an analytic embedding of semigroups V I ⊆ V ,
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〈V 〉{α}

〈V 〉{α,α′}

〈V 〉∅

〈V 〉{α′}

Figure 4.
V =

∐
I⊆∆〈V 〉I for the root system B2 (in analytic coordinates adjusted to be conformal at the

origin)

although the product decomposition (3.2) does not extend to V . It does however
extend to a certain subset V (I):

Lemma 3.6. There is an analytic decomposition

V (I) ≡ {v ∈ V | α(v) <∞ for all α ∈ I} ∼= V I ⊕ V I .

Proof. The main issue is to show that the projection v 7→ vI extends analytically to
the set in question; in other words, we need to show that v 7→ e−γI(v) for γI ∈ ∆I

is analytic on this set. Now note that for any codominant λ =
∑
cαα ∈ V ∗, there

is a continuous map e−λ : V → R. The function e−λ is analytic at v if α(v) <∞
for all α with cα > 0 and nonintegral. Thus by Remark 3.3(i), e−γI = e−γeγ

I

for
γ /∈ I is analytic where needed. �

We can thus define 〈V 〉I ⊆ V (I) by

〈V 〉I ≡ V I(0) + ∂I〈V 〉∆
= { v ∈ V | γI(v) > 0 for all γI ∈ ∆I , and βIα(v) ≤ 0 for all βIα ∈ ∆̂I }

(3.5)
similarly to (3.3) and (3.4); see Figure 4 for an example drawn using analytic
coordinates.

Proposition 3.7. V =
∐
I⊆∆〈V 〉I is an analytic tiling.
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Proof. For K ⊆ ∆, let e(K) = { v ∈ V | α(v) = ∞ for α /∈ K, and α(v) <
∞ for α ∈ K }. To show that the sets 〈V 〉I are disjoint and exhaust V it suffices
to show that e(K) =

∐
I⊆∆〈V 〉I ∩ e(K) for all K ⊆ ∆. But e(K) ∼→ V K under

the projection v 7→ vK , while 〈V 〉I ∩ e(K) ⊆ V (I) ∩ e(K) is empty unless I ⊆ K,
in which case it projects to 〈V 〉KI . Now apply Lemma 3.5. It is clear that the
conditions of Definition 2.1 are satisfied and the fact that 〈V 〉I is an analytic
submanifold follows from (3.5) and Lemma 3.6. �

In the case (V,∆) = (aP ,∆P ) we apply the analytic isomorphism exp : aP →
AP to obtain:

Corollary 3.8. AP =
∐
R⊇P 〈AP 〉R is an analytic tiling, where 〈AP 〉R ≡

exp(〈aP 〉∆R
P

).

4. Construction of tilings, II: Tilings associated to a parabolic P

Let b ∈ B be a parameter. In this second part of the construction we transfer the
tiling of AP to a tiling of X(P ) with parameter b. This is done by shifting the
tiling by bP and then using the decomposition X(P ) ∼= AP × e(P ).

Thus for R ∈ P with R ⊇ P we define

X(P )R = bP · 〈AP 〉R × e(P );

when R = G, we simply write X(P )0 for X(P )G. Let

∂RX(P )0 = bP · ∂R〈AP 〉0 × e(P ).

It is useful to describe these sets directly by inequalities. The last part of
equation (3.5) translates to

X(P )R = { z ∈ X(P ) | aP (z)γR > bγRP for all γR ∈ ∆R and

aP (z)β
R
Q ≤ bβ

R
Q

P for all βRQ ∈ ∆̂R
P }. (4.1)

Since a
βQ
P = a

βQ
Q for P ⊆ Q and the same holds true for the parameters, we

may rephrase this in terms of the distance functions (aβQQ )Q∈P1 to the maximal
boundary faces. In particular we have:

X(P )0 = { z ∈ X | aQ(z)βQ ≤ bβQQ for all Q ∈ P1 with Q ⊇ P }, (4.2)

∂RX(P )0 = { z ∈ X(P )0 | aQ(z)βQ = b
βQ
Q for all Q ∈ P1 with Q ⊇ R }. (4.3)
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Proposition 4.1. X(P ) =
∐
R⊇P X(P )R is an analytic tiling of X(P ) depending

analytically on the parameter b.

Definition. {X(P )R}R⊇P is called the tiling associated to P .

Proof. This follows from Corollary 3.8. For Definition 2.1(ii), one notes that

∂RX(P )0 = ∂RX(R)0 ∩X(P )0 ⊆ ∂RX(R)0 = {bR} × e(R)

(use (4.2) and (4.3) for the first equality). For Definition 2.1(iii) one must recall
that the left action of AR on AP corresponds under X(P ) ∼= AP × e(P ) with the
geodesic action of AR on X(P ). �

5. Construction of tilings, III: Tilings of X by refinement

In this final part of the construction we show that for sufficiently large Γ-invariant
parameters b the intersection of the tilings associated to all parabolics P ∈ P
yields a tiling of X. Thus for this section (and only for this section) we set

XR =
⋂
P⊆R

X(P )R (5.1)

and
∂RX0 =

⋂
P⊆R

∂RX(P )0 (5.2)

(as usual we write X0 for XG). In particular, X0 is defined by the inequalities
aQ(z)βQ ≤ bβQQ for all maximal parabolics Q. The plan is to use an estimate from
reduction theory to show that within each element of certain open covers, (5.1)
agrees with the tiling associated with some P provided b is large.

Definition 5.1 (compare with [10, §5.3]3). A cylindrical set (relative to a
parabolic P ) is a set of the form

WP ≡ AP (sP )×OP ,

where sP ∈ AP and OP ⊆ e(P ) is an open, ΓP -invariant and NP -invariant subset
such that ΓP \OP is relatively compact. Similarly the subset WP ⊆ X defined

3In [10] OP is itself relatively compact and not ΓP -invariant. A cylindrical set here is thus the
union of the ΓP -translates of a cylindrical set in [10]. This is more convenient for our purposes;
note however that our definition depends on the choice of arithmetic subgroup Γ.
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using AP will be called cylindrical . An open coverW = {WP }P∈P of X consisting
of cylindrical sets is called a cylindrical cover . The cover is said to be Γ-invariant
if γ ·WP = WγP for γ ∈ Γ.

Remark. It follows from reduction theory [9, §13.1] that Γ-invariant cylindrical
covers exist. For example, one may take WP to be empty except for P minimal,
where it would be ΓP times a large Siegel set.

The estimate is simplest to state using the normalized functions

âP (z) ≡ aP (z)/bP .

Proposition 5.2. Let W = {WP }P∈P be a Γ-invariant cylindrical cover. If
b ∈ BΓ is sufficiently large, then for all P ∈ P and for all Q ∈ P1 with Q 6⊇ P ,

âQ(z)βQ < âP (z)λQ,P (z ∈WP ),

where λQ,P ∈ a∗P is dominant (depending only on the type of Q and P ) and
βQ − λQ,P is nonzero and codominant.

Proof. Let α be the unique element of ∆ \ ∆Q and define λQ,P ≡ (βQ − εα)P ,
where ε will be determined. For ε > 0 small, the functional βQ − εα is dominant,
and thus by Lemma 3.2 so is λQ,P . In addition,

βQ − λP,Q =

{
βPQ if α ∈ ∆P ,

εαP if α /∈ ∆P ,

which is nonzero and by Lemma 3.2 is codominant.
To prove the estimate, note that by the proof of Proposition 2.6 the normalized

functions satisfy the transformation law

âgP (gz) = (c(g, P )bP /bgP )âP (z) (5.3)

for g ∈ GQ; in particular, by the Γ-invariance of b (see (2.4)),

âγP (γz) = âP (z) (γ ∈ Γ). (5.4)

Thus it suffices to fix P belonging to a finite set of representatives of Γ-conjugacy
classes; choose a minimal parabolic for which P is standard. The maximal parabol-
ics Q 6⊇ P may be enumerated as Qgγ0 , where Q0 is standard, g ∈ GQ ranges over
a finite set, and γ ∈ Γ is restricted such that gγ 6∈ Q0 in the case that Q0 ⊇ P .
Then âQ(z)βQ = C · âQ0(gγz)βQ by (5.3) and (5.4), where C > 0 depends only
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on g, Q0, and b. A result of reduction theory [43, Lemma 4.9]4 shows that this is
bounded by C · âP (z)βQ−mα with m > 0 (if Q0 ⊇ P , use the last equation of the
proof). But since âP ∈ AP (sP /bP ), we have âβQ−mαP = â

(ε−m)αP
P â

λQ,P
P ≤ C · âλQ,PP

provided we choose ε < m.
To see that the constant C may be chosen less than one, note that if b is

replaced by t ·b, then C scales as t−(βQ−λQ,P ). This can be made arbitrarily small
provided t is sufficiently dominant. �

Corollary 5.3. Let W = {WP }P∈P be a Γ-invariant cylindrical cover. If b ∈ BΓ

is sufficiently large, then for all P , P ′ ∈ P and for all Q ∈ P1 with Q 6⊇ P ,

âQ(z)βQ < âP ′(z)λQ,P,P ′ (z ∈WP ∩WP ′), (5.5)

where λQ,P,P ′ ∈ a∗P ′ is dominant and βQ − λQ,P,P ′ is nonzero and codominant.

Proof. Write λQ,P =
∑

P⊆Q′∈P1

cQ′βQ′ , where cQ′ ≥ 0. Then Proposition 5.2 yields

the estimate
âQ(z)βQ <

∏
Q′⊇P

âQ′(z)cQ′βQ′ (z ∈WP ).

Now apply Proposition 5.2 again to estimate inWP ′ those factors on the right-hand
side for which Q′ 6⊇ P ′. This yields (5.5), where

λQ,P,P ′ =
∑
Q′⊇P
Q′⊇P ′

cQ′βQ′ +
∑
Q′⊇P
Q′ 6⊇P ′

cQ′λQ′,P ′ .

Now λQ,P,P ′ ∈ a∗P ′ is clearly dominant and furthermore

βQ − λQ,P,P ′ = (λQ,P − λQ,P,P ′) + (βQ − λQ,P )

=
∑
Q′⊇P
Q′ 6⊇P ′

cQ′(βQ′ − λQ′,P ′) + (βQ − λQ,P )

is nonzero and codominant. �

We will also need one simple lemma which will be useful later. For a cylindrical
set WP = AP (sP )×OP , write bP ∼WP if bP ∈ AP (sP ).

Lemma 5.4. Let WP be a cylindrical set such that bP ∼WP . Then for R ⊇ P ,

AR(1) o(∂RX(P )0 ∩WP ) = X(P )R ∩WP = X(P )R ∩ (AR oWP ).

4 The result in [43] was stated for G the group of automorphisms of a self-adjoint homogeneous
cone; aside from the notation, the result and proof apply to the general case. The proof uses
results on functions of type (P,χ) from [9, §14] and is similar to arguments in [6, §§7.5–7.8].
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Proof. It is clear from the definitions that each of these sets is contained in the
next. So let z ∈ X(P )R ∩ (AR oWP ) and write z = ao y with a ∈ AR(1) and
y ∈ ∂RX(P )0; we need to show y ∈WP . Since AR ⊆ AP , we have qP (y) = qP (z) ∈
OP . If α ∈ ∆R

P (and therefore is trivial on AR), then aP (y)α = aP (z)α ≥ sαP . If
γ ∈ ∆P \ ∆R

P , then γR is antidominant with respect to ∆R
P (by Remark 3.3(i))

and so (since y ∈ ∂RX(P )0) aP (y)γ
R ≥ bγ

R

P . On the other hand, aP (y)γR = bγRP .
Thus aP (y)γ ≥ bγP ≥ s

γ
P since bP ∼WP . �

We can now show that (5.1) agrees in WP with the tiling associated to P
provided b is large.

Proposition 5.5. Let W = {WP }P∈P be a Γ-invariant cylindrical cover of X.
If b ∈ BΓ is sufficiently large, then for all P , R ∈ P,

(i) bP ∼WP ,

(ii) XR ∩WP =

{
X(P )R ∩WP for P ⊆ R,
∅ for P 6⊆ R,

(iii) ∂RX0 ∩WP =

{
∂RX(P )0 ∩WP for P ⊆ R,
∅ for P 6⊆ R,

(iv) XR = AR(1) o∂RX0.

Remark. In the case that X is the semisimple part of a self-adjoint homogeneous
cone, the case R = G of (ii) is essentially [43, Proposition 4.4].

Proof. Clearly assertion (i) can be arranged making b larger if necessary. Case
R = G of (ii) is equivalent (by (4.2)) to the inequalities âQ(z)βQ ≤ 1 for Q ⊇ P
implying in WP the inequalities âQ(z)βQ ≤ 1 for all Q 6⊇ P . This implication
follows by Proposition 5.2. In view of (4.3), we see that Proposition 5.2 implies
(iii) by the same argument. (In the case P 6⊆ R, use the fact that there exists a
Q ∈ P1 with Q ⊇ R and Q 6⊇ P , together with the strict inequality.) Furthermore,
the intersection of X(P )R = AR(1) o ∂RX(P )0 over all P ⊆ R yields (iv).

We now consider (ii) where R 6= G. If P ⊆ R, (iii) and (iv) together with
Lemma 5.4 show that X(P )R ∩WP ⊆ XR ∩WP , and hence we have equality. If
on the other hand P 6⊆ R, first note that the case P ′ ⊆ R already treated together
with Lemma 5.4 imply XR ∩WP ′ = X(P ′)R ∩ (AR oWP ′) ⊇ XR ∩ (AR oWP ′).
But {WP ′}P ′⊆R covers e(R), and thus {AR oWP ′}P ′⊆R covers XR. Thus it
follows that XR ⊆

⋃
P ′⊆RWP ′ and so it suffices to show that XR∩WP ∩WP ′ = ∅

for all P ′ ⊆ R. The application of Corollary 5.3 to Q ∈ P1 with Q ⊇ R and Q 6⊇ P
yields that â

βQ−λQ,P,P ′
P ′ < 1 on WP ∩WP ′ . We claim though that â

βQ−λQ,P,P ′
P ′ > 1

on XR∩WP ′ = X(P ′)R∩WP ′ , which will finish the proof. To see the claim, note
that Lemma 3.2 implies that (βQ − λQ,P,P ′)R = −λRQ,P,P ′ is antidominant with
respect to ∆R

P ′ , and that (βQ − λQ,P,P ′)R is (nonzero) codominant. The claim
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then follows from (4.1). �

Let us formalize this interrelationship between a tiling and a cylindrical cover.

Definition 5.6. If W = {WP }P∈P is a cylindrical cover, a tiling {XR}R∈P with
parameter b is said to be W-adapted (or adapted to W) if for all P , R ∈ P ,

(i) bP ∼WP , and

(ii) XR ∩WP =

{
X(P )R ∩WP for P ⊆ R,
∅ for P 6⊆ R.

With this terminology we summarize what we have done in the

Theorem 5.7. Let W = {WP }P∈P be a Γ-invariant cylindrical cover of X. If
b ∈ BΓ is sufficiently large, there exists a unique analytic family of W-adapted
analytic tilings of X with parameters t · b, t ∈ cl(A(1)).

Proof. Apply Propositions 4.1 and 5.5; uniqueness follows from Corollary 2.5. �

We have stated our final result this way since, in working with these tilings,
it will be easier to use W-adaptedness rather than the original construction (5.1).
In fact, all Γ-invariant tilings in the sense of Definition 2.1 (not necessarily con-
structed as in (5.1)) are adapted to some Γ-invariant cylindrical cover W. This
will be proved in the beginning of §9, where we also study the space of parameters
b for which a tiling exists. Thus the following sections actually apply to all tilings.
Of course, if one simply wishes to work with the tilings we have constructed above
(for b large), this remark and §9 may be safely ignored.

There remains however the interesting

Question 5.8. Can every tiling (with parameter b not necessarily large) be ex-
pressed as in (5.1)? More particularly, is the central tile of any tiling defined by
the inequalities aQ(z)βQ ≤ bβQQ for all maximal parabolics Q?

6. Retractions and diffeomorphisms

We now consider retractions onto central tiles. Given a tiling of X , the desired
retraction projects XP = AP (1) o ∂PX0 back along the AP (1)-orbits onto ∂PX0
(see Figure 5). By varying the parameter, one may obtain a family of retractions
converging to the identity. We also construct a diffeomorphism X → X0 for use
in a later paper (see Figure 6).

Theorem 6.1. For b ∈ BΓ fixed and for all t ∈ cl(A(1)), let {XP,t}P∈P be a
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V ® á ñ®áñV: ®áñ Dv
ρ

Figure 5.
The retraction of V (the image is shaded)

tiling of X with parameter t · b.

(1) For all t ∈ cl(A(1)), there exists a unique Γ-equivariant piecewise-analytic
retraction rt : X → X0,t satisfying rt(AP (1) o y) = y for y ∈ ∂PX0,t and
P ∈ P.

(2) For all t ∈ A(1), there exists a unique Γ-equivariant piecewise-analytic dif-
feomorphism st : X → X0,t such that for all P ∈ P:
(i) st preserves the AP (1)-orbits in XP,1.
(ii) The family of diffeomorphisms induced on the AP (1)-orbits in XP,1 is

constant with respect to the canonical cross-sections.
(iii) In terms of the coordinates a 7→ (a−α)α∈∆P

, each coordinate function of
the diffeomorphism induced on AP (1) is the exponential of a polynomial
having degree at most 1 in each variable.

Both rt and st depend piecewise-analytically on t. As t tends to infinity under
the action of a strictly dominant 1-parameter subgroup, rt and st converge to the
identity; as t tends to 1, st converges to r1.

The construction can be broken into the same three steps as our construction
of tilings. First we define models on (V ,∆) = (aP ,∆P ) for the retraction and
diffeomorphism. Let V =

∐
I⊆∆〈V 〉I be the tiling constructed in §3. The model

for the desired retraction is the piecewise-analytic map ρ : V → 〈V 〉∆ defined by

ρ(v) = vI ∈ ∂I〈V 〉∆ if v ∈ 〈V 〉I . (6.1)

In 〈V 〉I = V I(0) + ∂I〈V 〉∆ this is the projection map onto the second factor; see
Figure 5.
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w

Figure 6.

The diffeomorphism σw|V : V −̃→ w+Int(〈V 〉∆). (The shading design in each tile 〈V 〉I suggests
the corresponding fibers of ρ.)

For the model of the diffeomorphism, a more complicated construction is re-
quired:

Lemma 6.2. Let w ∈ V (0). There exists a unique piecewise-analytic diffeomor-
phism σw : V ∼→ w + 〈V 〉∆ with the following properties:

(i) For v = vI + vI ∈ 〈V 〉I , σw(v) = σw(vI) + vI .
(ii) In cl(〈V 〉∅) = cl(V (0)), σw is given by a polynomial in the variables xα =

e−α(v) (α ∈ ∆) with degree at most 1 in each variable.
For K ⊆ ∆, the restriction of σw to V K is the corresponding diffeomorphism
associated to (V K ,∆K) and wK .

Proof. By (i), it suffices to define an analytic diffeomorphism σw on cl(V (0)) such
that σw preserves the closed boundary faces cl(V I(0)), I ⊂ ∆. The required
polynomial is given by

v 7→
∑
I⊆∆

( ∏
α∈∆\I

(1− xα)
∏
α∈I

xα

)
wI . (6.2)

The uniqueness of the coefficient of
∏
α∈K xα follows by induction on |K| and |∆|.

The final assertion of the lemma follows from uniqueness and Lemma 3.5. �

Remark. The reason a polynomial of total degree greater than 1 is required in
(6.2) is that whereas cl(V (0)) is a “parallelpiped” relative to the analytic coor-
dinates (xα) (see Figure 4), the image (w + 〈V 〉∆) ∩ cl(V (0)) relative to linear
coordinates is not in general (see Figure 6).

We denote the induced maps on AP also by ρ and σt, where w = log tP .
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The second step is to shift and transfer these models to X(P ) ∼= AP × e(P ).
Let {X(P )R,t}R⊇P be the tiling associated to P with parameter t · b. Define

r
(P )
t : X(P )→ X(P )0,t by

r
(P )
t (a, y) =

(
tP bP ρ( (tP bP )−1a), y

)
,

and s
(P )
t : X(P )→ X(P )0,t by

s
(P )
t (a, y) = (bPσt(b−1

P a), y).

Finally in the third step we define rt : X → X0,t and st : X → X0,t by

rt(z) = r
(R)
t (z) (z ∈ XR,t),

st(z) = s
(R)
t (z) (z ∈ XR,1).

Proof of Theorem 6.1. Let W = {WP }P∈P be a Γ-invariant cylindrical cover
to which our tilings are adapted for all t. (For the family of tilings construct-
ed in Theorem 5.7, such a cover was part of the construction; in general we
will prove such a cover exists later in Theorem 9.6.) For any P ∈ P we claim
that rt = r

(P )
t and st = s

(P )
t in the open set WP . To see this, first note

that by adaptedness, any z ∈ WP must belong to X(P )R,t for some R ⊇ P .

Then we compute rt(z) = r
(R)
t (z) = (tRbR, qR(z)) (under X ∼= AR × e(R)),

whereas r(P )
t (z) = (tP bP ((tP bP )−1aP (z))R, qP (z)) = (tRbRaP (z)R, qP (z)) (un-

der X ∼= AP × e(P )). These two expressions are equal since 0Rx = ARP o 0Px.
The claim for the diffeomorphism follows similarly by using the last assertion of
Lemma 6.2.

By the claim we are reduced to proving the theorem for the maps r(P )
t and s(P )

t .
These maps are clearly piecewise-analytic and have analytic dependence on t. It
is also easy to see they have the determining properties; for s(P )

t use Lemma 6.2.
Now assume that t is tending to infinity under the action of a strictly dominant

subgroup and consider z ∈ e(R) ⊂ X(P ) for some R ⊇ P . By Lemma 3.2, tRP
is tending to infinity under the action of a strictly dominant (and hence strictly
codominant) 1-parameter subgroup in ARP , so eventually aP (z)β

R
Q ≤ (tP bP )β

R
Q for

all βRQ ∈ ∆̂R
P . Thus by (4.1), z ∈ X(P )R,t ∩ e(R) for t sufficiently large, in which

case r(P )
t (z) = (tRbRaP (z)R, qP (z)). Again by Lemma 3.2, tRbR → {∞}∆R =

aR(z), and thus r(P )
t (z) → z. The limiting behavior for s(P )

t is proved similarly.
�
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7. Finite energy

Let Φ+ denote the positive Q-roots of G and let δ = 1/2
∑
λ∈Φ+ λ with each root

counted with multiplicity.

Definition 7.1. A piecewise-smooth map f : M → N between Riemannian man-
ifolds (which may have finite quotient singularities) is said to have finite energy
if

E(f) =
∫
M

|dfz|2dV (z) <∞,

where the energy density E(f)(z) = |dfz|2 is the norm squared of the differential
dfz : TzM → Tf(z)N . Define f to have almost finite energy if for all ε > 0,∫

M

|dfz|2e−εdM(z,z0)dV (z) <∞,

where z0 ∈M is any fixed basepoint.

Remark 7.2. Say M = N = Γ\X and let {XP }P∈P be a tiling of X ; it is not
difficult to see that f has almost finite energy if and only if for all ε > 0,∫

Γ\X
|dfz|2a(z)−εδdV (z) <∞,

where a(z)δ represents the function equal to aP (z)δ in XP (and 1 in X0).

Theorem 7.3. Let r : X → X0 be the Γ-invariant retraction onto the central
tile of a tiling as in Theorem 6.1, and let r′ be the induced retraction on Γ\X.
Assume G is almost Q-simple and that Γ\X is noncompact. Then r′ has almost
finite energy if and only if GC 6= SL(2,C). Furthermore, r′ has finite energy if and
only if GC is not equal to SL(2,C), SL(2,C)×SL(2,C), SL(3,C), or a Q-split form
of SO(5,C). The same assertions hold for the diffeomorphisms of Theorem 6.1.

Remark. In terms of G, the infinite energy cases are where G is locally isomor-
phic to SL(2,R), SL(2,C), a non-Q-split form of SL(2,R)× SL(2,R) (the Hilbert
modular surface case), SL(3,R), SU(2, 1), or a Q-split form of SO(3, 2). In all
these cases except for SL(2,R), r′ has almost finite energy.

If G is not almost Q-simple, we may, by replacing Γ with a subgroup of finite
index, assume that r′ : Γ\X → Γ\X decomposes into a product with factors
corresponding to the almost Q-simple factors of G. Clearly this map has (almost)
finite energy if and only if it does on each factor; thus we have the corollary:

Corollary 7.4. r′ has (almost) finite energy if and only if none of the almost
Q-simple factors of G which are Q-isotropic have complexifications on the above
lists.



192 Leslie Saper CMH

Proof of Theorem 7.3. We consider r′; the situation for the diffeomorphism is
similar. Let P ∈ P . By Theorem 6.1, the restriction of r to XP

∼= AP (bP )× e(P )
corresponds to the retraction of the first factor onto {bP }. By Borel’s formula [10,
§4.3] for the metric on X ∼= AP × e(P ), the energy density is thus5

E(r|XP )(z) ∼ max
λ∈Φ+

aP (z)2λ,

where g ∼ h means that C−1h ≤ g ≤ Ch for some constant C > 0. On the other
hand, the volume form corresponds [10, §4.4] to

dVX ∼ aP (z)−2δ
∧

α/∈∆P

daαP
aαP
∧ dVe(P ).

Thus the energy in π(XP ) (which is homeomorphic to AP (bP ) × ΓP \e(P ) by
Proposition 2.2(iv)) is

E(r′|π(XP )) ∼ max
λ∈Φ+

∫
AP (1)

a2(λ−δ)dVAP (a) = max
λ∈Φ+

∏
α/∈∆P

∫ ∞
1

a2α(λ−δ,βα) da
α

aα
.

This is finite for all P (in other words, r′ has finite energy) if and only if

for all λ ∈ Φ+, (λ− δ, βα) < 0 for all α ∈ ∆. (7.1)

By Remark 7.2, r′ has almost finite energy if and only if the weaker condition

for all λ ∈ Φ+, (λ− δ, βα) ≤ 0 for all α ∈ ∆. (7.2)

is satisfied.
To determine when these conditions are not met, first assume the complexifi-

cation GC is almost simple and Q-rankG = C-rankG. Then (7.1) and (7.2) are
assertions about the C-root system ΦC of GC. The highest root and δ are enumer-
ated for all simple root systems in [15, Planche I–IX] (δ is denoted there as ρ); it
follows easily that the only simple root systems failing (7.1) are A1, A2, and B2,
and the only one failing (7.2) is A1.

Now say Q-rankG < C-rankG (still assuming GC is almost simple). Then by
restriction, (7.1) is certainly implied by the corresponding assertion for ΦC. If this
fails (that is, for C-root systems A1, A2, or B2) then the only possibility is that
Q-rankG = 1 and C-rankG = 2. (Since Γ\X is noncompact, Q-rankG > 0.) Let
∆C = {α, α′} be the simple C-roots (with α′ the shorter root in the case B2) and
denote the restriction from C-roots to Q-roots by an overbar. We will use the

5 Since for us G acts on the left, a in the formula in [10] should as usual be replaced by a−1.
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classification theory [49, Table II] to determine the restriction. In the case A2, the
Q-index must be 2A

(1)
2,1, for which α = α′. Thus Φ+ = {α, 2α} and δ = 2α, so (7.1)

fails though (7.2) is satisfied for the non-Q-split forms of SL(3,C). In the case B2,
the Q-index must be B2,1, for which α′ = 0. Thus Φ+ = {α} and δ = 3/2α, so
(7.1) is satisfied for the non-Q-split forms of SO(5,C).

Finally, say GC is not almost simple. In this case, G is obtained (up to isogeny)
by the restriction of scalars Rk/QG′, where G′ is defined over a finite extension
k of Q and G′C is almost simple. The Q-root system of G is identical with the
k-root system of G′, except that the multiplicities, and hence δ, are multiplied by
[k : Q] > 1. Thus if (7.2) is satisfied for G′, (7.1) will be satisfied for G (since
(δ, βα) > 0). The previous argument shows that (7.2) for G′ will fail only if G′C
has type A1. In this case, δ = [k : Q](α/2) where α is the unique simple Q-root,
so (7.1) fails only if [k : Q] = 2 (and then (7.2) is satisfied). This is the case
GC = SL(2,C)× SL(2,C). �

8. Neighborhoods of boundary faces

Another application of tilings is to give an explicit description of a cofinal system
of Γ-invariant neighborhoods of each closed boundary face e(R) of X. Namely, let
{XP }P∈P be a Γ-invariant tiling of X with parameter b, and for all R ∈ P , define

UR =
∐
P⊆R

XP .

Theorem 8.1.

(i) UR is an open ΓR-invariant neighborhood of e(R), stable under the geodesic
action of AR(1).

(ii) There is a piecewise-analytic diffeomorphism (ãR, qR) : UR
∼→ AR(bR) ×

e(R), where ãR is determined by the equations

(b−1
R ãR(z))α = (b−1

P aP (z))α for z ∈ XP , P ⊆ R, and α ∈ ∆P \∆R
P .

This diffeomorphism is AR(1)× ΓR-equivariant.
(iii) The natural projection ΓR\UR → π(UR) is a homeomorphism.
(iv) Let UR,t be the neighborhoods corresponding to the family of tilings with

parameters t · b, t ∈ cl(A(1)). As t tends to infinity under the action
of a dominant 1-parameter subgroup such that tα → ∞ for all α 6∈ ∆R,
the open set UR,t shrinks and runs over a cofinal system of ΓR-invariant
neighborhoods of e(R).
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Remark. (1) Except in XR, the function ãR in (ii) is not in general constant on
the orbits of 0R. Thus the diffeomorphism (ãR, qR) is not 0R-equivariant and the
induced sections of qR : UR → e(R) are not canonical cross-sections of qR.

(2) Previously Zucker [52] constructed neighborhoods of the boundary faces of
Γ\X which correspond to smoothed versions of our π(UR).

Example. Assume X is hermitian symmetric (that is, a bounded symmetric do-
main) and (for simplicity) G is almost Q-simple. For Q a maximal parabolic,
there is a decomposition X ∼= F × C × NQ, where F is a hermitian symmetric
space of lower rank, C is a self-adjoint homogeneous cone, and NQ is the unipotent
radical of Q. The geodesic action of AQ corresponds to the dilation on C, thus
e(Q) ∼= F×(AQ\C)×NQ. Now restrict attention to B ⊂ F , a small ball neighbor-
hood of some y ∈ F which is “away from the ends” (that is, in the central tile of the
induced tiling). Then it is not difficult to see that UQ∩(B×C×NQ) ∼= B×C0×NQ,
where C0 is the “adapted core” constructed in [43, §4]. Hence by [4, III, §6.11]
we obtain a cofinal family of neighborhoods in the “Satake topology” after taking
quotient by Γ. This illustrates Zucker’s result [51] that the Baily–Borel–Satake
compactification Γ\X∗ may be realized as a topological quotient of Γ\X. Note
too, that the explicit nature of the normal vector to the boundary of these neigh-
borhoods (see (ii) above) was used in a crucial way in [43, §§4.1, 9.7].

Proof of Theorem 8.1. Let Y (R) be the open neighborhood
⋃
P⊆RX(P ) of e(R)

in X. The projection map qR : X(R)→ e(R) extends to qR : Y (R) → e(R), and
we wish to construct a trivialization of this bundle. (The canonical trivialization
X(R) ∼= AR × e(R) will not do, since it does not in general extend to any X(P )
for P ( R.)

A trivialization of qR on X(P ) for each P ⊆ R is constructed in [12, §5.4(7)].
Namely decompose [12, §4.3]

AP ∼= (R>0)∆P ∼= (R>0)∆P \∆R
P × (R>0)∆R

P ≡ AR × AP,R; (8.1)

this clearly extends6 to AP ∼= AR × AP,R. Let a(P )
R (z) denote the projection of

aP (z) ∈ AP to AR with respect to this decomposition. Then

(a(P )
R , qR) : X(P ) ∼= AR × e(R)(P ) (8.2)

is the trivialization, where e(R)(P ) ≡
∐
P⊆S⊆R e(S).

To obtain a piecewise-analytic trivialization on all of Y (R), we piece together
the above trivializations using a tiling: lift the tiling {XP ∩ e(R)}P⊆R of e(R) to

6 Note that in general AP,R 6= ARP and that (1.1) does not in general extend to a decomposition
of AP [52, (1.3)].
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the tiling {q−1
R (XP )}P⊆R of Y (R) and define ãR by the equations

b−1
R ãR(z) ≡ b(P )

R
−1a

(P )
R (z) for z ∈ q−1

R (XP ), P ⊆ R,

where b(P )
R is the projection of bP to the first factor of (8.1)—this agrees with the

definition in (ii). It is easy to check that ãR is piecewise-analytic and ΓR-invariant.
Then (ãR, qR) : Y (R) ∼→ AR × e(R) is the desired trivialization.

In order now to prove (i) and (ii), we simply note that

XP = AR(1) o(AP,R(1) o ∂PX0),

and thus that UR = { z ∈ Y (R) | ãR(z) ∈ AR(bR) }. For (iii), consider γ ∈ Γ such
that γ ·UR ∩UR 6= ∅. Then by Γ-invariance of the tiling, there exists P ⊆ R such
that γP ⊆ R, or P ⊆ R ∩Rγ . Thus we must have R = Rγ , that is, γ ∈ ΓR.

For (iv), we first single out a lemma which is of independent interest:

Lemma 8.2. Let t2 ∈ cl(A(t1)). Then XS,t2 ⊆
⋃
P⊆S XP,t1 .

Proof of the lemma. Fix z ∈ XS,t2 . As t passes from t2 to t1, the first factor of
XS,t

∼= AS(tSbS)× qS(XS,t) is nondecreasing, so the only way z can fail to belong
to XS,t is because of the second factor; it follows from Proposition 2.2(ii) in this
case that z ∈ XP,t for some P ( S and some t and one can use induction on
P-rankS. �

Now let t tend to infinity as in (iv). By the lemma, the sets cl(UR,t) are
nonincreasing. The lemma also implies that z ∈

⋂
t UR,t must belong to some

XP,t for all t sufficiently large, where P ⊆ R is fixed, and thus aP (z) ∈ AP (tP bP ).
Therefore (b−1

P aP (z))α > tαP = tα(tP )−α → ∞ for all α 6∈ ∆R (note that (tP )−α

is bounded from below by Remark 3.3(i)), and so z ∈ e(R). Thus π(cl(UR,t)) is a
decreasing family of compact sets with intersection π(e(R)) and therefore (compare
[12, §10.2]) any open neighborhood of π(e(R)) must contain one of them. �

9. The space of regular parameters

As indicated in the introduction, it is also of interest to study tilings whose pa-
rameters are not necessarily large. In this final section we make a first step in this
direction. Define a parameter b ∈ B to be regular if a tiling exists with parameter
b, and denote the subset of regular parameters by Breg; by Proposition 2.6 this set
is preserved under automorphisms of G defined over Q. Theorem 5.7 demonstrat-
ed that the set of regular Γ-invariant tilings BΓ

reg is nonempty by constructing an
analytic tiling for large Γ-invariant parameters. We will now show in Theorem 9.6
that BΓ

reg is an open subset of BΓ and is cl(A(1))-invariant. We also find that
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any Γ-invariant tiling is analytic and that any cl(A(1))-family of such tilings is
W-adapted for some Γ-invariant cylindrical cover W. For large parameters this
was part of Theorem 5.7 and was the our main tool in using tilings. Along the
way we will give a criterion for when a parameter is regular, which may be of use
in studying degenerations of tilings.

Proposition 9.1. Fix b ∈ BΓ and let a subset XR ⊆ X be given for each R ∈ P.
Then {XR}R∈P is a tiling of X with parameter b if and only if there exists a
Γ-invariant cylindrical cover W = {WP }P∈P of X such that for all P , R ∈ P,

(i) bP ∼WP , and

(ii) XR ∩WP =

{
X(P )R ∩WP for P ⊆ R,
∅ for P 6⊆ R.

Before beginning the proof we single out a simple lemma which will be useful
later as well.

Lemma 9.2. Let KP be the closure of a cylindrical set relative to P . The cylin-
drical sets WP ⊃ KP are cofinal among ΓP -invariant neighborhoods of KP .

Proof. Project to ΓP \X(P ) ∼= AP × ΓP \e(P ). The set KP (resp. WP ) projects
to a product of compact (resp. relatively compact) sets with the ΓP \e(P ) factor
having full unipotent fibers. (Recall that ΓP \e(P ) is fibered by (ΓP ∩ NP )\NP
over a locally symmetric space for a Levi Q-subgroup for 0P .) The result follows. �

Proof of Proposition 9.1. First we assume (i) and (ii) hold and demonstrate that
{XR}R∈P is a tiling. By Proposition 2.2(ii), ∂RX(P )0 = X(P )0 ∩ cl(X(P )R). So
for R ∈ P define ∂RX0 ≡ X0 ∩ cl(XR). Then it follows from (ii) that

∂RX0 ∩WP =

{
∂RX(P )0 ∩WP for P ⊆ R,
∅ for P 6⊆ R.

(9.1)

Now (ii), (9.1) and Lemma 5.4 imply that XR ∩WP = AR(1) o(∂RX0 ∩WP ) for
P ⊆ R, which yields

XR = AR(1) o∂RX0 (9.2)

(since by (ii) and (9.1) every point inXR or ∂RX0 belongs to WP for some P ⊆ R).
The conditions of Definition 2.1 clearly follow from (ii), (9.1), and (9.2).

Now assume that {XR}R∈P is a tiling (Γ-invariant since b is). We will construct
the desired Γ-invariant cylindrical cover W = {WP }P∈P by a modification of the
inductive argument in [52, (3.6)]. Namely, totally order the Γ-conjugacy classes
of parabolics [P ] such that P-rankP < P-rankP ′ implies that [P ] < [P ′]. Then
given a Γ-conjugacy class [P ], assume WP ′ has been constructed for P ′ in all
higher Γ-conjugacy classes. Set
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KP = cl(AP (bP ))×
(
e(P ) \

⋃
P ′(P

qP (WP ′)
)
.

and define WP = AP (sP ) × OP to be a product neighborhood of KP . If the
previously constructed collection {WP ′}[P ′]>[P ] is Γ-invariant, we see that KγP =
γ ·KP , and thus we can assume W γP = γ ·WP . We will prove below the claim
that KP lies in the complement of

⋃
R6⊇P cl(XR). Then since this latter set is ΓP -

invariant, WP (or even cl(WP )) may likewise be chosen to be in its complement by
Lemma 9.2. If we continue in this fashion, we will have constructed W satisfying
(i) and the second line of (ii). For the first line of (ii) one needs to check that
the decompositions {XR∩WP }R⊇P and {X(P )R ∩WP }R⊇P of WP agree, which
follows from Proposition 2.4.

It remains to prove the claim. Note that the WP ′ satisfy by induction⋃
P ′(P

WP ′ ⊇
⋃
P ′(P

cl(XP ′). (9.3)

It follows that KP ⊆ cl(XP ), which is disjoint from cl(XR) by Proposition 2.2(ii)
unless R ∩ P ∈ P . But in this case the intersection is contained in cl(XR∩P ).
Since R 6⊇ P , R∩P ( P and so this is contained in

⋃
P ′(P WP ′ . But such points

have been removed from KP by definition. �

We can now characterize via cylindrical covers those parameters b ∈ BΓ for
which a tiling exists. Recall that given b we defined normalized functions âP =
aP /bP .

Proposition 9.3. A tiling of X with parameter b ∈ BΓ exists if and only if there
exists a Γ-invariant cylindrical cover W = {WP }P∈P of X such that for all P ,
P ′ ∈ P,

(i) bP ∼WP , and
(ii)′ âP (WP ∩WP ′)P∨P

′
lies in the central tile of AP∨P

′

P .
In this case, the tiling will be W-adapted.

Proof. If a tiling {XR}R∈P exists with parameter b ∈ BΓ, Proposition 9.1 implies
there exists a Γ-invariant distinguished cover W for which it is W-adapted. In
particular,

XR =
⋃
P⊆R

X(P )R ∩WP . (9.4)

Conversely, given a Γ-invariant cylindrical coverW satisfying (i), we may use (9.4)
to define XR. Then Proposition 9.1 shows that this is a tiling if (ii) is satisfied.
Thus it suffices to show that (ii) is equivalent to (ii)′ given that XR is defined as
in (9.4).
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Now (ii) is easily seen to be equivalent (given (9.4)) to

X(P )R ∩WP ∩WP ′ =

{
X(P ′)R ∩WP ∩WP ′ for P , P ′ ⊆ R,
∅ for P ⊆ R, P ′ 6⊆ R.

(9.5)

We claim this is equivalent to

WP ∩WP ′ ⊆
∐

R⊇P∨P ′
X(P )R for P , P ′ ∈ P . (9.6)

For it is clear that the second line of (9.5) is equivalent to (9.6). Now (9.6)
implies that {X(P )R ∩ WP ∩ WP ′}R⊇P∨P ′ is a decomposition of WP ∩ WP ′

satisfying the conditions of Proposition 2.4. Since the same holds true with P and
P ′ interchanged, these two tilings must agree by that proposition; in other words,
the first line of (9.5) holds. This proves the claim.

Now assume (9.6) holds. The left-hand side is AP∨P ′(1)-invariant and therefore
contains its projection to e(P ∨P ′). But only the R = P ∨P ′ factor on the right-
hand side intersects e(P∨P ′). Thus qP∨P ′(WP∩WP ′) lies in e(P∨P ′)∩X(P )P∨P ′ .
The application of âP now yields (ii)′. (Note that we use the identification of
âP (e(P ∨ P ′)) with AP∨P

′

P as in the proof of Proposition 3.7.)
On the other hand, (ii)′ and Lemma 3.5 imply that âP (WP ∩ WP ′)P∨P

′ ⊆
〈AP 〉P∨P

′

P∨P ′ = ∂P∨P
′〈AP 〉0. We find then that

âP (WP ∩WP ′) ⊆ AP∨P ′ · ∂P∨P
′〈AP 〉0 ⊆

∐
R⊇P∨P ′

〈AP 〉R,

where we use Lemma 3.5 again for the last inclusion. This implies (9.6) since
WP ∩WP ′ is 0P -invariant. �

To prove our final theorem, we will need the above cylindrical covers to have
as few nonempty intersections as possible.

Definition 9.4 (compare with [52, (3.6)]7). A cylindrical cover W of X is said
to be distinguished if

WP ∩WP ′ = ∅ for P 6⊆ P ′ and P 6⊇ P ′. (9.7)

A Γ-invariant cylindrical cover W is Γ-distinguished if

WP ∩WP ′ = ∅ for P 64 P ′ and P 6< P ′. (9.8)

7Our notion of Γ-distinguished corresponds, after taking quotient by Γ, to what is called
distinguished in [52]. Our notion of distinguished , on the other hand, appears to be new.
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(We write P 4 P ′ to mean that γP ⊆ P ′ for some γ ∈ Γ.)

Remark. A Γ-invariant distinguished cover is clearly Γ-distinguished. On the
other hand, it is not difficult to show that a Γ-distinguished cover W is distin-
guished if and only if

Π(
⋃
P⊆R

WP ) = ΓR for all R ∈ P , (9.9)

where
Π(K) ≡ { γ ∈ Γ | γK ∩K 6= ∅ }. (9.10)

In [27, Theorem 1.3.2] and [52, (3.6)], Γ-distinguished covers are constructed
such that Π(WR) = ΓR for R ∈ P ; a priori this is weaker than (9.9). By using the
existence of Γ-invariant tilings, however, we can show that distinguished covers
exist:

Proposition 9.5. The Γ-invariant cylindrical covers in Propositions 9.1 and 9.3
may be chosen to be distinguished.

Proof. Note that in the inductive construction of WP for Proposition 9.1, we ar-
ranged that KP ⊆ cl(XP ) and that for [P ′] > [P ], cl(WP ′) lies in the complement
of
⋃
R6⊇P ′ cl(XR). Thus KP is in the complement of

⋃
P ′ 6⊆P, [P ′]>[P ]

cl(WP ′).

Since this set is ΓP -invariant, the neighborhood WP may likewise be chosen in
its complement by Lemma 9.2. This establishes (9.7) in the case [P ′] > [P ]. For
the case [P ′] = [P ], we need to choose WP such that WP ∩W γP = ∅ for γ 6∈ ΓP ,
that is, such that Π(WP ) ⊆ ΓP . However KP ∩KγP ⊆ cl(XP ) ∩ cl(XγP ) = ∅ by
Proposition 2.2(ii), so Π(KP ) ⊆ ΓP . Now (compare [12, §10.3]) let C ⊆ KP be
compact such that KP = ΓP · C and let U be a relatively compact neighborhood
of C. Since Γ acts properly on X [12, §9.3], the sets Π(C) ⊆ Π(U) are finite
[14, III, §4.5]. By shrinking U if necessary, we can assume that Π(C) = Π(U). Thus
if we choose WP so that KP ⊆WP ⊆ ΓP ·U , we have Π(WP ) ⊆ ΓP ·Π(U) ·ΓP =
ΓP ·Π(C) · ΓP ⊆ ΓP as desired. �

Theorem 9.6. The subset BΓ
reg ⊆ BΓ of regular Γ-invariant parameters is open

and cl(A(1))-invariant. For any b ∈ BΓ
reg, there exists a Γ-invariant distinguished

cover W and a neighborhood U of b for which the tilings of X with parameters
t · b′, t ∈ cl(A(1)) and b′ ∈ U , are all W-adapted. All tilings of X are analytic
and depend analytically on b.
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Proof. By Propositions 9.3 and 9.5, a parameter b ∈ BΓ belongs to BΓ
reg if and

only if there exists a Γ-invariant distinguished coverW satisfying (i) and (ii)′, and
in this case the tiling is W-adapted. Since the number of Γ-conjugacy classes of
parabolics is finite, condition (i) is clearly an open condition. Clearly we may
shrink W and replace (ii)′ by

(ii)′′ âP (cl(WP ) ∩ cl(WP ′))P∨P
′

lies in the interior of the central tile of AP∨P
′

P .

The left-hand set of (ii)′′ is compact (since βα for α ∈ ∆P∨P ′
P is bounded from above

on the central tile and from below on âP (cl(WP ))P∨P
′
) and depends continuously

on b. We would like to conclude that requiring (ii)′′ for all P , P ′ ∈ P is an open
condition on b, but unfortunately the number of Γ-conjugacy classes of pairs of
parabolics (and hence independent conditions in (ii)′′) is not necessarily finite.

However it does suffice by Γ-invariance to restrict P to belong to a finite set
of representatives of Γ-conjugacy classes. Then if P ′ ⊆ P we may assume by an
application of an element of ΓP that P ′ belongs to a finite set of representatives
of ΓP -conjugacy classes of parabolics in P . If on the other hand P ′ 6⊆ P , we may
by the disjointness property (9.7) of a distinguished cover restrict P ′ to the finite
set of parabolics containing P . Thus we obtain an open condition. Consequently
(ii)′′ remains valid for b′ in a small neighborhood of b, and so b′ ∈ BΓ

reg.
If one replaces b by t ·b for t ∈ cl(A(1)), the function âP∨P

′

P from (ii)′′ becomes
multiplied by (tP∨P

′

P )−1. This value belongs to the central tile of AP∨P
′

P by Lem-
ma 3.2, so condition (ii)′′ remains valid. Clearly (i) remains true, and consequently
BΓ

reg is cl(A(1))-invariant.
The final statements are a consequence of adaptedness and the analyticity of

the tiling asssociated to each parabolic (Proposition 4.1). �
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