
Comment. Math. Helv. 72 (1997) 203–215
0010-2571/97/020203-13 $ 1.50+0.20/0
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Embeddable anticonformal autormorphisms of Riemann
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Abstract. Let S be a Riemann surface and f be an automorphism of finite order of S. We call
f embeddable if there is a conformal embedding e : S → E3 such that e◦f ◦e−1 is the restriction
to e(S) of a rigid motion. In this paper we show that an anticonformal automorphism of finite
order is embeddable if and only if it belongs to one of the topological conjugation classes here
described. For conformal automorphisms a similar result was known by R.A. Rüedy [R3].
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1. Introduction

Some of the best known examples of Riemann surfaces are given by smooth sur-
faces embedded in the euclidean space. The euclidean metric induces a conformal
structure (the existence of such structure is given by the solutions of Beltrami
equation). The Riemann surfaces constructed in such way are called classic sur-
faces and these classic surfaces are known from the work of both Riemann and
Klein.

In fact Klein asked if every Riemann surface is conformally equivalent to a
classic surface. The answer is positive and was given by A. Garsia [G] for compact
surfaces and by R. A. Rüedy [R1] for the non-compact case.

Riemann surfaces with autormorphisms play an important role in some aspects
of this theory for instance in the study of Moduli. If a classic surface is invariant
by the action of a rigid motion in the space, such motion, since it preserves the
metric, induces an automorphism of the classic surface. We have in this way the
first examples of Riemann surfaces with autormorphisms. It is a natural question
to ask which automorphisms are represented by these examples. In the case of
conformal automorphisms Rüedy [R3] characterized the authomorphisms that can
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be obtained in this way. In this paper we shall characterize the anticonformal
ones. A related question is studied in [Z] and [C2]: when is the square of an
anticonformal automorphism embeddable.

Let S be a Riemann surface and f be an automorphism of finite order of S.
We shall call f embeddable if there is a conformal embedding e : S → E3 such
that e ◦ f ◦ e−1 is the restriction to e(S) of a rigid motion. Hence we shall study
the automorphisms that are embeddable.

If f is an embeddable conformal automorphism then e ◦ f ◦ e−1 must be a
rotation and our definition of embeddable automorphism agrees with the definition
given by Rüedy in [R3]. In order to give the characterization of embeddable
automorphisms obtained in [R3] wee need first some definitions. Let π1O(S/f) be
the fundamental group of the orbifold S/f andH1O(S/f) be its abelianization. Let
T : H1O(S/f) → Zn be the monodromy epimorphism of the covering S → S/F ,
where n is the order of f . Let Xi be the elements of H1O(S/f) representing by
the boundaries of discs around the cone points of S/f with the orientation given
by the orientation of S.

Theorem (Rüedy 1971 [R3]). A conformal automorphism f of finite order n is
embeddable if and only if:
1. For each cone point of S/f , the corresponding element of H1O(S/f), Xi, and

T (Xi) have order n.
2. The number of cone points of S/f is even. Let 2r be this number.
3. There is a partition C1, C2 of the set {1, . . . , 2r} (= C1 ∪ C2) such that

a. #C1 = #C2 = r,
b. T (Xi) = −T (Xj) if i ∈ C1, j ∈ C2 and
c. T (Xi) = T (Xj) if i, j ∈ Cs, s = 1, 2.

Assume that f is an anticonformal automorphism of a Riemann surface. If f
is embeddable and if f has order two then e ◦ f ◦ e−1 is the restriction to e(S)
of a reflection in a plane or the reflection on a center. Thus for anticonformal
involutions we shall prove the following result:

Proposition 1.1. Let f be an anticonformal involution of a Riemann surface S
then f is embeddable if and only if f satisfies the following condition:

Condition 1.1.: either S/f is orientable or S/f is non-orientable without bound-
ary.

If f is embeddable and f has order greater than 2 then e ◦ f ◦ e−1 is the
restriction to e(S) of the composition of a plane reflection with a rotation with
axis orthogonal to the plane of reflection.

The topological classification of anticonformal automorphisms of order multiple
of 4 is very different from the one for automorphisms of order 2q with q odd (see
[C1] or [Y]). Thus also for our study we must distinguish the case of automorphisms
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with order a multiple of 4.

Proposition 1.2. Let f be an anticonformal automorphism of order 2q with q
even. The automorphism f is embeddable if and only if it satisfies one of the two
following conditions:

either
Condition 2.1. f2 has fixed points and it is embeddable as a conformal auto-

morphism
or
Condition 2.2. f2 is fixed point free and h1(f) = 0, where h1(f) is the invariant

defined in [C1] (if Z ∈ H1O(S/f) is the element of order two, of H1(S/f) then
the condition h1(f) = 0 is equivalent, by definition, to T (Z) = 0).

Assume that S/f is orientable. Let Fi be a boundary component of S/f we
shall call Ei the element of H1O(S/f) representing by Fi with the orientation
given by the orientation of S/f .

For anticonformal automorphisms of order 2q with q odd we have:

Proposition 1.3. Let f be an anticonformal automorphism of a Riemann surface
S of order 2q with q odd. Let t be the number of boundary components of S/f . The
automorphism f is embeddable if and only if it satisfies one of the two following
conditions:

either
Condition 3.1. S/f is orientable with boundary (i.e. t > 0) and:

1. For each cone point of S/f , the corresponding element of H1O(S/f), Xi, has
order q.

2. There exists a number s ≤ t such that:
a. If r is the number of cone points then r + s is even,
b. There are partitions C1 ∪ C2 = {1, . . . , r} and B1 ∪ B2 = {1, . . . , s} such

that
#(C1 ∪B1) = #(C2 ∪B2)
T ({Xi, Ej : i ∈ C1, j ∈ B1}) = {α} and T ({Xi, Ej : i ∈ C2, j ∈ B2}) =
{−α}, where α is a generator of 〈2〉 ⊂ Z2q,
T (Ej) = 0 for all j > s

or
Condition 3.2. S/F is non-orientable and so without boundary (t = 0) and

then:
1. For each cone point of S/f , the corresponding element of H1O(S/f), Xi, has

order q.
2. Let r be the number of cone points, then T ({Xi : i = 1, . . . , r}) = {±α}, where

α is a generator of 〈2〉 ⊂ Z2q.
3. If h is the genus of S/f then h+ r is even.
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Note that the conditions in the above propositions as in the theorem of Rüedy
are of topological nature. Hence an automorphism is embeddable if and only if it
belongs to some of the topological types as defined by the conditions given above
in the statements of the three propositions and the theorem.

In Section 2 we shall prove that the embeddable anticonformal automorphisms
satisfy the conditions 1.1, 2.1, 2.2, 3.1 and 3.2 in the propositions 1.1, 1.2 and
1.3. In Section 3, for each topological type of automorphisms described in the
conditions of such propositions, we shall obtain smooth surfaces embedded in the
euclidean space that are invariant for the action of a rigid motion and such that the
automorphism given by the restriction of the rigid motion meets these conditions.
In Section 4 we shall prove that we can deform the smooth surfaces constructed
in Section 3 in order to obtain a conformal embedding of a Riemann surface with
an anticonformal automorphism satisfying the conditions 1.1, 2.1, 2.2, 3.1 and 3.2
onto a classic surface such that the automorphism becomes the restriction of a
rigid motion.

2. Topological restrictions

Let S be a Riemann surface and f be an anticonformal automorphism of finite
order. Assume that f is embeddable. Let e : S → E3 be the conformal embedding
such that e ◦ f ◦ e−1 is the restriction to e(S) of a rigid motion. In this Section
we shall obtain the topological restrictions on f that are imposed because it is
embeddable.

Case 1. f has order 2.
There are two posssibilities:
Subcase 1.a. e ◦ f ◦ e−1 is the restriction to e(S) of a reflection on a plane π.
Then S/f is homeomorphic to each one of the components of e(S)−π. Hence S/f
is an orientable surface with boundary.
Subcase 1.b. e◦f ◦e−1 is the restriction to e(S) of a reflection on a point. Hence
S/f has no boundary and since f is anticonformal, S/f is non-orientable.

So we have:

Lemma 2.1. Let f be an anticonformal involution of a Riemann surface S. If
f is embeddable then either S/f is orientable or S/f is non-orientable without
boundary.

Case 2. f has order 2q with q even.
We have also two cases:
Subcase 2.a. f has order 2q with q even and f2 has fixed points. Since e◦f ◦e−1

is the restriction to e(S) of a rigid motion then e ◦ f2 ◦ e−1 is the restriction of a
rotation. Hence f2 is embeddable. Thus the next lemma is obvious:
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Lemma 2.2.a. Let f be an anticonformal automorphism of a Riemann surface
S of order 2q with q even. If f2 has fixed points and f is embeddable then f2 is
embeddable.

Notice first that, by theorem 0.2 of [C1], if f is an anticonformal automorphism
of a Riemann surface S of order 2q with q even and f2 has fixed points then
the topological type of f is given by the isotropy invariants and so this type is
determined by the topological type of f2. Hence the topological restrictions given
by Rüedy for f2 to be embeddable determine completely the possible topological
types of anticonformal automorphisms in the conditions of Case 2.a.
Subcase 2.b. f has order 2q with q even and f2 is fixed point free.

Lemma 2.2.b. Let f be an anticonformal automorphism of a Riemann surface
S of order 2q with q even. If f2 is fixed point free and f is embeddable then
h1(f) = 0.

Proof. Let T : H1O(S/f)→ Z2q be the monodromy epimorphism of the covering
S → S/f . Let [Z] ∈ H1O(S/f) be the element of order two, notice that, since f
has no fixed points, H1O(S/f) is the homology of a non-orientable surface. The
invariant h1(f) in the theorem 0.2 of [C1] is given by T [Z]. Since f is anticonformal
e ◦ f ◦ e−1 is the restriction to e(S) of an orientation reversing rigid motion of
order 2q so must be the restriction of the composition of a reflection on a plane π
composed with a rotation of finite order 2q and with axis ρ orthogonal to π. Let
π1 and π2 be two semiplanes with common boundary ρ, making a dihedral angle
π
q and cutting e(S) transversally.

The intersection Z = π1 ∩ e(S) is a finite set of closed curves (there are no
arcs because the axis ρ does not cut e(S) since f2 is fixed point free). Let R be
the convex region of E3 determined by π1 and π2. The quotient surface e(S)/(e ◦
f ◦ e−1) can be obtained from e(S) ∩ R by identifying the curves π1 ∩ e(S) with
the curves π2 ∩ e(S) in the orientation reversing way. Let e(S) ∩ R/ ∼ be the
described model of e(S)/(e ◦ f ◦ e−1). Let [Z] be the element of H1O(S/f) =
H1O(e(S)/(e ◦ f ◦ e−1)) = H1O(e(S) ∩ R/ ∼) represented by Z = π1 ∩ e(S) in
e(S)∩R/ ∼. This element is of order two because [(e(S)∩R)/ ∼]−Z = e(S)∩R
is orientable and ∂(e(S)∩R) = 2Z. To find the topological type of f is necessary
to compute T [Z] (theorem 0.2 of [C1]). Since there are 2q half-planes which are
images of π1 by e ◦ f ◦ e−1 then element [Z] lifts to 2q copies in e(S). Hence
T [Z] = 0 in other words h1(f) = 0.

Case 3. f has order 2q with q odd.
Subcase 3.a. f has order 2q with q odd and S/f is orientable. Then e ◦ f ◦ e−1

is the restriction to e(S) of the composition of a reflection in a plane π composed
with a rotation of axis ρ orthogonal to π and with finite order q. Let P be one
of the connected components of E3 − π. Then e ◦ f2 ◦ e−1 acts on e(S) ∩ P



208 A. F. Costa CMH

as a rotation of order q. The surface e(S) ∩ P is orientable with boundary, let
W = e(S) ∩ P/e ◦ f2 ◦ e−1 ' S/f .

Let X1, . . . , Xr be the elements of H1O(S/f) ' H1O(W ) represented by the
boundaries of small discs around the cone points and E1, . . . , Ek be the elements
of H1O(S/f) represented by boundary components of S/f . The cone points in
S/f appear as the projection of the points where the axis ρ meets e(S) ∩ P .

Then all the Xi have order q and the T (Xi) are all equal to ±α where α is a
generator of 〈2〉 ⊂ Z2q.

With respect to the Ei there are three types. Let us give ρ the orientation that
together with the sense of rotation of e◦f2◦e−1 produces the canonical orientation
of the space.

1.- The Ei that lift to e(S)∩ P to cycles that do not link with the axis ρ. For
these T (Ei) = 0.

2.- The Ei that lift to boundaries of e(S)∩P , Ēi, such taht lk (Ēi, axis ρ) = 1.
Then T (Ei) = α, and

3.- The Ei that lift to boundaries of e(S)∩P , Ēi, such that lk (Ēi, axis ρ) = −1.
Then T (Ei) = −α.

Note that W is naturally embedded in E3 ' E3/e ◦ f2 ◦ e−1. Let W ∗ be
the surface obtained by capping, with disjoint discs, the boundary components
of W . Since W∗ is an orientable closed surface in E3 the image of the axis ρ in
E3/e ◦ f2 ◦ e−1 have intersection number zero with W∗. This fact produces 2.b in
the condition 3.1 of the proposition 1.3.

So we have:

Lemma 2.3.a. Let f be an anticonformal automorphism of a Riemann surface S
of order 2q with q odd and S/f orientable. If f is embeddable then f satisfies the
condition 3.1 of proposition 1.3.

Subcase 3.b. f has order 2q with q odd and S/f is non-orientable. Then e◦f◦e−1

is the restriction to e(S) of the composition of a reflection in a point Q composed
with a rotation of finite order q and with axis ρ passing through Q. Hence S/f
has no boundary. The cone points in S/f are given by the intersection of the axis
of ρ with e(S). If Xi, . . . , Xr are the elements of H1O(S/f) produced by these
cone points then Xi has order q and T (Xi) = ±α where α is a generator of Zq,
with i = 1, . . . , r.

Let π1 and π2 be two semiplanes with common boundary the axis ρ, making a
dihedral angle π

q and cutting e(S) transversally.
The intersection πi ∩ e(S), i = 1, 2, is a finite set of closed curves and arcs

with end points in the axis ρ. Remark that the fixed point, Q, of the rigid motion
lies on ρ. Since Q determines two components in ρ then there are two types of
arcs in πi ∩ e(S), i = 1, 2: the arcs with end points in the same component of ρ
determined by Q and the arcs with end points not in the same component. Let V
denote the set of first type of arcs and W the set of the second type.
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Let R be the convex region of E3 determined by π1 and π2. The quotient
surface e(S)/(e ◦ f ◦ e−1) can be obtained from e(S) ∩ R identifying the curves
and arcs of π1 ∩ e(S) with the curves and arcs of π2 ∩ e(S) using as glueing map
e ◦ f ◦ e−1. Let e(S)∩R/ ∼ denote this model of e(S)/(e ◦ f ◦ e−1). Every arc in
V produces in e(S)∩R/ ∼ two cone points and each arc in W produces one cone
point and a cross cap. Each closed curve in πi ∩ e(S), i = 1, 2, produces two cross
caps, let U the set of such closed curves. Note that R ∩ e(S) is topologically an
orientable surface, let k be the genus of R ∩ e(S). Hence:

number of cone points in S/f+ genus of S/f =
(2#V + #W ) + (#W + 2#U + 2k) = even number.

Thus f satisfies 3 of condition 3.2 in proposition 1.3.
Then:

Lemma 2.3.b. Let f be an anticonformal automorphism of a Riemann surface S
of order 2q with q odd and S/f non-orientable. If f is embeddable then f satisfies
the condition 3.2 of proposition 1.3.

Note that if S/f is non-orientable the elements T (Xi) are topological invariants
up sign, i.e. by an automorphism of H1O(S/f) we can choose the sign of each
T (Xi) (cf. [C1]).

3. Topological realization

Let (S1, f1) and (S2, f2) be two pairs of surfaces and homeomorphisms, we shall
say that they are topologically equivalent if there is a homeomorphism h : S1 → S2
such that h◦f1 = f2◦h. In this Section we shall prove that if f is an anticonformal
automorphism of a Riemann surface S satisfying the topological conditions of the
propositions 1.1, 1.2 and 1.3 then there is a smooth surface F ⊂ E3 and a rigid
motion g in E3 such that g(F ) ⊂ F and (S, f) is topologically equivalent to (F, g).
More precisely:

Lemma 3.1. Let f be an anticonformal automorphism of a Riemann surface S.
Assume that f is in one of the following cases:

– f is an involution and f satisfies condition 1.1 of proposition 1.1.
– f has order 2q with q even and f satisfies either condition 2.1 or condition 2.2

of proposition 1.2.
– f has order 2q with q odd and f satisfies either condition 3.1 or condition 3.2

of proposition 1.3.
Then there is a smooth surface F in E3 and a rigid motion g such that g(F ) ⊂ F

and (F, gl), for some l ∈ {1, . . . , 2q − 1}, is topologically equivalent to (S, f).
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Case 1: f of order 2

Subcase a: S/f orientable of genus h with s boundary components

s

G

h

p
R = The semispace determined by π that con-
tains G.
g = reflection on π

Subcase b: S/f nonorientable without boundary of genus h
h even h odd

G

h/2

h/2

p

Q

R = the semispace determined
by π containing G
g = reflection on Q

N(G) is a neighborhood of G
such that N(G) ∩ π is g-equi-
variant

G

h–1/2

h–1/2

p

Q

Figure 1.

Proof. The construction of (F, g) in each case is described in figures 1, 2 and 3.
Each figure depicts a graph G in a region of the space R and a rigid motion g of
finite order 2q. If S/f is orientable then the surface F is ∪2q−1

i=0 gi(∂N(G) ∩ R),
where N(G) is a regular neighboorhood of G such that ∂N(G) is orthogonal to
the planes π, π1 and π2 in the figures. If S/f is non-orientable the construction
is similar but it is necessary to impose some conditions of g-equivariance on the
neighboorhood N(G), such conditions are given on each Figure for each case.
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Case 2: f or order 2q with q even (S/f nonorientable)
Subcase a: f2 with 2r fixed points
r odd and S/f odd genus h r even and S/f even genus h

G1

p
1

p

p/q

p
2

(r–1)/2

(h–1)/2
R = The convex region deter-
mined by π1 and π2
g = composition of rotation of
axis the intersection of π1 and
π2 and angle π/q with the re-
flection on the plane π.
G = G1 ∪ g(G1)
N(G) is a neighborhood of G
such that g(N(G)∩R) = N(G)∩
g(R).

G1

p
1

p

p/q

p
2

r/2

h/2

Subcase b: f2 without fixed points
S/f of genus h (h must be even)

G1

p
1

p

p/q

p
2

h/2 R = The convex region deter-
mined by π1 and π2
g = composition of rotation of
axis the intersection of π1 and
π2 and angle π/q with the re-
flection on the plane π.
G = G1 ∪ g(G1)
N(G) is a neighborhood of G
such that g(N(G)∩R) = N(G)∩
g(R).

Figure 2.
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Case 3: f of order 2q with q odd
Subcase a: S/f is orientable of genus h, with r cone points and s boundary components

G

p
1

p

p
2

(r–1)/2 h

s

r odd

2p/q

R = the region deter-
mined by π1, π2 and π
containing G
g = composition of ro-
tation of axis π1 ∩ π2
angle 2π/q with reflec-
tion on the plane π.

G

p
1

p

p
2

r/2 h

s

r even

2p/q

Figure 3a

Note that in the case q even and f2 with fixed points, the existence of the
automorphism f ensures the condition h+r even, where h is the genus of S/f and
r is the number of cone points in S/f (cf. theorem 4 (condition iii) of [E]).

4. The conformal embedding

Let F be a classic surface and g be a rigid motion such that g(F ) ⊂ F . Let N be
a unit normal field on f and η : F → R be a g-equivariant function i.e. η ◦ g = η.
We shall say that the surface F + ηN is a g-equivariant normal deformation of F .
In this Section we shall prove the following result:

Lemma 4.1. Let f be an anticonformal automorphism of a Riemann surface S, F
be a classic surface and g be a finite order and orientation reversing rigid motion
such that g(F ) ⊂ F and (S, f) is topologically equivalent to (F, g). Then there is
a g-equivariant normal deformation Fη of the classic surface F such that there is
a conformal embedding e : S → Fη ⊂ E3 such that g = e ◦ f ◦ e−1 on Fη.

It is clear that the proposition 1.1 follows from the lemmae 2.1, 3.1 and 4.1, the
proposition 1.2 follows from the lemmae 2.2a, 2.2b, 3.1 and 4.1 and the proposition
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Case 3: f of order 2q with q odd
Subcase b: S/f is nonorientable of genus h, with r conic points and without boundary

r and h odd r and h even

G

p1

1

p

p/q

p
2

(r–1)/2

(h–1)/2

R = The convex region deter-
mined by π1 and π2
g = composition of rotation of
axis the intersection of π1 and
π2 and angle π/q with the re-
flection on the plane π.
G = G1 ∪ g(G1)
N(G) such that g(N(G)∩R) =
N(G) ∩ g(R).

r/2

h/2

G

p1

1

p

p/q

p
2

Figure 3b

1.3 follows from the lemmae 2.3.a, 2.3.b, 3.1 and 4.1.

Proof. Assume that S/f is uniformized by a crystallographic group with signa-
ture σ = (g1;±; [2, r. . ., 2], {(−), s. . ., (−)}). Let Tσ be the Teichmüller space of
crystallographic groups with signature σ (see [MS] and [BEGG]). The space Tσ is
homeomorphic to a ball of real finite dimension. An element ρ of Tσ can be consid-
ered as a representation of an abstract NEC group with signature σ in PSL(2,R)
(modulo conjugation in PSL(2,R)). The automorphism f defines a canonical way
to construct from an element ρ of Tσ, a subgroup Γρ,f of imρ such that D/Γρ,f is
a Riemann surface with an anticonformal automorphism φ such that D/Γρ,f/φ is
a uniformized by imρ and (D/Γρ,f , φ) is topologically equivalent to (S, f) (each
topological type of anticonformal automorphisms defines an inclusion between ab-
stract crystallographic groups). Then each element of Tσ determines a Teichmüller
differential µ, that is defined for F and which is equivariant on the action of g.

Let ρ0 be the element of Tσ such that S/f = D/imρ0 and ε be a positive real
number. We shall follow [G], [R1] and [R2] to construct a continuous map

Ψ : B̄ε(ρ0) ⊂ Tσ → Tσ

such that d(Ψ(ρ), ρ) < ε for all ρ ∈ Bε(ρ0), and such that Ψ(ρ) is a g-equivariant
normal deformation of F .
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Assuming that we have such a Ψ then by Brouwer’s theorem there is ρ0 = Ψ(ρ)
for some ρ ∈ Bε(ρ0) and so we prove the existence of an g-equivariant normal
deformation Fη.

Let µ be an g-equivariant Teichmüller differential on F corresponding to an
element ρ of B̄ε(ρ0). To define Ψ(ρ) it is sufficient to define ηρ : S → R, then Ψ(ρ)
is given by the surface (e + ηρN ◦ e)(S). In order to Ψ(ρ) satisfy the condition
d(Ψ(ρ), ρ) < ε we use the deformation lemma of Garsia ([G], [R1]).

Let ρ be in B̄ε(ρ0), η : F → R be a g-equivariant function and Fη be the
g-equivariant normal deformation. Suppose that there is a K0-quasiconformal
mapping from D/Γρ,f onto Fη with dilatation ≤ 1 + δ except on some portion P
of Fη of real measure ≤ γ. Suppose that (δ, γ) tends to (0, 0) and

1
K(z)

λ(z)|dz + µ(z)dz̄| ≤ |d((e+ ηρN ◦ e)(S))| ≤ K(z)λ(z)|dz + µ(z)dz̄|, (4.1)

where µ(z) is the g-equivariant Teichmüller differential corresponding to D/Γρ,f ,
1 ≤ K(z) ≤ K0 and K(z) ≤ 1 + δ outside the set P . Thus dTg (D/Γρ,f , Fη) tends
to zero, where Tg is the Teichmüller space of Riemann surfaces of genus g (= genus
of S). The inclusion Tσ → Tg given by the inclusion between abstract NEC groups
defined by f is an isometric embedding (see [MS]). Hence if ρ1 is the point in Tσ
corresponding to the NEC group uniformizing Fη/g then dTσ (ρ, ρ1) tends to zero.

In order to construct the continuous function Ψ : B̄ε(ρ)→ Tσ we must construct
ηρ for each ρ satisfying (4.1).

Let B be the boundary of a polygon that is a fundamental region of a group
with signature σ and that uniformizes F/g.

Let B̄ be the preimage of B in F by the natural projection. Then F − B̄
is decomposed in 2q regions Pi, i = 1, . . . , 2q. where 2q is the order of f . We
construct the function η on P1 following the construction given in [R1] (pages
425–426 and 433–437) and in the appendix of [R2]. Such construction is based on
the fact that (4.1) can be replaced by

1
K(z)

|α∗µdx+ β∗µdy| ≤ λ∗(z)|η∗xdx+ η∗ydy| ≤ K(z)|α∗µdx+ β∗µdy|

where λ∗(z), α∗µ, β∗µ are continuous real-valued functions. Choosing λ∗(z) in a
suitable way, we can force

ω =
1

λ∗(z)
(α∗µdx+ β∗µdy)

to be exact. Then a solution of dη∗ = ω give us, after some manipulations the
function η satisfying (4.1) and vanishing on a small neighboorhood of the boundary
of P1.

Then we extend η equivariently by g, since µ is g-equivariant then η satisfies
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(4.1) outside a neioghboorhood of B̄ with measure converging to zero. Since η is
g-equivariant we have the existence of the conformal embedding e : S → Fη such
that g = e ◦ f ◦ e−1.
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