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Biautomatic groups form a wide class of finitely presented groups with inter-
esting geometric and computational properties. These groups include all word
hyperbolic groups, all fundamental groups of finite volume Euclidean and hyper-
bolic orbifolds, all braid groups [ECH+92], and all central extensions of word
hyperbolic groups [NRa]. A biautomatic group satisfies a quadratic isoperimetric
inequality, has a word problem solvable in quadratic time, and has a solvable con-
jugacy problem. The class of biautomatic groups has several interesting closure
properties. For instance, the centralizer of a finite subset of a biautomatic group
is biautomatic [GS91]. Also, biautomatic groups are closed under direct products
[ECH+92]. The theory of biautomatic groups is briefly reviewed below.

We present a technique for putting biautomatic structures on central quotients
of biautomatic groups:

Theorem A. Let G be a biautomatic group, and let C be a subgroup of Z G, the
center. Then G/C is biautomatic.

Theorem A has several applications. Our first application answers a questions
posed by Gersten and Short ([GS91], cf. proposition 4.7):

Theorem B. Direct factors of biautomatic groups are biautomatic.

Proof. Suppose G×H is biautomatic. The centralizer of H is G×ZH, and this
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is a biautomatic group by [GS91] corollary 4.4. Then ZH is a subgroup of the
center of G×ZH, so by theorem A, G×ZH/ZH = G is biautomatic. �

Several recent discoveries have pointed to the useful concept of poison sub-
groups: certain classes of groups cannot occur as subgroups of word hyperbolic
groups. For instance, the group ZZZ2 is poison to word hyperbolicity. More gener-
ally, any group which has an infinite index central ZZZ subgroup is poison to word
hyperbolicity ([CDP90], corollaire 7.2). Our next theorem says that among bi-
automatic groups, the latter class of poison subgroups occurs no more generally
than ZZZ2:

Theorem C. If the biautomatic group G contains a subgroup with an infinite
index central ZZZ subgroup, then G contains a ZZZ2 subgroup.

Proof. The hypothesis says that G has an infinite cyclic subgroup Z of infinite
index in its centralizer CZ . The group CZ is biautomatic by [GS91] corollary 4.4.
Since Z is central in CZ , then by theorem A the group CZ/Z is biautomatic. This
group is infinite, so by [ECH+92] example 2.5.12, it has an element of infinite order.
Any infinite cyclic subgroup of CZ/Z pulls back to a ZZZ2 subgroup of CZ < G. �

Theorem C raises the stakes on the question of whether biautomatic groups
satisfy an analogue of Thurston’s hyperbolization conjecture: is it true that every
biautomatic group either is word hyperbolic or has a ZZZ2 subgroup? This question
can now be restated as follows: if every infinite cyclic subgroup in a biautomatic
group has finite index in its centralizer, is the group word hyperbolic?

Gersten and Short ask whether a biautomatic group can have an infinitely
generated abelian subgroup ([GS91], p. 154). We can reduce this problem as
follows:

Theorem D. Suppose there is a biautomatic group with an infinitely generated
abelian subgroup. Then either there is a biautomatic group with an infinite rank
abelian subgroup, or there is a biautomatic group with an infinite abelian torsion
subgroup.

Proof. Suppose the biautomatic group G has an abelian subgroup H, infinitely
generated and of finite rank n ≥ 0. If n ≥ 1, choose an element h ∈ H of infinite
order. By [GS91] corollary 4.4, the centralizer Ch of h in G is biautomatic. Let
Z Ch be the center of Ch. By theorem A, Ch/H ∩ Z Ch is biautomatic. Note that
h ∈ H∩Z Ch < H < Ch, so the image ofH in Ch/H∩Z Ch is an infinitely generated,
abelian subgroup of rank ≤ n − 1. By induction, we obtain a biautomatic group
Γ with an infinitely generated abelian subgroup of rank 0, i.e. an infinite abelian
torsion subgroup. �
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Remark. If a group G has an infinite abelian torsion subgroup A then G is not
virtually torsion free, for if K < G were a torsion free subgroup of finite index,
then there would be two elements a 6= b ∈ A such that 1 6= b−1a ∈ K, hence b−1a
has infinite order; but b−1a ∈ A has finite order.

Dani Wise has produced biautomatic groups which are not virtually torsion
free [Wis95].

Remark. Theorem A has been sharpened in recent work of Neumann and Reeves
[NRb], who show that if C is a central subgroup of a biautomatic group G then
the central extension 1 → C → G → G/C → 1 is defined by a “regular cocycle”
of G/C. They have also proved a converse: if H is biautomatic, and if a central
extension 1 → C → G → H → 1 is defined by a regular cocycle of H, then G is
biautomatic. See also [NRa] where the converse is used to prove that every central
extension of a word hyperbolic group is biautomatic.
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Proof of theorem A

First we reduce theorem A to a special case:

Theorem E. If G is a biautomatic group and Z < G is an infinite cyclic central
subgroup, then G/Z is biautomatic.

Proof of theorem A. Let G be a biautomatic group, and let C be a subgroup of
the center Z G. Since Z G is biautomatic it is finitely generated. Hence C is a
finite rank central subgroup, say of rank k ≥ 0. Now peel off factors of ZZZ one at
a time, as in the proof of [GS91] proposition 4.7. If k ≥ 1 let Z be any infinite
cyclic subgroup of C. Applying theorem E it follows that G/Z is biautomatic, and
C/Z is a central subgroup of rank k − 1. Repeating this argument k times, we
see that there is a finite index free abelian subgroup C′ < C such that C/C′ is a
central finite subgroup in the biautomatic group G/C′. But the quotient of any
biautomatic group by any finite normal subgroup is easily seen to be biautomatic;
projecting the biautomatic structure from the total group to the quotient group
gives a biautomatic structure on the quotient. Hence, G/C = (G/C′)/(C/C′) is
biautomatic. �

The remainder of the paper is devoted to proving theorem E.
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Review of biautomatic groups

An alphabet is a finite set. A word over an alphabet A is a finite sequence of
elements in A. The empty word is sometimes denoted ε. The set of all words in
A is denoted A∗, and this forms a monoid under the operation of concatenation,
with ε as the identity. A language over A is a subset of A∗.

The length of a word w is denoted `w. If w is written in the form w = w1w2
then w1 is called a prefix subword and w2 is a suffix subword. If w is written as
w = w1w2w3 then w2 is called an infix subword, with associated prefix w1 and
suffix w3. For any integer t ≥ 0, w(t) denotes the prefix subword of w of length t
if t ≤ `w, and w(t) = w otherwise.

We adopt the graph theoretic notion of a finite state automaton over an alpha-
bet A. This is a finite directed graph M whose vertices are called states, together
with a labelling of each edge by a letter of A, a specified state s0 called the start
state, and a specified subset of states called the accept states, such that each state
has exactly one outgoing edge labelled with each letter of A. A failure state is
any state which is not an accept state. A path in M is always a directed path.
Concatenation of paths is denoted by juxtaposition. If ` = `π is the length of π,
then the states of M visited by π are denoted π[0], . . . , π[`], and the subpath from
π[s] to π[t] is denoted π[s, t]. Reading off the letters on the edges of π in succession
yields a word wπ = (a1 · · · a`) where ai is the label on the edge π[i− 1, i]. For any
word w and any state s, there is a unique directed path π starting at s such that
w = wπ; if s = s0 then we denote this path by πw. When circumstances require,
we shall also denote wπ by w(π) and πw by π(w). The set of all words w such
that πw ends at an accept state forms a language over A denoted L(M).

A language L over A is called regular if there exists a finite state automaton
M over A such that L = L(M). We say that M is a word acceptor for L.

Given a finite state automaton M , an accepted path is any path from the start
state to an accept state. A live state is any state lying on an accepted path. A
dead end state is any state such that all arrows pointing out of that state point
directly back into it; note that a dead end state may be a live state. Any path
which begins and ends at live states is called a live path; note that all interior
states of a live path are live states. A loop is a path which begins and ends at the
same vertex, so a live loop is a loop passing over live states only. Given a loop π,
if we write π = π1π2 then π2π1 is also a loop, called a cyclic permutation of π.

The basic definition of biautomatic groups involves 2-variable languages (see
for example [ECH+92] p. 24, or [GS91] p. 135). For our purposes the equivalent
geometric definition of biautomatic groups will suffice ([ECH+92] lemma 2.5.5),
so we shall not use 2-variable languages.

Consider a group G, an alphabet A, and a map A → G. This induces a monoid
homomorphism A∗ → G denoted w→ w. Given a ∈ A, we often omit the overline
and consider a as an element of G, even if A→ G is not injective. Thus, abusing
terminology, A is called a generating set for G if A∗ → G is onto. Also, any
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language L ⊂ A∗ that maps onto G is called a set of normal forms for G. If M
is a finite deterministic automaton over A, then for any path π in M the group
element wπ is also denoted π.

Given a generating set A for G, for each g ∈ G we define the word length of g to
be |g| = Min{`w | w = g}, and we define the word metric on G by d(g, h) = |g−1h|.

A biautomatic structure for G consists of a generating set A for G, and a set
of normal forms L ⊂ A∗ for G, with the following properties:
• L is a regular language
• There exists a constant K ≥ 0 such that for each v, w ∈ L and each a ∈ A∪{ε},

if v = wa then for all t ≥ 0,

d(v(t), w(t)) ≤ K

and if av = w then for all t ≥ 0,

d(av(t), w(t)) ≤ K.

The constant K is called a two-way fellow traveller constant for the biautomatic
structure L (to contrast with an automatic structure, in which only the first in-
equality is required). As a consequence, for each v, w ∈ L and any words µ, ν ∈ A∗,
if µ v = w ν, then

d(µ v(t), w(t)) ≤ K(|µ|+ |ν|)

for all t ≥ 0.
We shall need the result of [ECH+92] theorem 2.5.1, that any biautomatic

structure on a group G has a sublanguage which is a biautomatic structure with
uniqueness, meaning that each element of G has a unique normal form.

Now we review several results of [GS91] concerning subgroups of biautomatic
groups; these results will be used without comment in what follows. Let L be a
biautomatic structure on a group G. A subgroup H < G is called rational if the
language {w ∈ L | w ∈ H} is regular. If this is so, then H is a biautomatic group
([GS91], theorems 3.1 and 2.2). The centralizer of a subset S ⊂ G is denoted CS ;
and CG, the center of G, is specially denoted ZG. If G is biautomatic and S is a
finite set or a finitely generated subgroup, then CS is rational ([GS91] proposition
4.3); thus, the subgroups CS , ZG and Z CS are rational, and it follows that all
these subgroups are biautomatic.

For the remainder of the paper, fix a central extension

1→ Z → G→ H → 1

where Z = 〈z〉 is an infinite cyclic, central subgroup of G. Also fix a generating
set A. Note that A projects to a generating set for H as well, and the projection
map G→ H does not increase the word metric. Let L be a biautomatic structure
with uniqueness for G over A. Let M be the word acceptor automaton for L.
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A biautomatic structure for G/Z = H

Define a central loop in the automaton M to be any live loop representing an
element of the center Z G. We consider two central loops to be the same if they
are cyclic permutations of each other.

Simplicity Lemma (cf. [NS92], lemma 3.1). Let γ be a central loop in M . Then
γ is an iterate of a simple loop in M , and every other simple loop in M is disjoint
from γ.

Proof. If γ is not an iterate of a simple loop, then after cyclically permuting γ,
there exist loops µ, ν with the same initial state as γ, such that γ = µν 6= νµ.
Since γ is central, it follows that ν µ = µ−1γ µ = γ = µν. Choose an accepted
path π = π1π2 concatenated at the common initial state of the loops µ, ν, γ.
Then π1µνπ2 and π1νµπ2 are distinct accepted paths representing π γ, violating
uniqueness of L.

If there is another simple loop γ′ in M intersecting γ, then after cyclic permu-
tations we may assume that γ and γ′ have the same base vertex. Since γ is central
then γ γ′ = γ′ γ, but γγ′ 6= γ′γ. Now proceed as above. �

A central loop is primitive if it is not an iterate of a shorter central loop. Note
that a primitive central loop does not have to be a simple loop in M . A path π
in M is said to be compatible with a set of primitive central loops {γ1, . . . , γI}
if π intersects each γi. The set {γ1, . . . , γI} is live if it is compatible with an
accepted path. Define a central cycle in M to be any formal linear combination
with positive integer coefficients of a live set of central loops, c = n1γ1 + · · ·+nIγI .
The element c is defined to be γn1

1 · · · γ
nI
I .

If a path π is compatible with a central cycle c = n1γ1 + · · · + nIγI , then we
may combine π and c into a well-defined path as follows. Choose t1, . . . , tI so that
ti is the minimal integer with π(ti) ∈ γi. Since these numbers are distinct by the
Simplicity Lemma, we may reindex so that t1 < t2 < · · · < tI . Now take a cyclic
permutation of γi so that it is based at the point π[ti]; this gives a well-defined
loop, since γi is an iterate of a simple loop. Then the path

π∗∗c = π[0, t1]∗γn1
1 ∗π[t1, t2]∗ · · · ∗π[tI−1, tI ]∗γnII ∗π[tI , `π]

is well-defined. If π is an accepted path then π∗∗c is an accepted path representing
π c. We say that a path q contains the central cycle c if there exists a path π
compatible with c such that q = π∗∗c.

A subset of an abelian group is linearly independent if the identity cannot be
expressed as a non-trivial integer linear combination of elements in the set. Note
that a linearly independent set cannot contain torsion elements.

Independence Lemma (cf. [NS92], p. 451). If {γ1, . . . , γI} is a live set of central
loops, then {γ1, . . . , γI} is a linearly independent subset of Z G.
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Proof. Let π be any accepted path compatible with {γ1, . . . , γI}. If the lemma is
false, there is an equation with positive integer exponents of the form

γ
mi1
i1
· · · γmiAiA

= γ
nj1
j1
· · · γnjBjB

where γia 6= γjb for 1 ≤ a ≤ A, 1 ≤ b ≤ B. Let c1, c2 be the central cycles
given by the two sides of this equation, e.g. c1 = mi1γi1 + · · · + miAγiA . Then
π∗∗c1 and π∗∗c2 are distinct accepted paths representing the same element of G,
contradicting the uniqueness property for L. �

Now define a Z-cycle to be a central cycle representing an element of Z. A
primitive Z-cycle is a Z-cycle which is not a positive multiple of any other Z-cycle
except for itself. Note that a primitive Z-cycle may be a positive multiple of some
central cycle which is not a Z-cycle. Recalling that Z = 〈z〉, if c is a Z-cycle with
c = zn where n ≥ 1 then c is said to be a positive Z-cycle.

Uniqueness Corollary. There are only finitely many primitive Z-cycles, and an
accepted path can be compatible with at most one of them.

Proof. There are only finitely many live sets of central loops, and by the Inde-
pendence lemma each one has at most one positive linear combination which is a
primitive Z-cycle. If an accepted path p is compatible with two distinct primitive
Z-cycles, then those two cycles taken together give a live set of central loops which
forms a linearly dependent subset of Z G, contradicting the Independence lemma.

�

Define a sublanguage LH ⊂ L to consist of all words w ∈ L such that w is
compatible with some positive Z-cycle but w contains no Z-cycle. We will prove
that LH projects to a biautomatic structure on H, but first here is an example.

Consider the group G = ZZZ ⊕ ZZZ = 〈a, b | [a, b] = 1〉 with generating set A =
{a, b, A = a−1, B = b−1}, and with the biautomatic structure.

L = {ambn, amBn, Ambn, AmBn | m,n ≥ 0}.

A word acceptor for L is shown in the figure below. The primitive central loops
in this example are γa, γb, γA, γB . The live sets of primitive central loops are

{γa}, {γb}, {γA}, {γB}, {γa, γb}, {γa, γB}, {γA, γb}, {γA, γB}.

We now consider several examples of infinite cyclic subgroups Z ⊂ ZZZ ⊕ ZZZ, and in
each case we describe LH where H = ZZZ ⊕ ZZZ/Z.

If Z = 〈a〉 then the only positive, primitive Z-cycle is γa, and in this case
LH = {abn, aBn | n ≥ 0}. If Z = 〈ak〉 then the only positive, primitive Z-cycle is
kγa, and LH = {aibn, aiBn | 1 ≤ i ≤ k, n ≥ 0}.
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The central state is the start state. Any missing directed edges lead to a dead end failure state.

If Z = 〈ab〉, then the only positive, primitive Z-cycle is γa + γb, and LH =
{abn, anb | n ≥ 1}. If Z = 〈akbl〉 with l, k ≥ 1 then the only positive, primitive
Z-cycle is kγa + lγb, and in this case

LH = {aibn | 1 ≤ i ≤ k, n ≥ 1} ∪ {anbj | n ≥ 1, 1 ≤ j ≤ l}.

Returning to the general setting, the proof that LH projects to a biautomatic
structure onH proceeds in three steps. Step 1 proves that LH is a regular language.
Step 2 proves that each coset of Z is represented by some element of LH . Step 3
is the two-way fellow traveller property.

Step 1: Regularity of LH

In one special case the proof of regularity is particularly simple. Namely, suppose
that each primitive Z-cycle is actually a simple loop of length 1 in the automaton
M . It is easy to construct a new automaton which accepts exactly those accepted
words of M that touch some Z-loop but do not go around it. First take three
separate copies of M denoted Mn for “not touched”, Mt for “touched”, and Ma

for “around”; we imagine these stacked one atop the other. For each edge E of Mn

that starts outside a Z-loop and ends on a Z-loop, detach the forward end of E
from Mn and attach it to the corresponding state in Mt. For each Z-loop in Mt,
detach its forward end from Mt and attach it to the corresponding state in Ma.
The result is an automaton M ′. For each accept state in M , the corresponding
state of Mt is also an accept state of M ′; all other states of M ′ are failure states.
The automaton M ′ is a word acceptor for LH .
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In general, a Z-cycle may be a linear combination of non-simple loops. We show
that LH is regular by reformulating the definition of LH as a regular predicate, and
then applying [ECH+92] theorem 1.4.6. For any central loop γ in M , the language
Lγ = {w | πw ∩ γ 6= ∅} is regular, because we may alter M by turning each state
lying on γ into a dead end accept state, and the new automaton recognizes Lγ .
Also, the set of words L+

γ = {w | πw contains γ} is regular, because we may modify
M by keeping track not only of the state in M visited by πw(t), but also of the
longest subpath of a cyclic permutation of γ traversed by πw(t); this can clearly
be done with a finite state automaton.

For each primitive Z-cycle c = n1γ1 + · · ·+ nPγP , the language Lc = {w | πw
is compatible with c} is the same as Lγ1 ∩ · · · ∩ LγP , hence is regular. Similarly,
the language L+

c = {w | πw contains c} is the same as L+
γ
n1
1
∩ · · · ∩ L+

γ
nP
P

hence is

regular.
Finally, let c1, . . . , cN be the finite list of all primitive, positive Z-cycles. By

the Uniqueness corollary, if w ∈ Lc1 then the only possible Z-cycle that πw may
contain is c1. Thus,

LH = L ∩
[
(Lc1 ∩ ¬L+

c1
) ∪ · · · ∪ (LcN ∩ ¬L+

cN )
]

so LH is regular.

Step 2: LH represents each coset of Z in G

For this argument, fix an element g ∈ G. We must show that the coset gZ is
represented by some word in LH . The proof will depend on the properties of the
Neumann–Shapiro triangulation of the boundary of an automatic structure on an
abelian group.

First we make a reduction: it suffices to construct a wordw ∈ L representing gZ
such that πw contains some positive Z-cycle. For then we may write πw = πv∗∗cm
where c is a positive, primitive Z-cycle and m is as large as possible. Then πv does
not contain c, and yet πv is compatible with c, so by the Uniqueness corollary πv
does not contain any other Z-cycle. Hence v ∈ LH and v represents gZ.

Let C = Z Cg, and note that C contains both Z G and gZ. We review the
biautomatic structure on C induced by that on G. Let LC ⊂ L be the regular
sublanguage of words w with w ∈ C. From the proof of [GS91] theorem 3.1, it
follows that there is a generating set B for C, a biautomatic structure L′ for C
over B, and a map φ : B → A∗, such that the induced map B∗ → A∗, also denoted
φ, restricts to a surjection from L′ to LC . By [ECH+92] theorem 2.5.1, we may
replace L′ by a sublanguage which is a biautomatic structure with uniqueness for
C, and hence the map φ : L′ → LC is a bijection. Let M ′ be a word acceptor for
L′ over B. Then we may speak about Z-cycles in M ′.

Now we make another reduction. We shall prove that the coset gZ is repre-
sented by an accepted path π in M ′, so that π is compatible with some positive
Z-cycle c′ = n1γ1 + · · ·+ nIγI in M ′.
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Accepting this for the moment, we use it to complete step 2. Write π =
π0π1 · · ·πI so that for each k ≥ 0, the path

π∗∗c′k = π0γ
kn1
1 π1 · · ·πI−1γ

knI
I πI

is an accepted path representing gZ. Under the mapping φ : B∗ → A∗, the word
w(π∗∗c′k) ∈ L′ goes to a word ρk in the language LC ⊂ L. For each k the word
ρk represents gZ. For each k and for 1 ≤ i ≤ I, let tki be the moment of time at
which π∗∗c′k completes the loop γknii . Note that the image of w

(
(π∗∗c′k)[0, tkk]

)
under φ is a prefix of ρk, denoted ρki . Let ski be the state of M at which the
path π(ρki ) ends. Thus, for each k we obtain an I-tuple of states in M denoted
Qk = (sk1, . . . , s

k
I ). There must be two values k1 < k2 with Qk1 = Qk2 . It follows

that π(ρk2) = π(ρk1)∗∗c for some positive Z-cycle c in M representing c′k2−k1 ∈ Z.
Thus, π(ρk2) is an accepted path in M representing gZ and containing a positive
Z-cycle, as required to complete step 2.

Now we review the result of Neumann–Shapiro, [NS92] theorem 1.1, which
associates to each automatic structure on the abelian group C, a simplicial de-
composition of the boundary. While their result is only stated when C is free
abelian, we note that their construction is valid more generally when C is abelian.

Fix an identification C = ZZZk ⊕ F for some finite abelian group F . We shall
sometimes confuse an element of C with its projection onto ZZZk. Each non-torsion
c ∈ C determines a ray in ZZZk whose direction is denoted [c] ∈ Sk−1. Neumann and
Shapiro associate, to a biautomatic structure L′ on C, a rational linear ordered
simplicial subdivision Σ of Sk−1, as follows. Each state of the word acceptor M ′

lies on at most one simple loop of M ′ (see [NS92] lemma 3.1, or the Simplicity
lemma). Let π be a simple live path in M ′ initiating at the start state s0. Let
s1 be the first state on π which lies on a simple loop, and let γ1 be that loop.
Inductively, let si be the first state of π after si−1 which lies on a simple loop
distinct from γi−1, and let γi be that loop. This induction ends with sl, and let
sl+1 be the final state of π. Note that {γ1, . . . , γl} is a linearly independent set in
C (see [NS92] p. 451, or the Independence lemma). We may now define a rational
linear ordered (l−1)-simplex in Sk−1, namely σπ = 〈[γ1], . . . , [γl]〉. Neumann and
Shapiro prove that as π varies over all simple paths in M ′, the collection Σ = {σπ}
is an ordered simplicial subdivision of Sk−1.

Since a group element determines a ray, we need to know the relation be-
tween that element and the simplex at infinity which the ray hits. Let π be as
in the previous paragraph, and let πi = π[si−1, si], so π = π1π2 · · ·πl+1. Define
π(n1, . . . , nl) = π1γ

n1
1 π2 · · ·πlγnll πl+1. Note that each element of C is uniquely

represented by a path of the form π(n1, . . . , nl), for some simple accepted path π
and some n1, . . . , nl ≥ 0. Fix the “visual” metric on Sk−1, where the distance be-
tween two rays is equal to the angle they subtend. Although we cannot guarantee
that the ray [π(n1, . . . , nl)] hits the simplex σπ, the following lemma says that it
comes visually close:
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Visual Lemma. For each ε > 0 there exists a ball B ⊂ C around the origin such
that if π(n1, . . . , nl) /∈ B then the visual distance between [π(n1, . . . , nl)] and the
point [γn1

l · · ·γ
nl
l ] ∈ σπ is smaller than ε.

Proof. This follows from a geometric principle: as a person walks away from you
at the beach, they appear to get smaller and smaller. This principle applies in
ZZZn, and so also in C which is quasi-isometric to ZZZn. More precisely, for all ε > 0
and all δ ≥ 0 there exists a ball B ⊂ C around the origin, such that if X ⊂ C has
diameter at most δ, and if X is not contained in B, then X has visual diameter
less than ε.

Let δ be the length of the longest simple path in M ′. Since

π(n1, . . . , n0)−1(γn1
1 · · ·γ

nl
l

)
= π−1

it follows that d
(
π(n1, . . . , nl), γ

n1
1 · · ·γ

nl
l

)
≤ δ. Now choose B according to the

above principle, and take X =
{
π(n1, . . . , n0), γn1

1 · · ·γ
nl
l

}
to finish the proof. �

To complete step 2, recall that Z = 〈z〉, and let Star[z] be the union of those
simplices of Σ that contain [z]. Noting that [z] ∈ int(Star[z]), choose ε so small
that every point of Sk−1 within visual distance 2ε of [z] is contained in int(Star[z]).
Choose a positive integer m so large that [gzm] is within visual distance ε of [z],
and so that gzm lies outside the ball B given by the Visual lemma. Now gzm is
represented by a path in M ′ of the form π(n1, . . . , nl), for some simple accepted
path π and some n1, . . . , nl ≥ 0 as above. By the Visual lemma it follows that[
γn1

1 · · · γ
nl
l

]
∈ int(Star[z]), hence [z] ∈ σπ. Therefore there is a positive Z-cycle c

obtained as a linear combination of γ1, . . . , γl. This shows that gzm is represented
by an accepted path π(n1, . . . , nl) in M ′ compatible with the positive Z-cycle c,
finishing the proof that the coset gZ is represented by the language LH .

Step 3: The two-way fellow traveller property for LH

To prove this, consider v, w ∈ LH and any a, b ∈ A ∪ {ε}, and assume that av
and wb are congruent modulo Z. Then av = wbzβ for some β. We shall give a
bound |β| ≤ B, where the constant B depends only on Z and on the biautomatic
structure on G. If K is a two-way fellow traveller constant for L, it follows that
d(av(t), w(t)) ≤ K ′ = (B|z| + 2)K for all t ≥ 0. Thus, K ′ is a two-way fellow
traveller constant for LH in G, and so also in H. Henceforth, we can and shall
assume β ≥ 0.

To give the idea of the proof, we first sketch the case where Z is a rational
subgroup of G. Then each Z-cycle in G is a loop, for by [NS92] theorem 3.4,
the two ends of Z in the sphere at infinity of Z G are vertices of the Neumann–
Shapiro triangulation; and if there were a Z-cycle which was not a loop then that
Z-cycle would determine a simplex σ of the triangulation such that the interior of σ
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contains an end of Z, contradiction. Thus, we can write πw = π1π2, concatenated
at a vertex that lies on a primitive Z-loop γ. For simplicity, suppose that γ
represents z itself, not a power (at worst, γ represents a bounded power of z). Then
wzβ is represented by the accepted path π′ = π1γ

βπ2. Let w′ = wπ′ = wπ1w
β
γwπ2 .

Let k be the length of γ, which is bounded independent of γ. Since av = w′b and
v, w′ ∈ L, then av and w′b are fellow travellers. Assuming by contradiction that β
is very large, it follows that v has a long subword v′ that fellow travels the subword
wβγ of w′. Travelling along v′ and wβγ , at every kth vertex we keep track of two
pieces of data: the state of M visited by v′, and the word difference between v′

and wβγ . This data takes values in a finite set, so if β is large enough the data is
repeated at two different spots on v′. The subword between these two spots traces
out a loop in M , because the states are repeated; and this subword represents an
element of Z, because the word difference with powers of w(γ) is repeated. Thus,
we have shown that v contains a Z-loop, contradicting the fact that v ∈ LH . This
contradiction shows that β cannot be too large, completing the sketch in the case
that Z is rational.

In the general case, the path πw can be written in the form π1π2 . . . πpπp+1,
with πj and πj+1 concatenated at a vertex Vj , so that there is a primitive central
loop γj based at Vj , and there is a primitive Z-cycle c = n1γ1 + · · · + npγp
representing zα, where 0 < α ≤ A for some constant A depending only on the
biautomatic structure on G. Now write β = qα+ r for some integers q, r ≥ 0 with
r < α, so r < A. Then there is a word w′ ∈ L such that

π′ = πw′ = πw∗∗(q · c) = π1γ
qn1
1 π2 · · ·πpγqnpp πp+1

is an accepted path representing w′ = wzqα. It follows that av = w′bzr, so
d(av,w′b) ≤ r|z| < A|z|. Thus, the words av and w′ are fellow travellers with a
constant independent of all choices:

d(av(t), w′(t)) ≤ K1 = (A|z|+ 2)K.

Let U be the ball of radius K1 around the origin of G.
Since the automaton M has only finitely many primitive central loops, for each

such loop γ there are only finitely many primitive central loops having a power
representing some power of γ; let Gγ be this set of loops. There is a positive
integer mγ such that each loop in Gγ has a power representing γmγ .

Recalling the primitive Z-cycle c = n1γ1 + · · ·+npγp, choose the least positive
integral multiple ρj of each mγj so that ρ1γ1 + · · ·+ρpγp is a Z-cycle. Note that ρj
depends only on the primitive Z-cycle c and on j. In particular, there is a global
bound ρj ≤ R independent of c and j.

Fix j = 1, . . . , p for the moment. We show that if β is sufficiently large, then
v has an infix subword traversing a loop of M that represents γρjj . Let Lj be
the length of γρjj . Factor π′ as π′1γ

qnj
j π′2, and let the corresponding factorization



28 L. Mosher CMH

of w′ be w′1w
+w′2 with w+ = w(γqnjj ). We may factor v = v′1v

+v′2, so that for
0 ≤ t ≤ qnj/ρj,

d(av′1v
+(tLj), w′1w

+(tLj)) ≤ K1.

Let dt be this word difference, so dt ∈ U . Let st be the state of M at which the
word v′1v

+(tLj) terminates.
Noting that q ≥ (β −A)/A, then if

β ≥ Aρj(|U | · |M |+ 1)
nj

+A

it follows that
q ≥ ρj(|U | · |M |+ 1)

nj
so ⌊

qnj
ρj

⌋
≥ |U | · |M |.

In this case there are integers 0 ≤ t1 < t2 ≤ qnj/ρj so that dt1 = dt2 and st1 = st2 .
It follows that

v+(t1)−1v+(t2) = γ
(t2−t1)ρj
j

and that this element is represented by a loop contained in πv. This loop must
be an iterate of some simple loop γ′ ∈ Gγj , and there must be a lower iterate of
γ′ representing γρjj , since mγj divides ρj . Hence, πv contains a loop representing

γ
ρj
j .

Therefore, if β ≥ AR(|U | · |M |+1)+A then πv contains a Z-cycle representing
γρ1

1 + · · ·γρpp ∈ Z, contradicting the fact that v ∈ LH . This finishes the proof that
LH is a biautomatic structure for H.
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