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Stable equivalence preserves representation type
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Abstract. Given two finite dimensional algebras A and T, it is shown that A is of wild repre-
sentation type if and only if I" is of wild representation type provided that the stable categories
of finite dimensional modules over A and I' are equivalent. The proof uses generic modules. In
fact, a stable equivalence induces a bijection between the isomorphism classes of generic modules
over A and I', and the result follows from certain additional properties of this bijection. In the
second part of this paper the Auslander—Reiten translation is extended to an operation on the
category of all modules. It is shown that various finiteness conditions are preserved by this op-
eration. Moreover, the Auslander—Reiten translation induces a homeomorphism between the set
of non-projective and the set of non-injective points in the Ziegler spectrum. As a consequence
one obtains that for an algebra of tame representation type every generic module remains fixed
under the Auslander—Reiten translation.
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Given a finite dimensional algebra A over an algebraically closed field one fre-
quently disregards the projective objects in the category mod A of finite dimen-
sional A-modules and focuses on the stable category mod A. The objects of mod A
are those of mod A but the Hom-groups are the ordinary Hom-groups modulo the
subgroup of those morphisms which factor through a projective A-module.

In this paper we show that mod A determines the representation type of A.
Recall that the algebra A is either tame, i.e. all finite dimensional indecomposable
A-modules of a given dimension belong to finitely many one-parameter families,
or A is wild, i.e. there are non-trivial two-parameter families of finite dimensional
indecomposable A-modules [9]. Of course, one feels that this dichotomy should not
depend on the deletion of finitely many objects in the category mod A, and this is
precisely one of the main results of this paper. More precisely, given another alge-
bra I and an equivalence mod A — mod T, then I' is tame if A is tame. Moreover,
under such an equivalence the one-parameter families in mod A correspond to the
ones in mod I'. The fact that mod A determines the representation type of A also
follows, for some classes of symmetric algebras, from recent work of Assem, de la
Pena and Erdmann [2, 10]; however their methods are completely different.

Equivalences between stable module categories have been studied by many au-
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thors. They naturally occur for instance in representation theory of finite groups.
Another source of examples, which includes every algebra of Loewy length 2, is the
class of algebras stably equivalent to a hereditary algebra. Usually the analysis
concentrates on homological properties of the category mod A which are preserved
by an equivalence mod A — modI'. In this paper we follow a different approach.
We investigate pure-injective modules which are not necessarily finitely present-
ed. Among them the endofinite modules are of particular interest. Recall that a
module is endofinite if it is of finite length when regarded in the natural way as a
module over its endomorphism ring. In order to study the non-finitely presented
A-modules we introduce a new category limmod A which is essentially determined
by the following three properties:

(i) limmod A contains, up to equivalence, mod A as a full subcategory.

(ii) limmod A is an additive category with direct limits.

(iii) Every object in limmod A is a direct limit of objects in mod A.

The canonical functor mod A — mod A induces a functor Mod A — limmod A,
and we use it to establish a close relationship between the endofinite objects in
Mod A and lim mod A. By Crawley-Boevey’s characterization of tameness in terms
of endofinite indecomposables [6], we can then deduce that the representation type
of A is determined by lim mod A, and hence by mod A.

The second part of this paper is devoted to the Auslander-Reiten translation
M +— DTr M which Auslander and Reiten introduced in [4] for finitely presented
modules over an artin algebra A, and which plays a prominent role in modern repre-
sentation theory. We extend this to an operation on the category of all A-modules
and show that most of the basic properties for finitely presented modules carry
over to arbitrary modules. Moreover, finiteness conditions like pure-injectivity and
endofiniteness are preserved. Finally we show that the Auslander-Reiten trans-
lation induces a homeomorphism between the set of non-projective points and
the set of non-injective points in the Ziegler spectrum of A. As a consequence
we obtain that for a tame algebra every generic module remains fixed under the
Auslander-Reiten translation. Recall that a module is generic if it is indecom-
posable endofinite but not finitely presented. Therefore our result complements
Crawley-Boevey’s theorem which states for a tame algebra that for every natural
n almost all finitely presented indecomposable modules of endolength n are fixed
under the Auslander-Reiten translation [5].

The final section of this paper is devoted to a remarkable property of certain
triangulated categories which follows from our discussion of stable categories. We
show that for every quasi-Frobenius ring A of finite representation type the tri-
angulation on mod A induces a triangulation on limmod A. We obtain therefore
non-trivial examples of triangulated categories having the property that the tri-
angulation induces a triangulation on the category of ind-objects in the sense of
Grothendieck and Verdier [12].
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1. Locally finitely presented categories

We recall some terminology and some well-known facts about locally finitely pre-
sented categories. Most of this material can be found in Crawley-Boevey’s ex-
position [8]. Recall that a direct limit in a category A is the colimit of a functor
I — A where I is a directed set. Now let .4 be an additive category in which direct
limits exist. An object X in A is finitely presented provided that the representable
functor Hom(X, ) commutes with direct limits and we denote by fp(.A) the full
subcategory of finitely presented objects in A. The category A is said to be locally
finitely presented if the isomorphism classes of fp(.A) form a set and every object
in A is a direct limit of objects in fp(A).

Suppose now that C is a skeletally small additive category. We shall construct
a locally finitely presented category limC which is essentially determined by the
following three properties:

(i) limC contains, up to equivalence, C as a full subcategory.

(ii) limC is an additive category with direct limits.

(iii) Every object in imC is a direct limit of objects in C.
Denote by (C°P, Ab) the category of additive functors C°P? — Ab into the category
of abelian groups. As for module categories, there is a tensor product (C°P, Ab) x
(C,Ab) — Ab, (X,Y) — X ®¢Y, and a functor X in (C°P, Ab) is flat if X ®¢ — is
exact. The full subcategory of flat functors is denoted by Flat(C°P, Ab); it is locally
finitely presented and the finitely presented objects in Flat(C°P, Ab) are precisely
the direct summands of representable functors. Moreover given any locally finitely
presented category A, the functor

A — Flat(fp(A)°P, Ab), X + Hom( , X)|gp(a)

is an equivalence [8, Theorem 1.4]. We now define limC = Flat(C°P, Ab) and
it follows from our discussion that limC satisfies the conditions (i) - (iii). The
following property of limC well be needed later.

Lemma 1.1. Any additive functor C — A into an additive category with direct
limits extends, up to isomorphism, uniquely to a functor imC — A which com-
mutes with direct limits.

Proof. See [17, Property 5.6].

Given a locally finitely presented category A and a full additive subcategory
C of fp(A), then the inclusion C — A induces a fully faithful functor imC — A
which identifies lim C with the full subcategory of A formed by the direct limits
of objects in C. In the sequel we shall therefore view limC as a full subcategory
of A.

Suppose now that A4 is a locally finitely presented category which has products.
There is a notion of purity for A which is defined as follows. A sequence of
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morphisms 0 — L 5 M 4N S0 A is pure-exact if the induced sequence
0 — Hom(X,L) — Hom(X,M) — Hom(X,N) — 0 is exact for every X in
fp(A). In this case the morphism ¢ is called a pure monomorphism, and L is pure-
injective if every pure monomorphism L — M splits. We denote by Pinj.A the
full subcategory of pure-injective objects. One can assign to A a locally coherent
Grothendieck category D(A) and a fully faithful functor d: A — D(A) which
identifies the pure-exact sequences 0 — L — M — N — 0 in A with the exact
sequences 0 — d(L) — d(M) — d(N) — 0 in D(A). Moreover d identifies the
pure-injective objects in A with the injective objects in D(A) [8, Theorem 3.3].

A full subcategory of A is called definable if it is closed under direct limits,
products and pure subobjects taken in A. Finally we recall that Zsp A denotes the
Ziegler spectrum of A which is a topological space. The points are the isomorphism
classes of indecomposable pure-injective objects in A and the assignment X +—
X N Zsp A defines a bijection between the definable subcategories of A and the
closed subsets of Zsp A. This follows from Corollary 4.7 and Theorem 6.2 in [18].
If A = ModA is a module category, then we simplify our notation and write
Pinj A, Zsp A etc.. Note that Zsp A is a quasi-compact space [24], see also [16,
Proposition 4.7].

2. Stable module categories

Let A be a ring. The category Mod A of (right) A-modules is locally finitely
presented and we denote by mod A the full subcategory of finitely presented A-
modules. In this section we define the stable module category mod, A with respect
to a full additive subcategory C of mod A and discuss the basic properties of the
corresponding locally finitely presented category limmod. A. We begin with the
following definition.

Let A be an additive category and suppose that C is an additive subcategory
of A. Then one can form the stable quotient category A[C which is additive
and admits an additive quotient functor ¢: A — AJC such that ¢(C) = 0. The
objects of A[C are those of A and for every pair X,Y of objects Hom(X,Y) is
the group of morphisms in A modulo those which factor through an object in C.
The quotient functor ¢ is characterized by the property that every additive functor
f: A — B between additive categories with f(C) = 0 induces a unique additive
functor f: A[C — B such that f = foq. If C is an additive subcategory of mod A,
then we denote mod A[C by mod, A.

Proposition 2.1. Let C be a full additive subcategory of mod A. Then there
exists an additive category with direct limits lim mod. A and a functor ¢: Mod A —
lim mod; A having the following properties.

(1) ¢ commutes with direct limits and q(M) = 0 if and only if M is a direct
limit of modules in C.
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(2) Let f:Mod A — A be a functor into an additive category with direct limits.
If f commutes with direct limits and f(M) = 0 for all M in C, then there is, up
to isomorphism, a unique functor f: limmod, A — A which commutes with direct
limits and satisfies f = foq.

(3) limmod. A is locally finitely presented and q induces an equivalence between
mod. A and the full subcategory of finitely presented objects in limmod. A.

Proof. The category limmod. A has been defined in the preceding section and it
follows from Lemma 1.1 that the quotient functor mod A — mod, A induces, up
to isomorphism, a unique functor ¢: Mod A — limmod, A which commutes with
direct limits.

(1) Clearly q(M) = 0 for every M € limC since ¢ commutes with direct limits.
Thus we need to show that (M) = 0 implies M € limC. By [8, Lemma 4.1]
it is sufficent to show that every morphism ¢: X — M with X € mod A factors
through an object in C. To this end write M = lim M; as direct limit of finitely
presented modules with canonical morphisms p;: M; — M. If K; is the kernel
of the morphisms Hom(X, M;) — Hom(q(X),q(M;)), then since the direct limit
sequence 0 — lim K; — Hom(X, M) — Hom(q(X), q(M)) is exact, ¢ arises from
some « € K;. Thus ¢ = p;oa and « factors through some object in C. We conclude
that M € limC.

(2) The restriction g = f|moq A induces a unique functor §: mod, A — A such
that g(X) = gogq(X) for every X € mod A. The functor g extends by Lemma 1.1
uniquely to a functor f: limmod, A — A which commutes with direct limits.

(3) Clear from the construction.

For the rest of this paper we shall work with an additional finiteness condition
on the subcategory C of mod A. Recall that C is a covariantly finite subcategory
provided that every object X € mod A has a left C-approzimation, i.e. a morphism
X — Y with Y € C such that the induced map Hom(Y,Y”’) — Hom(X,Y”) is
surjective for every Y’ € C.

Proposition 2.2. Let C be a full additive subcategory of mod A and suppose that
C is covariantly finite. Then limC and limmod. A have products. Moreover the
canonical functors i: imC — Mod A and g: Mod A — lim mod. A have the follow-
ing properties.

(1) i and g commute with products.

(2) ¢ and q send pure-ezact sequences to pure-exact sequences and pure-injective
objects to pure-injective objects.

(3) Let X = PinjAN UimC. Then q induces an equivalence between Pinj AJX
and the full subcategory of pure-injective objects in lim mod. A.

(4) Zsp AN imC is a closed subset of Zsp A and q induces a homeomorphism
between Zsp A\ imC and the Ziegler spectrum of limmod, A.

(5) Let M € ZspA\ imC and N = q(M). Then q induces an isomorphism
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between Endy (M)/rad Endp (M) and End(N)/rad End(N).

Proof. Tt follows from [18, Proposition 4.13] that limC is a definable subcategory
of Mod A; in particular limC has products. Given any definable subcategory of
Mod A there is a corresponding definable quotient category in the sense of [18].
Such a category has automatically products and in our situation the definable
quotient category corresponding to limC is exactly lim mod. A; this follows from
[18, Theorem 5.4]. The canonical functors ¢ and ¢ are definable in the sense of [18]
and we refer to Theorem 7.2, Theorem 7.8, Theorem 5.1 and Corollary 6.3 in [18]
for the proofs of (1) - (5).

Given a full additive subcategory C of mod A, then it follows from Propo-
sition 2.1 that the canonmical functor Mod A — limmod, A induces a functor
Mod A[limC — limmod, A. The next result shows that this functor is an equiv-
alence if A is of finite representation type.

Corollary 2.3. Let A be a ring of finite representation type and suppose that
C is a full additive subcategory of mod A. Then the canonical functor Mod A —
limmod, A induces an equivalence between Mod A[limC and limmod. A. In par-
ticular the category Mod A[limC is locally finitely presented and has products.

Proof. If A is of finite representation type, then any additive subcategory of mod A
is covariantly finite. Moreover, any A-module is pure-injective since it has the
descending chain condition on subgroups of finite definition [3, 13]. Therefore also
every object in limmod. A is pure-injective. The assertion now follows from part
(3) of the preceding proposition.

3. Endofinite modules

Recall that a A-module M is endofinite if it is of finite length when regarded in the
natural way as an Endy (M )°P-module. This definition can be generalized as fol-
lows. Let M be an object of a locally finitely presented category A with products.
Then M is endofinite if Hom(X, M) is of finite length as an End (M )°P-module for
all X € fp(A). Furthermore M is generic if M is indecomposable endofinite but
not finitely presented. Note that every endofinite object M is X-pure-injective, i.e.
every coproduct of copies of M is pure-injective [8, Theorem 3.5.2]. We shall use
the following characterization.

Lemma 3.1. For any object M in A the following are equivalent.
(1) M is endofinite.
(2) There is a closed subset U of Zsp A satisfying
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(i) U carries the discrete topology.
(ii) Fvery product of copies of M is a coproduct of copies of objects in U.
(3) Any pure-injective object which belongs to the smallest definable subcategory
of A containing M, is endofinite.

Proof. The part (1) < (2) is [18, Corollary 12.13] and (1) < (3) follows from [18,
Theorem 10.2] since the endocategory of any object belonging to the definable
subcategory generated by M is a quotient of the endocategory of M.

Our aim is now to discuss the relation between the endofinite A-modules and the
endofinite objects of limmod. A. To this end another definition is needed. Given
a finitely presented indecomposable endofinite A-module M with I' = Endy (M )°P
we define DM = Homp(M, I) where I is the injective envelope of I'/ radT'. Note
that DM is automatically an indecomposable endofinite A°P-module. The ring A
is called right dualizing if DM is also finitely presented for every such M, and A is
dualizing if both A and A°P are right dualizing. Important examples of dualizing
rings are noetherian algebras [7] and artinian PI-rings [21]. Recall that A is a
noetherian algebra if the centre Z(A) is noetherian and A is a finitely generated
Z(A)-module. Given any object X we denote by add X the full subcategory of all
finite coproducts of direct summands of X.

Proposition 3.2. Let X be a finitely presented endofinite A-module and choose
a complete set {X1,...,X,} of pairwise non-isomorphic indecomposable direct
summands of X. Let C = add X. Then C is a covariantly finite subcategory of
mod A and GimC is the full subcategory of coproducts of copies of the X;’s. Now
suppose that DX; is a finitely presented A°P-module for all i. Then any A-module
M is endofinite if and only if the canonical functor Mod A — limmod. A sends
M to an endofinite object.

Proof. To show that C is covariantly finite let Y be any finitely presented A-module.
The Endj (X)°P-module Homy (Y, X) is of finite length and has therefore a set
of generators ¢1,...,@,. It is clear that the corresponding morphism (p;):Y —
[I;—; X is aleft C-approximation. The module X is X-pure-injective and therefore
lim C coincides with the definable subcategory generated by X. More precisely, the
coproducts of copies of the X;’s form a definable subcategory by [19, Corollary 9.8]
which is therefore the smallest subcategory containing C and all direct limits of
modules in C.
To prove the rest of the assertion consider the sequence of functors

D(limmod,, A)-“>D(A)~D(1im C)

as in the proof of [18, Theorem 5.1]. We shall identify any locally finitely presented
category A with the image of the fully faithful functor d: A — D(A) mentioned
in Section 1. Let us recall from [18] some properties of ¢* and ¢*. The functor ¢*
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identifies D(lim mod, A) with a localizing subcategory 7 of D(A) and i* induces
an equivalence between D(A)/7 and D(limC). The functor ¢* has a right adjoint
which coincides with ¢: Mod A — lim mod, A when restricted to Mod A; similarly
i* has a right adjoint which coincides with i: limC — Mod A when restricted to
lim C. We have already seen that Zsp limC = {X1,..., X, } and we observe that
this is an open subset of Zsp A. In fact our assumption on X implies that {X;} is
open for every i by [19, Lemma 4.4]. Suppose now that M is any pure-injective
A-module and let N = ¢(M). We shall use the fact that there is a decomposition
M = E(N)][ M’ where E(N) denotes the injective envelope in D(A) and M’
belongs to lim C [11, III, Corollaire 3.2].

Suppose first that M is endofinite and let ¢ be the corresponding subset of
Zsp A as in Lemma 3.1. Taking the set V = {q(L) | L € U,q(L) # 0} one
shows immediately that NNV is endofinite. Condition (i) in Lemma 3.1 follows from
Proposition 2.2 and (ii) is clear since ¢ commutes with products and coproducts.

Now suppose that N is endofinite and let V be the corresponding subset as
in Lemma 3.1. We claim that 4 = {L € ZspA | ¢(L) € V} U {Xy,...,X,} isa
subset of Zsp A which satisfies (i) - (ii) in Lemma 3.1. Observe first that for every
L in V the injective envelope E(L) lies in U since q(E(L)) = L. It follows from
Proposition 2.2 that (i) holds since {X;} is open for every ¢ and (i) holds for V.
Now consider a product [[; M. We find a decomposition [[; N = [];.; N; with
Nj €V for all j and therefore [[; M = (][, E(N;)) [ M with M" € limC since
taking injective envelopes commutes with arbitrary coproducts. We have already
shown that M’ is a coproduct of copies of the X;’s and therefore (ii) holds. Thus
M is endofinite by Lemma 3.1.

It remains to consider the case that M is an arbitrary A-module and N = ¢(M)
is endofinite. We use now the characterization of endofiniteness in part (3) of
Lemma 3.1. Replacing M by any pure-injective A-module M’ belonging to the
smallest definable subcategory containing M we deduce from the first part of the
proof that M’ is endofinite since N’ = ¢(M’) belongs to the smallest definable
subcategory containing N. Thus M is endofinite by Lemma 3.1 and the proof is
complete.

Corollary3.3. Let A be a right dualizing ring and suppose that C is a full additive
subcategory of mod A which is closed under direct summands. Then the following
are equivalent.

(1) C =add X for some endofinite A-module X .

(2) limmod. A has products and any pure-injective A-module M is endofinite
if and only if the canonical functor Mod A — limmod. A sends M to an endofinite
object.

Proof. One direction follows directly from the preceding proposition. Therefore

suppose (2). Let M = ][, X; be the coproduct of a representative set of modules
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in C. Clearly ModA — limmod; A sends M to an endofinite object. Using
Lemma 3.1 and the compactness of Zsp A we find a set {M1,... ,M,} in Zsp A
such that every object in C is a coproduct of copies of the M;’s. If {My, ..., M,}
is minimal with respect to this property, then C = add X for X = [["_; M, and
therefore (1) is shown.

We continue with two further applications of Proposition 3.2. Following Crawley-
Boevey [7] a ring A is generically wild if there is a generic A-module M such that
Endp (M) is not a PI-ring. Note that for any endofinite A-module the endomor-
phism ring T" is a PI-ring iff '/ rad T is a PI-ring since rad T is nilpotent. A finite
dimensional algebra over an algebraically closed field is generically wild if and only
it is wild in the usual sense [6, Theorem 4.4].

Corollary 3.4. Let A and ' be dualizing rings. Suppose that X is a finitely pre-
sented endofinite A-module and that Y is a finitely presented endofinite I'-module.
Let C = add X and D = addY. Then any equivalence f:mod, A — mod,I" in-
duces a bijection M +— My between the isomorphism classes of generic modules in
Mod A andModTT such thatEndp (M)/rad Endp (M) andEndp (My)/rad Endr(Mjy)
are isomorphic; in particular A is generically wild if and only if T is generically
wild.

Proof. Given a dualizing ring it has been shown in [19, Theorem 4.7] that an
indecomposable endofinite module M is generic iff {M} is not open in the Ziegler
spectrum. Using this characterization the assertion follows from Proposition 2.2
and Proposition 3.2.

Suppose now that A is an artin algebra. Given any generic A-module M,
denote by inda; A the isomorphism classes of finitely presented indecomposable
A-modules which belong to a homogeneous tube 7 of the Auslander-Reiten quiver
such that M is the unique generic module belonging to the smallest definable
subcategory of Mod A containing all modules in 7. Note that for any natural
n almost all indecomposable A-modules of endolength n belong to J,,indas A
provided that A is a finite dimensional algebra over an algebraically closed field
of tame representation type [19, Corollary 9.6]. We are now in a position to show
that an equivalence mod A — modT sends a family indy; A to a family indy T.
As usual, mod A is the short notation for mod,,.,; A A where projA denotes the
category of finitely presented projective A-modules.

Corollary 3.5. Let A and I" be artin algebras and suppose that f: modA — modI’
is an equivalence. Then f induces a bijection M — My between the isomorphism
classes of generic modules in Mod A and ModT' such that f(indy A) = indpy, T

Proof. The equivalence mod A — modI" induces a bijection between the isomor-
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phism classes of indecomposable non-projective modules in mod A and modT.
This bijection preserves homogeneous tubes and extends to a homeomorphism on
the level of the Ziegler spectra by Proposition 2.2. We have seen in the preced-
ing corollary that this homeomorphism induces a bijection M — My between the
generic modules in Zsp A and ZspT', and we conclude that f(indys A) = indps, T'
for every generic M, since a A-module lying in a homogeneous tube 7 belongs to
indps A if and only if M is the unique generic module in the closure of 7 viewed
as a subset of Zsp A.

4. A generalization

Our results from the preceding sections can be generalized. In fact we could
replace a module category with any locally finitely presented category A which
has products. We shall use the following properties:
(A1) If M € Zsp A is finitely presented and endofinite, then {M} is open.
(A2) Every object in fp(A) is pure-injective.
The following result is formulated in this slightly more general context.

Theorem 4.1. Let X be a finitely presented endofinite object in A and choose
a complete set {X1,...,Xn} of pairwise non-isomorphic indecomposable direct
summands of X. Let C = addX and B = limfp(A)[C. Then the canonical
functor q: A — B has the following properties.

(1) q induces a homeomorphism Zsp A\ {X1,... ,Xn} — ZspB, M — M’,
such that End(M)/rad End(M) and End(M’)/rad End(M’) are isomorphic.

(2) Suppose (Al). Then any object M in A is endofinite if and only if ¢(M)
is endofinite.

(3) Suppose (A1) - (A2). Then q induces a bijection between the generic objects
in A and B.

Proof. Adapt the proof of Proposition 2.2 and Proposition 3.2. Observe that (3) is a
consequence of (3) in Proposition 2.2. To see this let M € Zsp A\{Xq,...,X,} and
N = q(M). If M is finitely presented, then N is also finitely presented. Suppose
now that N is finitely presented. Then N = ¢(L) for some finitely presented object
L and there are morphisms ¢: M — L and : L — M such that idy; — 1o factors
through some object in lim C. Thus idjs — 1o € rad End(M) and therefore ¢ is
a split monomorphism. We conclude that M is finitely presented.

The rest of this section is devoted to an application of the preceding result.
Let us begin with an easy observation.

Lemma 4.2. Let A be a locally finitely presented category with products and sup-
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pose that C is a full additive subcategory of fp(A) which is covariantly finite. Then
lim C is again locally finitely presented and has products. Moreover, if A satisfies
any of the conditions (A1) - (A2), then imC satisfies the same condition.

Proof. Clearly limC is locally finitely presented. Furthermore it is closed under
products taken in A by [8, Theorem 4.2] and has therefore products in itself. In
fact limC is a definable subcategory of A by [18, Proposition 4.13] and Zsp limC
can therefore be identified with a closed subset of Zsp A. The second part of the
assertion is now an immediate consequence.

We consider now the following example. Fix a triangular matrix ring

_|A 4Mp
=10 5

and we suppose for simplicity that A is an artin algebra. As usual, we identify
a A-module with a B-linear morphism X ® 4 M — Y where X € Mod A and
Y € Mod B. Suppose now that X4, € mod A and Xg C mod B is a pair of full
additive subcategories which are closed under direct summands. We denote by
mod(A, X) the full subcategory of finitely presented A-modules X ® 4 M — Y
with X € X4 and Y € X. The full subcategory of A-modules X ® 4 M — Y with
X € lim X4 and Y € lim X'p is denoted by Mod(A, X'). For example, Mod(A, X) is
the category of prinjective A-modules in the sense of [20, 23] if X4 is the category
of projective A-modules and X is the category of injective B-modules.

Lemma 4.3. Suppose that X4 and Xp are covariantly finite subcategories. Then
mod(A, X) is a covariantly finite subcategory of mod A and the modules in Mod(A, X)
are precisely the direct limits of modules in mod(A, X). In particular Mod(A, X)
is a locally finitely presented category with products satisfying (Al) - (A2) and
fp(Mod(A, X)) = mod(A, X).

Proof. To show that mod(A, X) is a covariantly finite subcategory fix an arbi-
trary finitely presented A-module X ® 4 M — Y. We construct a left mod(A, X)-
approximation as follows. Let X — X’ be the X4-approximation of X and consider
the following push-out in mod B.

XM — Y

l l

X' @AM —— P

Composing X' ®4 M — P with the Xp-approximation P — Y’ then gives the
approximation of X ® 4 M — Y. The full subcategory A of A-modules which are
direct limits of modules in mod(A, X) is locally finitely presented and has products
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by [8, Theorem 4.2] since mod(A, X) is covariantly finite. We leave it to the reader
to verify that A = Mod(A, X). (Al) - (A2) then follow from the preceding lemma
since A is an artin algebra. For example, {M} is open for every finitely presented
M € Zsp A by [19, Lemma 4.4].

We give now our promised application of the preceding theorem. To this end
the following definition is useful. A locally finitely presented category with prod-
ucts A is called generically wild if there is a generic object M € A such that
End(M)/rad End(M) is not a PI-ring. Note that in our example A = Mod(A, X)
the generic objects are precisely the generic A-modules contained in Mod(A, X).

Corollary 4.4. Let A be a triangular matrixz ring as above. Suppose that X,
and Xp are covariantly finite subcategories. Suppose also that X € mod(A, X)
and let C = add X. Then the canonical functor Mod(A,X) — limmod. (A, X')
induces a bijection M — M’ between the isomorphism classes of generic objects in
Mod(A, X) and limmod. (A, X) such that End(M)/rad End(M) and End(M’)/
rad End(M’) are isomorphic; in particular Mod(A, X) is generically wild if and
only if limmod. (A, X) is generically wild.

5. The Auslander-Reiten translation

Throughout this section we assume that the ring A has a self-duality D between
mod A and mod A°P. We begin with some notation. Denote by ProjA the full
subcategory of projective A-modules and let proj A = Proj ANmod A. Analogously,
the categories InjA and inj A are defined. Now define Mod A = Mod A[ProjA
and mod A = mod A[projA; similarly let Mod A = Mod A[InjA and mod A =
mod A [inj A.

Our aim in this section is to discuss an equivalence A: Mod A — Mod A which
we call the Auslander-Reiten translation. This functor coincides on the finitely
presented level with the dual of transpose functor D Tr:mod A — mod A which
was introduced by Auslander and Reiten [4].

Some further definitions are needed. Denote by P the category of morphisms in
Proj A. More precisely, an object in P is a morphism 7: P — () between projective
A-modules and the morphisms 7 — #’ in P for n’: P’ — Q' are given by pairs
(e, 8) of morphisms making the following diagram commutative.

p#@

S

’
T

P/ Q/

Clearly, the composition of (o, 8):m — 7’ and (¢, F'): 7" — 7" is (&/ocx, 3'0[3).
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Lemma 5.1. The category P is a locally finitely presented category with products.
An object m: P — @Q in P is finitely presented iff P and Q) are finitely presented.

Proof. The category Proj A is a locally finitely presented category with products.
The assertion therefore follows from [1, Corollary 2.44].

We define now categories P’ and P” which have the same objects as in P but

Homp/ (7, 7') = Homp (7, 7") /{(r, 3) | there is p:Q — P’ with n’op = 3},

Homp// (7T, 7T,) =
Homp (m, ") /{(a, B) | there is p: Q — P’ with 7’oax = 7’ oporr = [omr}.

Lemma 5.2. The functor P — ModA, © — Cokern, induces an equivalence
P’ — Mod A and an equivalence P"” — Mod A.

Proof. The cokernel functor is full and dense since every A-module admits a projec-
tive presentation. Moreover, given a morphism (¢, ) in P, we have Coker(a, 3) =
0 iff (o, B) lies in the kernel of the canonical functor P — P’, and Coker(«, ()
factors through a projective module iff («, ) lies in the kernel of the canonical
functor P — P”.

We can now replace the projective A-modules in the definition of P, P’ and
P"” with the injective A-modules and obtain in this way categories Z, 7' and Z".
Clearly we have the following analogue of the preceding lemma.

Lemma 5.3. The functor T — Mod A, 7 — Kern, induces an equivalence T' —
Mod A and an equivalence T" — Mod A.

Proof. Dualize the proof of the preceding lemma.
The following lemma is a reformulation of the fact that A has a self-duality.
Lemma 5.4. The functor — ®p DA induces an equivalence Proj A — Inj A.

Proof. An inverse is induced by the functor Homy (DA, ). The assertion is clear
on the level of the finitely presented modules. The assertion follows for arbitrary
A-modules since A is an artinian ring having a self duality and therefore every pro-
jective (injective) module is a coproduct of finitely presented modules. Moreover,
one uses the fact that — ® A DA commutes with coproducts.
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Suppose now that M is an arbitrary A-module. We fix a minimal projective
presentation P = Q — M — 0 and a minimal injective copresentation 0 — M —
I % J. We call the kernel of 7 @5 DA the Auslander-Reiten translate of M and
denote it by AM. Analogously we define A~1M = Coker Homy (DA, ). Clearly,
AM and A~1M are unique only up to an isomorphism.

Proposition 5.5. The assignment M — AM induces an equivalence A: Mod A —
Mod A. The restriction of A to the finitely presented A-modules induces an equiv-
alence mod A — mod A.

Proof. The equivalence Proj A — Inj A induces an equivalence P — Z and therefore
also an equivalence P” — Z”. The assertion now follows from Lemma 5.2 and
Lemma 5.3.

It follows from Proposition 2.1 that the canonical functor Mod A — lim mod A
induces a functor p: Mod A — limmod,. Analogously there is an induced functor

¢:Mod A — limmod A.

Proposition 5.6. There is an equivalence limmod A — limmod A which makes
the following diagram of functors commutative.

A __
ModA —— ModA

[ 5

lim mod A AN lim mod A

Proof. The equivalences P — Z and Mod A — Mod A induce the following com-
mutative diagram of functors

fp(P) —— fp(Z)

l l

modA —— — modA

which extends by Lemma 1.1 to a commutative diagram of functors commuting
with direct limits

P - A

l !

lim mod A - lim mod A
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since P and 7 are locally finitely presented categories by Lemma 5.1. The assertion
now follows from the fact that A is induced by the equivalence P — Z.

We are interested in further properties of the Auslander-Reiten translation.
To this end let us recall, without proofs, some well-known facts about projective
presentations and injective copresentations.

Lemma 5.7. Let P 5 Q — M — 0 be a projective presentation of a A-module
M. Then there are decompositions P = Po[[P1][ P2 and Q = Qo[ @1]]Q2

m 0 0
such thatm= |0 w1 0 | and
0 0 m

(i) mo induces a minimal projective presentation Py B Qy— M —o0.
(ii) w1 is an isomorphism.

(iii) @2 = 0.

Lemma 5.8. Let 0 — M — I = J be an injective copresentation of a A-module
M. Then there are decompositions I = Ig[[I1 ][ 12 and J = Jo[]J1 ][ J2 such

Lo 0 0
thatt= |0 ¢1 0| and
0 0 o

(i) to tnduces a minimal injective copresentation 0 — M — I 9 Jo-
(ii) ¢1 is an isomorphism.
(iii) I = 0.

Lemma 5.9. Let M be any A-module.

(1) A morphism m: P — M 1is a projective cover iff P is projective and
7 ®@p A/rad A is an isomorphism.

(2) A morphism v: M — I is an injective envelope iff I is injective and
Homyp (A/rad A, ) is an isomorphism.

We are now in a position to collect the essential properties of the Auslander-
Reiten translate AM of a module M. Of course, these properties are well-known
for finitely presented modules [4].

Proposition 5.10. The assignment M +— AM induces a bijection between the
isomorphism classes of A-modules without non-zero projective direct summand and
the isomorphism classes of A-modules without non-zero injective direct summand.
More precisely, the following holds for any A-module M :
(1) AM has no non-zero injective direct summand.

) A~YM has no non-zero projective direct summand.

) M = A=YAM ][ P for some projective A-module P.

)

(2
(3
(4) M = AA=YM ]I for some injective A-module I.
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Proof. The assertions (1) - (4) follow directly from Lemma 5.4, Lemma 5.7 and
Lemma 5.8.

To study further properties of the Auslander-Reiten translate we need to recall
the definition of a reduced product of a family of A-modules. Let I be a non-empty
set. Recall that a set F of non-empty subsets of I is a filter on I provided that
for each pair of subsets Ji,Jo C [

(i) J1, Jo € F implies Jy N Jo € F;

(ii) J1 € F and J; C Jo implies Jy € F.

Note, that the set F is directed if one defines J; < Jo, if Jo C J.

Given a family M;, ¢ € I, of A-modules and a filter F on I, the canonical
morphisms HieJl M; — HieJQ M;, J; < J in F, form a directed system and we
denote by [[,c; M;/F = lim [1;c; M the reduced product of the M;’s with
respect to F.

Proposition 5.11. Let M;, i € I, be any family of A-modules and let F be a
filter on I.

(1) AHiEI Mz = Hie] AMz and AHiEI Mi = Hie] AMz

(2) AlLics Mi/F =1l,cr AM;/F.

Proof. The assertion is a consequence of the fact that taking direct limits and
products commutes with taking minimal projective presentations. This follows
from Lemma 5.9.

Corollary 5.12. The following holds for any A-module M.
(1) M is pure-injective if and only if AM is pure-injective.
(2) M is L-pure-injective if and only if AM is X-pure-injective.
(3) M is endofinite if and only if AM is endofinite.

Proof. (1) Recall that M is pure-injective iff for every set I the summation mor-
phism [[; M — M factors through the canonical morphism [[, M — [], M [14,
Proposition 7.32], see also [18, Theorem 2.6]. The proof of the preceding propo-
sition then shows that AM and A~1M are pure-injective if M is pure-injective.
If AM is pure-injective, then A~1AM is pure-injective and therefore M is pure-
injective by Proposition 5.10 since every projective A-module is endofinite and
therefore pure-injective.

(2) Recall that M is X-pure-injective if any coproduct [[; M is pure-injective.
The assertion now follows from part (1) and the fact that A and A~! commute
with coproducts.

(3) If M is indecomposable, then M is endofinite iff for every set I there is a
set J such that [[, M = [[, M. An arbitrary A-module M is endofinite iff there
are indecomposable endofinite modules My, ... , M, and sets I, ... , I, such that
M = [T/ (I1;, Mi) [7, Proposition 4.5]. The assertion now follows from the fact
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that A and A~! commute with (co)products. In addition one uses the fact that
A and A~! preserve indecomposability which follows from Proposition 5.10 and
Proposition 5.11.

Remark 5.13. The preceding results have analogues for A=1.

Our next aim is to show that the Auslander-Reiten translation preserves the
topology defined on Zsp A. We shall use the following characterization of a closed
subset in Zsp A.

Lemma 5.14. The following conditions are equivalent for a subset U of Zsp A.
(1) U is closed.
(2) Let M = [[;,c; Mi/F be any reduced product with M; € U for all i € I.
Then every indecomposable pure-injective direct summand of M belongs to U.

Proof. (1) = (2). Let X be the definable subcategory of Mod A corresponding to
U,ie. U =XNZspA. Then X is closed under taking reduced products and pure
submodules and therefore (2) holds.

(2) = (1). The full subcategory X" of pure submodules of reduced products of
modules in U forms the smallest definable subcategory containing U [18, Corol-
lary 4.10]. Tt follows that & = X N Zsp A is closed.

Corollary 5.15. The assignment M — AM induces a homeomorphism Zsp A \
ProjA — Zsp A\ Inj A.

Proof. Tt follows from Proposition 5.10, Proposition 5.11 and Corollary 5.12 that
M +— AM induces a bijection Zsp A \ ProjA — Zsp A \ Inj A. Using the preceding
lemma together with the fact that A preserves reduced products, one shows that
A preserves also the topology defined on Zsp A.

Corollary 5.16. Let A be a finite dimensional algebra over an algebraically closed
field. If A has tame representation type, then AM = M for every generic A-module
M.

Proof. Tt has been shown in [19, Corollary 9.8] that for every generic A-module
M there is an A-invariant subset 7 of finite dimensional modules in Zsp A such
that M is the unique generic module in the Ziegler closure 7. Clearly, 7 is also
A-invariant by the preceding result and therefore AM = M since A preserves
endofiniteness by Corollary 5.12.
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6. Triangulated categories with direct limits

Examples of rings having a self-duality are quasi-Frobenius rings, i.e. those rings
where projective and injective A-modules coincide. The stable categories mod A
and Mod A of a quasi-Frobenius ring carry an additional structure; they are trian-
gulated in the sense of Verdier [22, 15]. Given a triangulated category C one can
form the category IndC of ind-objects in the sense of Grothendieck and Verdier
[12]. However, it is not clear under which circumstances the triangulation in C in-
duces a triangulation in Ind C. The following result shows that in some non-trivial
cases the answer to this question is positive.

Theorem 6.1. Let A be a quasi-Frobenius ring of finite representation type. Then
Mod A is a triangulated category in which direct limits exist. Moreover, the inclu-
sion mod A — Mod A induces an equivalence between Ind mod A and Mod A.

Proof. The first part of the assertion follows from Corollary 2.3. In fact, there it is
shown that lim mod A and Mod A are equivalent. The second part of the assertion
follows from our definition of lim mod A, since Flat((mod A)°P, Ab) and Ind mod A
are canonically equivalent [8].

References

[1] J. Addmek and J. Rosicky, Locally presentable categories and accessible categories, London
Math. Soc. Lec. Note Series 189 (1994).

[2] I. Assem and J.A. de la Pena, On the tameness of trivial extension algebras, Fund. Math.
149 (1996), 171-181.

[3] M. Auslander, Representation theory of artin algebras II, Comm. in Algebra 1 (1974),
269-310.

[4] M. Auslander and I. Reiten, Representation theory of artin algebras III, Comm. Algebra
3 (1975), 239-294.

[5] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 (1988),
451-483.

[6] W. Crawley-Boevey, Tame algebras and generic modules, Proc. London Math. Soc. 63
(1991), 241-264.

[7] W. Crawley-Boevey, Modules of finite length over their endomorphism ring, in: Represen-
tations of algebras and related topics, eds. S. Brenner and H. Tachikawa, London Math.
Soc. Lec. Note Series 168 (1992), 127-184.

[8] W. Crawley-Boevey, Locally finitely presented additive categories, Comm. Algebra 22
(1994), 1644-1674.

9] Yu.A. Drozd, Tame and wild matrix problems. Representations and quadratic forms,
Institute of Mathematics, Academy of Sciences Ukrainian SSR, Kiev (1979), 39-74, Amer.
Math. Soc. Transl. 128 (1986), 31-55.

[10] K. Erdmann, On Auslander-Reiten components for group algebras, J. Pure Appl. Algebra
104 (1995), 149-160.

[11] P. Gabriel, Des catégories abéliennes, Bull. Soc. math. France 90 (1962), 323-448.

[12] A. Grothendieck and J.L. Verdier, Prefaisceaux, in: Théorie des Topos et Cohomologie



284

[24]

H. Krause CMH

Etale des Schémas, Springer Lec. Notes 269 (1972), 1-217.

L. Gruson and C.U. Jensen, Deux applications de la notion de L-dimension, C. R. Acad.
Sci. Paris Ser. A 282 (1976), 23-24.

C.U. Jensen and H. Lenzing, Model Theoretic Algebra, Gordon and Breach, New York
1989.

D. Happel, On the derived category of a finite dimensional algebra, Comment. Math.
Helv. 62 (1987) 339-389.

H. Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra 114 (1997)
259-271.

H. Krause, Functors on locally finitely presented categories, Collog. Math., to appear.

H. Krause, Exactly definable categories, J. Algebra, to appear.

H. Krause, Generic modules over artin algebras, Proc. London Math. Soc., to appear.
J.A. de la Pefia and D. Simson, Prinjective modules, reflections functors, quadratic forms,
and Auslander-Reiten sequences, Trans. Amer. Math. Soc. 329 (1992), 733-753.

M. Schmidmeier, Auslander-Reiten Kocher fiir artinsche Ringe mit Polynomidentitét, Diss.
Univ. Miinchen (1996).

J.L. Verdier, Catégories derivées, état 0, Springer Lec. Notes 569 (1977), 262-311.

D. Vossieck, Représentations de bifuncteurs et interprétation en termes de modules, C. R.
Acad. Sci. Paris Ser. A 307 (1988), 713-716.

M. Ziegler, Model theory of modules, Ann. of Pure and Appl. Logic 26 (1984), 149-213.

Henning Krause

Fakultat fiir Mathematik

Universitat Bielefeld

D-33501 Bielefeld, Germany

e-mail: henning@mathematik.uni-bielefeld.de

(Received: July 24, 1996)



