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Complete surfaces of at most quadratic area growth

Peter Li∗

Abstract. In this article, we study complete surfaces with finite topological type and has at
most quadratic area growth. In particular, we show that if the curvature of such a surface does
not change sign, then it must be of finite total curvature.
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In 1935, Cohn-Vossen [CV] studied the validity of the Gauss–Bonnet theorem
for complete non-compact surfaces. In particular, he considered the relationship
between the Euler characteristic χ(M) and the integral of the Gaussian curvature
K of a complete surface, M2, without boundary. He proved that if for any compact
exhaustion {Ωi} of M , the limit∫

M

K = lim
i→∞

∫
Ωi
K

exists, then ∫
M

K ≤ 2πχ(M).

Later on, in 1957, Huber [Hu1] proved that if the negative part of the Gaussian
curvature of M defined by

K− = max{−K, 0}

is integrable, then ∫
M

K ≤ 2πχ(M),

and M is conformally equivalent to a compact Riemann surface with finitely many
punctures. In particular, this implies that M has finite topological type. It also
implies that the positive part of the Gaussian curvature K+ = max{0,K} is
integrable and hence M must have finite total curvature, i.e.,
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M

|K| <∞.

In 1964, Hartman [H] farther proved that under the assumption∫
M

K− <∞

the area A(r) of geodesic balls of radius r at a fixed point must grow at most
quadratically in r. Moreover, (also see [S]),∫

M

K + lim
r→∞

2A(r)
r2 = 2πχ(M). (1)

The results of Huber and Hartman assert that the finiteness of
∫
M
K− implies

the finiteness of χ(M) and lim(A(r)/r2). Moreover, (1) holds. It is then natural
to ask if the converse of this statement is valid. It turns out that the answer
is negative as indicated by the following example. Let us consider an arbitrary
non-flat metric on a torus. Its universal Riemannian covering M is given by R2

endowed with a non-flat Z× Z invariant metric. Clearly, M has finite topological
type and the area growth is quadratic because the metric is uniformly equivalent
to the flat metric. However, the total curvature and also the integral

∫
M K− are

not finite because of periodicity of the metric.
The purpose of this note is to prove that the finiteness of χ(M) and lim(A(r)/r2)

together imply the finiteness of the total curvature if we assume that the Gaussian
curvature of the surface is of one sign at each end.

We would like to remark that surfaces with finite total curvature have been
extensively studied by [Hu2], [F], and [L-T]. Using a different argument, Chen [C]
independently proved that if M is an immersed minimal surface in Rn of finite
topological type and the volume growth for extrinsic balls is at most quadratic,
then M must have finite total curvature. This is a special case of our theorem.
Indeed, a minimal surface necessarily has non-positive Gaussian curvature and
the extrinsic distance is dominated from above by the intrinsic distance, hence M
satisfies the hypotheses of our theorem and must have finite total curvature.

Theorem. Let M2 be a complete, non-compact surface with finite topological type.
If M has at most quadratic area growth and the Gaussian curvature of M is either
non-negative or non-positive, near infinity of each end, then M must have finite
total curvature.

Proof. The fact that M has finite topological type implies that M is diffeomorphic
to a compact Riemann surface with finite punctures. In fact, a neighborhood of
each puncture corresponds to an end of M . Obviously, the theorem follows if we
can show that |K| is integrable at each end.

Since each end is diffeomorphic to the punctured disk which is also diffeomor-
phic to R2 \D2, we represent an end by R2 \D2 with a metric that is complete at
infinity. By extending the metric arbitrarily, we may assume that M is diffeomor-
phic to R2 and the curvature is either non-positive or non-negative on R2 \ D2.
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For the case when the Gaussian curvature of M is non-negative near infinity,
the surface satisfies ∫

M

K− <∞

and Huber’s theorem implies that
∫
M
|K| <∞. Hence we only need to prove the

theorem for the case when K is non-positive near infinity.
Let us first assume that there exists a simple, closed, C1,1 curve γ, in R2 \D2,

homotopic to S1 = ∂D2 with non-negative geodesic curvature with respect to
the outward normal ν. Note that a C1,1 curve is C2 almost everywhere. Hence
geodesic curvature is defined almost everywhere. In particular, the following ar-
gument which involves integrating the geodesic curvature is valid. Then non-
positivity of K on R2 \ D2 implies that the curve γ has no focal point in the
direction of ν. If Ω denotes the domain bounded by γ and E = R2 \Ω denotes the
exterior domain, then we can parametrize E using Fermi coordinates with respect
to γ. In particular, if we take θ ∈ [0, 2π] to be a parametrization of γ which is
proportional to arc-length, then each point x ∈ E can be written as (θ, r) where
r is the distance from x to γ and r = d(γ(θ), x). Also, each coordinate curve η(r)
given by points in E which are at distance r from γ is smooth. Let C(r) denotes
the domain bounded by η(r). Applying the Gauss–Bonnet theorem on C(r), we
have

2π =
∫
C(r)

KdA+
∫
η(r)

kg (2)

where kg is the geodesic curvature of η(r) with respect to the outward pointing
normal ∂

∂r . The smoothness of η(r) and the first variation formula imply that∫
η(r)

kg =
∂l(η(r))
∂r

=
∂2A(C(r))

∂r2 ,

(3)

where l(η(r)) and A(C(r)) are the length of η(r) and the area of C(r), respective-

ly. If ds2 has infinite total curvature, (2) and (3) imply that ∂2A(C(r))
∂r2

increases
monotonically to infinity for sufficiently large r as r → ∞. This contradicts the
assumption that ds2 has at most quadratic area growth.

We now assume that M does not admit a C1,1 curve γ in e = R2 \ D2 which
has non-negative geodesic curvature with respect to the outward normal. Let us
consider the truncated end e(R) = e ∩ B(R) where B(R) is the geodesic ball of
radius R with respect to ds2 centered at the origin. Let β > 0 be a fixed constant
such that D2 ⊂ B(β). For R > β sufficiently large, the truncated end e(R) is
homeomorphic to a cylinder. Let us consider a curve µ in e(R) which minimizes
length among all curves homotopic to S1 = ∂D2. If µ lies completely in the
interior of e(R), then the first variation formula for arc-length asserts that µ is a
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geodesic. This violates the non-existence assumption of γ. On the other hand, if
µ intersects both boundaries S1 and ∂B(R)∩e, of e(R), then the length of µ must
be at least twice the distance d(S1, ∂B(R)∩ e) from S1 to ∂B(R). However, since
d(S1, ∂B(R) ∩ e) ≥ (R − β), we have l(u) ≥ 2(R− β). By taking

R > 2β + 2α, (4)

where 2α = l(S1), we conclude that l(µ) > 2α. This contradicts the minimizing
property of µ. Therefore, µ must either intersect S1 or ∂B(R) ∩ e, but not both.

If µ ∩ S1 = ∅, then the first variation formula implies that µ \ S1 is a geodesic.
Also, it was proved in [M-S] that µ must be C1,1. Moreover, it was established
in [A-B-B] that the geodesic curvature is non-negative everywhere with respect to
the outward normal. This again violates the assumption that γ does not exist.
Hence µ must intersect ∂B(R) ∩ e non-trivially for all 2R > 2β + 2α.

If ∂B(R) is smooth, the previous argument asserts that µ is C1,1 and has
non-positive geodesic curvature with respect to the outward normal. Since the
l(µ) ≤ 2α, the curve µ must lie in the annulus (B(R) \ B(R − α)) ∩ e. Let Ωµ
denotes the domain bounded by µ. Using Fermi coordinates (θ, t) issuing from µ
in the direction of the inward normal and using the fact that e has non-positive
curvature, we can now parametrize the set e ∩ Ωµ given by the intersection of
e and Ωµ. Let us define the curve µt = {x ∈ e ∩ Ωµ|d(x, µ) = t} and the set
Ωµ(t) = {x ∈ e ∩ Ωµ|d(x, µ) ≤ t}. Observe that the curvature assumption on e
and the fact that µ has non-positive geodesic curvature with respect to the outward
normal imply that the curves µt are smooth for t ≤ R− β − α. In fact, these are
the coordinate curves (·, t) of the Fermi coordinates. Applying the Gauss–Bonnet
formula to the domain Ωµ \ Ωµ(t) and using the identity

−
∫
µt

kg =
∂l(µt)
∂t

for all 0 < t ≤ R − β − α, we have

∂l(µt)
∂t

= −2π +
∫

Ωµ\Ωµ(t)
K.

Integrating with respect to t from 0 to R
2 − α, we conclude that

l(µ(R2 −α))− l(µ) = −2π
(
R

2
− α

)
+
∫ R

2 −α

0

∫
Ωµ\Ωµ(t)

K

≤ −
(
R

2
− α

)(
2π −

∫
Ωµ\Ωµ(t)(R2 −α)

K

)
.

In particular, the minimality of µ asserts that

l(∂B(R)) ≥ l(µ) ≥
(
R

2
− α

)(
2π −

∫
Ωµ\Ωµ(t)(R2 −α)

K

)
. (5)
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The facts that µ∩∂B(R) 6= ∅ and l(µ) ≤ 2α imply that µ is at distance at most α
from ∂B(R). Hence, Ωµ \Ωµ(t)(R2 −α) must contain B(R2 ). Inequality (5) implies
that

R−1l(∂B(R)) ≥ R−1(R/2− α)

(
2π −

∫
B(R/2)

K

)
.

If the integral of −K is infinite, this asserts that R−1l(∂B(R)) → ∞, which
contradicts the assumption that the area growth is at most quadratic.

To overcome the possibility that ∂B(R) might not be smooth, we simply con-
sider a smooth approximation of the distance r by r̃ satisfying

(1− ε)r̃ ≤ r ≤ (1 + ε)r̃

and apply the previous argument to r̃. This completes the proof of the theorem.�
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Funktionen, Comm. Math. Helv. 41 (1966), 105–136.
[L-T] P. Li and L. F. Tam, Complete surfaces with finite total curvature, J. Diff. Geom. 33

(1991), 139–168.
[M-S] A. Marino and D. Scolozzi, Geodetiche con ostacolo, Boll. Un. Mat. Ital. B (6) 2

(1983), 1–31.
[S] K. Shiohama, Total curvature and minimal area of complete open surfaces, Proc. AMS

94 (1985), 310–316.

Peter Li
Department of Mathematics
University of California, Irvine
Irvine, CA 92697-3875
USA
e-mail: pli@math.uci.edu

(Received: October 16, 1995)


