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Abstract. We define an equivalence relation, called algebraic cobordism, on the set of bilinear
forms over the integers. When n ≥ 3, we prove that two 2n− 1 dimensional, simple fibered links
are cobordant if and only if they have algebraically cobordant Seifert forms. As an algebraic link
is a simple fibered link, our criterion for cobordism allows us to study isolated singularities of
complex hypersurfaces up to cobordism.
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0. Introduction

In this work we present a cobordism theory for links which is motivated by the
study of the topology of isolated singularities of complex hypersurfaces. Let us be
more precise:

(0.1) Let f : (Cn+1, 0) → (C, 0), be a holomorphic germ with an isolated
singular point at the origin. We denote by D2k

δ the compact ball of radius δ
centred at 0 in Ck, and by S2k−1

δ its boundary. The orientation-preserving home-
omorphism class of the pair (D2n+2

ε , f−1(0) ∩ D2n+2
ε ) does not depend on the

choice of a sufficiently small ε, by definition it is the topological type of f .
The orientation preserving diffeomorphism class of the pair (S2n+1

ε ,K(f)), where
K(f) = (f−1(0)) ∩ S2n+1

ε is the link of f . The Milnor’s conic structure theorem
(see [M3, 68]) shows that the link K(f) determines the topological type of f .
Moreover, J. Milnor has also proved that:

1. f/|f | : S2n+1
ε \ K(f) → S1 is a differentiable fibration which is trivial on

U \ K(f), when U is a sufficiently ”small” open tubular neighbourhood of
K(f).

2. The manifold K(f) is (n− 2)-connected.
3. The adherence F of a fiber of f/|f | is a compact, oriented, (n − 1)-connected
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smooth submanifold of S2n+1
ε having K(f) as boundary. By definition F is the

Milnor fiber of K(f).

(0.2) More generally, we will say that a link is a (n − 2)-connected, oriented,
smooth, closed, (2n− 1) dimensional submanifold of S2n+1. A knot is a spherical
link (i.e. a link abstractly homeomorphic to S2n−1). It is well-known that, for
any link K, there exists a smooth, compact, oriented 2n-submanifold F of S2n+1,
having K as boundary ; such a manifold F is called a Seifert surface for K.

(0.3) Following M. Kervaire [K1, 65], we say that two links K0 and K1, ab-
stractly diffeomorphic to the same manifold K, are cobordant if there exists an
embedding Φ, Φ : K × [0, 1]→ S2n+1 × [0, 1], such that:

Φ(K × {0}) = K0 and Φ(K × {1}) = −K1,

where −K1 is the link K1 with the orientation reversed.
(0.4) Let F be a 2n dimensional oriented smooth manifold of S2n+1, and let

G be the quotient of Hn(F,Z) by its Z-torsion.
The Seifert form associated to F is the bilinear form A : G ×G→ Z defined

as follows (see also [K2, 70] p.88 or [L2, 70], p.185): let (x, y) be in G × G, then
A(x, y) is the linking number in S2n+1 of x and i+(y), where i+(y) is the cycle
y ”pushed” in (S2n+1 \ F ) by the positively oriented vector field normal to F in
S2n+1.

By definition a Seifert form for a link K is the Seifert form associated to a
Seifert surface for K.

When n ≥ 2, J. Levine ([L1, 69]) and M. Kervaire ([K2, 70]) gave a complete
characterization of cobordism classes of knots in terms of Witt-equivalence classes
of Seifert forms.

(0.5) A simple link is a link which has a (n−1)-connected Seifert surface. A link
K is a simple fibered link if there exists a differentiable fibration ϕ : S2n+1 \K →
S1, ϕ being trivial on U \K, where U is a ”small” open tubular neighbourhood of
K, and having (n−1)-connected fibers, the adherence of which are Seifert surfaces
for K. In this paper we define in §1 (see (1.2)) an equivalence relation on integral
bilinear forms which is much more sophisticated than ”Witt-equivalence” and the
theorems 2 and 3, stated in §1, imply:

Theorem A. If n ≥ 3, two simple fibered links are cobordant if and only if they
have algebraically cobordant Seifert forms.

(0.6) By definition an algebraic link is a link K(f) associated, as described
above, to a holomorphic germ f with an isolated singularity. Furthermore, Milnor’s
theory of singular complex hypersurfaces implies that algebraic links are simple
fibered links. So theorem 2’ and 3 stated in §1 imply:

Theorem B. If n ≥ 3, two algebraic links are cobordant if and only if the Seifert
forms associated to their Milnor’s fibers are algebraically cobordant.
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In [Lê, 72], D.T. Lê showed that two cobordant algebraic links of plane curves
(i.e. when n = 1) are isotopic. In [DB-M, 93], P. du Bois and F. Michel found
(using the classical cobordism theory for knots of M. Kervaire and J. Levine), for
all n ≥ 3, examples of non isotopic but cobordant algebraic knots. But in general
algebraic links are not spherical links. So theorem B gives a cobordism theory for
algebraic links.

Furthermore, having algebraically cobordant Seifert forms is also a necessary
condition of cobordism for simple fibered links when n is 1 or 2. So we obtain in
§5, without any restriction of dimension, a ”Fox-Milnor” relation (see [F-M, 66])
for the Alexander polynomials of cobordant simple fibered links which implies:

(0.7) Corollary. Let K0 and K1 be two algebraic links having respectively ∆0
and ∆1 as characteristic polynomials of monodromy. If K0 and K1 are cobordant
then the product ∆0.∆1 is a square in Z[X ].

(0.8) Comments. In [V1, 77] and [V2, 78] R. Vogt gave, when n ≥ 3, a suf-
ficient, but not necessary, condition of cobordism for simple links having torsion
free homology groups. As shown in [DB-M, 93] the sufficient condition of cobor-
dism for algebraic links given in [Sz, 89] by S. Szczepanski, cannot be true. So
the problem of finding a criterion for cobordism of simple fibered links was largely
open. Our definition of algebraic cobordism for Seifert forms solves the problem.

(0.9) In this paper we use the following notations: If X is a differentiable

manifold we denote by ∂X its boundary, by
◦
X its interior and by Hk(X) the kth-

homology group of X with coefficients in Z. If a is a k-cycle of X we denote by
[a] its homology class in Hk(X). If G is an abelian group let rk(G) be the rank of
G, and Tors(G) be the torsion subgroup of G.

1. Definitions and statement of results

Let A be the set of bilinear forms defined on free Z-modules G of finite rank.
Let ε be +1 or −1.
(1.1) If A is in A, let us denote by AT the transpose of A, by S the ε-symmetric

form A + εAT associated to A, by S∗ : G → G∗ the adjoint of S (G∗ being the
dual HomZ(G;Z) of G), by S : G × G → Z the ε-symmetric non degenerated
form induced by S on G = G/KerS∗ . A submodule M of G is pure if G/M is
torsion free. If M is any submodule of G let us denote by M∧ the smallest pure
submodule of G which contains M . In fact M∧ is equal to (M ⊗ Q) ∩ G. For a
submodule M of G we denote by M the image of M in G.

Definition. Let A : G × G → Z be a bilinear form in A. The form A is Witt
associated to 0 if the rank m of G is even and if there exists a pure submodule
M of rank m

2 in G such that A vanishes on M ; such a module M is called a
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metabolizer for A.

(1.2) Definition. Let Ai : Gi × Gi → Z, i=0,1, be two bilinear forms in A.
Let G be G0 ⊕G1 and A be (A0 ⊕−A1). The form A0 is algebraically cobordant
to A1 if there exists a metabolizer M for A such that M is pure in G, an iso-
morphism ϕ from KerS∗0 to KerS∗1 and an isomorphism θ from Tors (CokerS∗0)
to Tors (CokerS∗1) which satisfy the two following conditions:

c.1: M ∩KerS∗ = {(x, ϕ(x));x ∈ KerS∗0},
c.2: d(S∗(M)∧) = {(x, θ(x));x ∈ Tors (CokerS∗0)}, where d is the quotient map

from G∗ to CokerS∗.

In §2 (see (2.3)) we prove:

Theorem 1. Algebraic cobordism is an equivalence relation on the set A.

(1.3) From now on, A0 and A1 will always be two Seifert forms associated to
some (n − 1)-connected Seifert surfaces F0 and F1, of two simple links K0 and
K1. Let us justify the definition of algebraic cobordism. As a generalization of
the Kervaire-Levine theory of knot cobordism we obtain in §3 (see (3.10)):

Proposition. If K0 and K1 are cobordant simple links, then A = A0 ⊕−A1 has
a metabolizer.

Remark. Let ε be (−1)n, then for i=0,1, Si = Ai + εATi is the intersection form
on Hn(Fi), KerS∗i is the image of Hn(Ki) in Hn(Fi) and CokerS∗i is isomorphic
to H̃n−1(Ki). So for spherical links, both KerS∗i and CokerS∗i are zero, and
conditions c.1 and c.2 in definition (1.2) vanish. Then, for spherical links, two Witt
associated Seifert forms are algebraically cobordant, and we recover the Kervaire-
Levine criterion for cobordism.

In the non-spherical case, the topology of the cobordism implies that the re-
striction of A0 on KerS∗0 is isomorphic (on Z) to the restriction of A1 on KerS∗1 (it
is easy to check it directly, and it is also implied by the more general proposition
(3.10)). This necessary condition for cobordism is not implied by the fact that
A0 ⊕ −A1 is Witt associated to 0, but by condition c.1 in definition (1.2). The
topology of the cobordism also implies that the linking forms on Tors (Hn−1(Ki))
are isomorphic. This necessary condition for cobordism is contained in point c.2
of definition (1.2).

(1.4) The major result of this work is theorem 2 proved in §3 (see (3.10) and
(3.13)):

Theorem 2. Let K0 and K1 be two cobordant simple links. If K0 and K1 have
(n − 1)-connected Seifert surfaces F0 and F1 with unimodular Seifert forms A0
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and A1, then A0 is algebraically cobordant to A1.

Remark. Let i be 0 or 1. Let us suppose that Ki is a simple fibered link and let
Fi be a (n − 1)-connected fiber of a fibration ϕi : S2n+1 \ Ki → S1 ; then, the
Seifert form Ai associated to Fi is unimodular. Conversely, if n ≥ 3 and if Ai is
unimodular then Ki is a simple fibered link (see [K-W, 77] chap. V, §3, p.118).

So, theorem 2 implies:

Theorem 2’. Let K0 and K1 be two simple fibered links having F0 and F1 as
(n − 1)-connected fibers of differentiable fibrations ϕ0 and ϕ1. If K0 is cobordant
to K1, then the Seifert forms A0 and A1, associated respectively to F0 and F1, are
algebraically cobordant.

(1.5) Using classical methods of surgery, we prove in §4 (see (4.4) and (4.5)):

Theorem 3. Let n be greater or equal to 3 and let K0 and K1 be two 2n − 1
dimensional simple links. If the Seifert forms A0 and A1, associated to some
(n − 1)-connected Seifert surfaces F0 and F1 of K0 and K1, are algebraically
cobordant then K0 is cobordant to K1.

(1.6) Proposition (3.10), which does not use (as remarked in (3.12)) any hy-
pothesis on the Seifert forms, gives:

Theorem 4. Let K0 and K1 be two cobordant simple links. If A0 (resp. A1) is
a Seifert form associated to any (n − 1)-connected Seifert surface for K0 (resp.
K1), then A0 ⊕−A1 has a metaboliser M such that M ∩KerS∗ = {(x, ϕ(x));x ∈
KerS∗0}, where ϕ is an isomorphism between KerS∗0 and KerS∗1.

2. Algebraic cobordism

(2.0) Let A0 and A1 be two algebraically cobordant forms, let A be the form
A0 ⊕ −A1 defined on G = G0 ⊕ G1 and S be A + εAT . In this section we
prove proposition (2.1) which shows that the algebraic cobordism between A0 and
A1 allows us to describe S ; this characterization of S is fundamental to prove
theorem 3 (see §4). Let M , ϕ and θ be as in (1.2), let m be rk(G) and r be
rk(KerS∗0). Then definition (1.2) implies that s = rk(S∗(M)) = 1

2 rk(S∗(G)) and
rk(M) = r + s = m

2 .
We use the following notations: if E is any subset of G we denote by 〈E〉 the

submodule of G, generated by E. If L is any submodule of G then:

L⊥ = {x ∈ G s.t. S(x, l) = 0 ∀l ∈ L}
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HomZ(G|L,Z) = {f ∈ G∗ s.t. f(l) = 0 ∀l ∈ L}

Moreover if L1 and L2 are two submodules of G, orthogonal for S, we denote by
L1 ⊕⊥ L2 their (orthogonal) direct sum.

Lemma. We have: S∗(G) ∩ S∗(M)∧ = S∗(M⊥).

Proof. Let r be the rank of KerS∗0 and s be the rank of S∗(M). As M is a
metabolizer for S which fulfills condition c.1 in (1.2) we have:

rk(KerS∗) = 2 rk(M ∩ KerS∗) = 2 r k(KerS∗0) = 2 r, rk(S∗(G)) = 2 s and
rk(M⊥) = s+ 2 r. Hence M⊥ = (M + KerS∗)∧ and S∗(M⊥) ⊂ S∗(G)∩S∗(M)∧.

Moreover, S∗(M) is of finite index in HomZ(G|M⊥ ;Z). As HomZ(G|M⊥ ;Z)

is a pure submodule of G∗, we get S∗(M)∧ = HomZ(G|M⊥ ;Z). So if S∗(x) ∈
S∗(M)∧, then S∗(x, l) = 0 for all l in M⊥ and x is in M⊥. �

Since S∗(M) is of finite index in S∗(M)∧, one can write (S∗(M)∧)/S∗(M)
∼=

s⊕
i=1

Z/ai Z where ai ∈ N \ {0} and ai divides ai+1 (we do not exclude that there

exists an integer l such that ai = 1 for i = 1, . . . , l).

Proposition. The submodule M is pure in G if and only if S∗(M⊥) = S∗(M).

Proof. We suppose that M is pure in G. As M ∩KerS∗ = ∆(ϕ) has rank r, the
rank of M + KerS∗ is s+ 2r. So M + KerS∗ is of finite index in M⊥. Let x be in
M⊥ ; there exists a positive integer k such that kx = y+m, where y is in KerS∗,
m is in M ; so m = kx. Since M is pure in G then x is in M , so there exists
y′ in KerS∗ such that x+ y′ is in M . Finally S∗(x) = S∗(x+ y′) ∈ S∗(M), and
S∗(M⊥) ⊂ S∗(M). But M ⊂M⊥ so S∗(M⊥) = S∗(M).

We suppose that S∗(M) = S∗(M⊥). First we prove that M⊥ is pure in G. Let
z be in M⊥ with z = kx where x is in G and k is a positive integer. So there exists y
in KerS∗ such that kx = z+y. For allm in M we have S(kx,m) = S(z+y,m) = 0,
so S(x,m) = 0 and x is in M⊥. Now we prove that S∗(M⊥) = S∗(M) implies
M = M⊥. Let z be in M⊥. If S∗(z) = f there exists m in M such that S∗(m) = f .
So z−m = y is in KerS∗, and z = m is in M . Finally, since M⊥ is pure in G and
M⊥ ⊂M we get M⊥ = M is pure in G. �

By definition (1.2) M is pure in G, so lemma (2.0) and proposition (2.0), and,
conditions c.1 and c.2 in definition (1.2) imply that CokerS∗ is isomorphic to

Z2r ⊕ (
s⊕
i=1

Z/ai Z)2.
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(2.1) Proposition. There exists a basis B = {mi,m
∗
i ; i=1,... ,s+r} of G such

that:
1. {mi; i=1,... ,s+r} is a basis of M ,
2. {mi,m

∗
i ; i=s+1,... ,s+r} is a basis of KerS∗ and {m∗i ; i=s+1,... ,s+r} is a basis of

KerS∗0,

3. the submodules 〈mi,m
∗
i 〉, i=1,... ,s+r ; are orthogonal for S, i.e.: G =

⊕
1≤i≤s+r

⊥
〈mi,m

∗
i 〉,

3. when i=1,... ,s, S(mi,m
∗
i ) = ai.

Definition. Such a basis is called a good basis of G associated to M .

The form S = A+ εAT is always an even form. Moreover, when the ai are odd
we get the following corollary:

Corollary. When the ai are odd, the isomorphic class of S is given by m = rk(G)
and the isomorphic class of CokerS∗.

Proof of proposition (2.1). In (2.0) we have seen that S∗(M)∧ = HomZ(G|M⊥ ;Z).

Let M0 be any direct summand complement of (M ∩KerS∗) in M . There exits a
basis {mi; i=1,... ,s} of M0 and a basis {hi; i=1,... ,s} of HomZ(G|M⊥ ;Z) such that

S∗(mi) = ai hi where ai ∈ N \ {0} and ai divides ai+1. Let m∗1 be any element in
G such that G = Kerh1 ⊕ 〈m∗1〉 and h1(m∗1) = S(m1,m

∗
1).a−1

1 = 1.

Claim. For all x in G, a1 divides S(x,m∗1).

If a1 = 1 it is obvious. If a1 > 1, condition c.2 in (1.2) implies that (S∗(G)∧)/S∗(G)

is isomorphic to (S∗(M)∧)/S∗(M))2 ∼= (
s⊕
i=1

Z/ai Z)2 and the rank of S∗(G) is 2 s.

So a1 divides S∗(x) for all x in G.
Now, we will construct an orthogonal complement (M1 ⊕ R1) for 〈m1,m

∗
1〉 in

G such that:
i) M = 〈m1〉 ⊕M1,
ii) Kerh1 = M ⊕R1.
Let M1 be the submodule of M generated by m′i = mi − a−1

1 S(mi,m
∗
1).m1,

2 ≤ i ≤ s, and M ∩ KerS∗. By construction M1 is orthogonal to 〈m1,m
∗
1〉 and

M = 〈m1〉 ⊕M1.
By construction Kerh1 is orthogonal to m1 and M is in Kerh1.
If {xi, i=2,... ,s+r} is a basis of any direct summand complement of M in Kerh1,

letR1 be the submodule of Kerh1 generated by x′i where: x′i = xi−a−1
1 S(xi,m∗1).m1.

Then Kerh1 = 〈m1〉 ⊕M1 ⊕R1 and R1 is orthogonal to m∗1.
Now we have an orthogonal decomposition of G in 〈m1,m

∗
1〉⊕⊥ (M1⊕R1). By
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induction on s we obtain an orthogonal decomposition:

G = (⊕⊥〈mi,m
∗
i 〉)⊕⊥ (Ms ⊕Rs) where KerS∗ = Ms ⊕Rs.

Let {ms+1, . . . ,ms+r} be any basis of KerS∗ ∩M . Thanks to condition c.1,
KerS∗∩M = {(x, ϕ(x));x ∈ KerS∗0}. So we can choose any basis {m∗s+1, . . . ,m

∗
s+r}

of KerS∗0 to build up a basis of G which fulfills proposition (2.1). �

(2.2) Now, we use the notations established in §1 and the following convention:
if f : R→ S is an isomorphism of Z-modules, ∆(f) is the submodule {(x, f(x));x ∈
R} in R⊕ S. To prove theorem 1, we need the following proposition which gives
an equivalent definition of algebraic cobordism.

Proposition. Let A0 and A1 be in A. Then A0 is algebraically cobordant to A1 if
and only if there exists a pure submodule H of G = G0⊕G1 on which A = A0⊕−A1
vanishes, an isomorphism ϕ from KerS∗0 to KerS∗1 and an isomorphism θ from
Tors (CokerS∗0) to Tors (CokerS∗1) such that:

c.11: ∆(ϕ) ⊂ H,
c.12: the image H of H in G = G/KerS∗ is a metabolizer for S = S0 ⊕−S1,
c.2: d(S∗(H)∧) = ∆(θ).

Proof. Let M,ϕ, θ be as in definition (1.2). Then M satisfies c.1 and c.2. The
existence of ϕ shows that KerS∗0 and KerS∗1 have the same rank, r. So the rank of
G is (m0 +m1−2 r). By c.1 M ∩KerS∗ = ∆(ϕ) and rk(M) = m0+m1

2 because M
is a metabolizer for A. So rk(M) = m0+m1

2 − r and S vanishes on M . It implies
that M is a metabolizer for S.

Conversely let H,ϕ and θ be as in the statement of proposition (2.1). As ∆(ϕ)
is pure in H and in KerS∗, there exists a direct sum decomposition H ∩KerS∗ =
∆(ϕ)⊕M0. As KerS∗ is pure in G, there exists also a direct sum decomposition
H = M1 ⊕ (H ∩ KerS∗). Let M be M1 ⊕∆(ϕ). By construction A vanishes on
M , M ∩KerS∗ = ∆(ϕ) and S∗(M) = S∗(H). So M,ϕ and θ satisfy c.1 and c.2
of definition (1.2). Furthermore, H = M1 = M and by c.12 the rank of H is
m0+m1

2 − r. But M1 being isomorphic to M1, the rank of M is m0+m1
2 and M is

a metabolizer for A. �

(2.3) Proof of theorem 1. The only non trivial property to check is the transi-
tivity of the relation ”algebraic cobordism”.

(2.4) Lemma. Let Bi : Gi×Gi → Z be in A, i = 0, 1, 2. Let mi be the rank of
Gi. If there exists a metabolizer H01 (resp. H12) for B0⊕−B1 (resp. B1⊕−B2)
and if the Bi are non-degenerate, the form B0 ⊕ −B2 vanishes on H02 = π(L)
and rkH02 = 1

2 rk (G0 ⊕G2), where: G = G0 ⊕G1 ⊕G1 ⊕ G2, H = H01 ⊕H12,
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∆ = {(y, y) ∈ G1⊕G1 ; y ∈ G1}, L = H ∩ (G0 ⊕∆⊕G2) and π is the projection
of G on G0 ⊕G2.

Proof. As B0 ⊕ −B2 vanishes on H02 by construction, it is sufficient to prove
that the rank of H02 is m0+m1

2 . The definition of H02 gives the following exact
sequence:

0→ L ∩∆ i→ L
π→ H02 → 0.

So we get:
(∗) rk(L) = rk(L ∩∆) + rk(H02).

If v is in H, there exists unique x in G0, y1 and y2 in G1 and z in G2 such that
v = (x, y1, y2, z). Let ρ : H → G1 ⊕G1 be defined by ρ(v) = (y1 − y2, 0). Let us
denote by L1 the image ρ(H). By construction L is the kernel of ρ and we get the
exact sequence: 0→ L

i→ H
ρ→ L1 → 0. Both this sequence and (∗) show:

(∗∗) m0 +m2 + 2m1
2

− rk(L1) = rk(L ∩∆) + rk(H02).

Claim. By (B1 ⊕−B1), ∆ ∩ L is orthogonal to L1 ⊕∆.
Indeed, ∆ is self-orthogonal ; if (y, y) is in ∆∩L, then (0, y) is in H01 and (y, 0)

is in H12. On the other hand, an element of L1 is of the form (y1,−y2) where
there exists (x, y1) in H01 and (y2, z) in H12. So B1(y, y1) = B1(y1, y) = 0 and
−B1(y, y2) = −B1(y2, y) = 0.

The rank of L1 ⊕ ∆ is m1 + rk(L1). The claim implies that the rank of the
restriction of B1⊕−B1 to (∆∩L)× (G1⊕G1) is smaller or equal to m1− rk(L1).
But B1⊕−B1 is non-degenerate by hypothesis, so: rk(∆∩L) ≤ m1− rk(L1). By
(∗∗) it implies: m0+m2

2 ≤ rk(H02).
As B0 and B2 are non-degenerate by hypothesis and as B0 ⊕−B2 vanishes on

H02, rk(H02) ≤ m0+m2
2 . It ends the proof of the lemma. �

Let us go back to the proof of theorem 1. Let Ai be algebraically cobordant to
Ai+1, i = 0, 1. Let Mi,i+1 be a metabolizer for Ai⊕−Ai+1 with the isomorphisms
ϕi and θi fulfilling conditions c.1 and c.2 in definition (1.2).

Let us take the following notations: G = G0⊕G1⊕G1⊕G2, S02 = S0⊕−S2,
G02 = G0 ⊕G2, S = S0 ⊕−S1 ⊕ S1 ⊕−S2, ∆ = {(x, x) ; x ∈ G1} ⊂ G1 ⊕G1, d
be the quotient map from G to CokerS∗ and d02 the quotient map from G∗02 to
CokerS∗02. Let π (resp. π̃) be the obvious projection from G (resp. CokerS∗) to
G0⊕G2 (resp. CokerS∗02). Since M i,i+1 is pure in Gi⊕Gi+1 we have the following
decompositions M⊥i,i+1 = ∆(ϕi)⊕KerS∗i ⊕Ri,i+1 with Mi,i+1 = ∆(ϕi)⊕Ri,i+1,
and Ri,i+1 is pure in Gi ⊕Gi+1. Let Qi,i+1 be any direct summand complement
of M⊥i,i+1 in Gi ⊕ Gi+1. If Ti,i+1 = Ri,i+1 ⊕ Qi,i+1, then we have the following
decomposition G = KerS∗01 ⊕KerS∗12 ⊕T01⊕ T12. Let us denote by T0 (resp. T1,
T ′1, T2) the projection of T01 (resp. T01, T12, T12) to G0 (resp. G1, G1, G2). We
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modify R12 and Q12 by adding to them some elements of ∆(ϕ1) in order to have
T1 = T ′1. Moreover, we have the following equalities: Gi = KerS∗i ⊕ Ti i = 0, 1, 2.

Let T02 be T02 = π(T01 ⊕ T12) = T0 ⊕ T2. Let R02 be the smallest pure
submodule of T02 which contains the projection of (R01 ⊕R12) ∩ (G0 ⊕∆⊕G2)
on T02: R02 = (π((R01 ⊕R12)∩ (G0⊕∆⊕G2)))∧ ; and let A be A0 ⊕−A2, ϕ be
ϕ1 ◦ ϕ0 and θ be −(θ1 ◦ θ0).

By proposition (2.2), to prove that A0 is algebraically cobordant to A2 it is
sufficient to prove that H = ∆(ϕ) ⊕ R02 is a metabolizer for A0 ⊕ −A2, and, H
fulfill conditions c.11, c.12 and c.2 of (2.2). First we remark that H fulfills c.11 by
definition.

(2.5) Lemma. We have the equality d02(S∗02(H)∧) = ∆(−θ1 ◦ θ0).

(2.6) Lemma. The submodule H is a metabolizer for A, and H is a metabolizer
for S0 ⊕−S2.

Proof of lemma (2.5). By construction: d(S∗(G)∧) = Tors(CokerS∗) and
d02(S∗02(H)∧) = π̃(d(S∗(L)∧)). But c.2 implies:
d(S∗(L)∧) = (∆(θ0)⊕∆(θ1)) ∩ d(S∗(G0 ⊕∆⊕G2)∧), so:

d(S∗(L)∧) = {(x, θ0(x), y, θ1(y));x ∈ Tors(CokerS∗0) , y = −θ0(x)}.
Finally: d02(S∗02(H)∧) = {(x,−θ1 ◦θ0(x));x ∈ Tors(CokerS∗0)} = ∆(−θ1 ◦θ0).

�

Proof of lemma (2.6). The restriction Si,i+1|Ti,i+1
on Ti,i+1, of the ε-symetric

bilinear form Si,i+1, is non-degenerate ; and the submodule Ri,i+1 is a metabolizer
for Si,i+1|Ti,i+1

, i = 0, 1. By construction T0 (resp. T1, T2) is the projection

of T01 (resp. T01, T12) onto G0 (resp. G1, G2). So we have Si,i+1|Ti,i+1
=

Si|Ti⊕−Si+1|Ti+1
. We use lemma (2.4) replacing Bi by Si|Ti , so S02|T02

vanishes

on R02 and rkR02 = 1
2rkT02. Since the pure submodule H of G02 = KerS∗02⊕T02

is defined by the equality H = ∆(ϕ) ⊕ R02 then rkH = 1
2rkG02. Moreover for

all h1, h2 in H there exist two integers a1 and a1 such that for i = 1, 2 we have:
ai hi = π(mi) and mi = (xi, ϕ0(xi), ϕ0(xi), ϕ(xi)) + (m0,i,m1,i,m1,i,m2,i) is in
M01 ⊕M12. So A(h1, h2) = 1

a1a2
(A01 ⊕ −A12)(m1,m2) = 0, so A vanishes on

the pure submodule H of G02. Finally H is a metabolizer for A. By construction
S02|T02

is isomorphic to S02, so as R02 is pure in T02 then R02 is a metabolizer

for S02. �

The above properties of H, and, lemmas (2.5) and (2.6) imply conditions c.12
and c.2 of proposition (2.2), and A0 is algebraically cobordant to A2. This ends
the proof of theorem 1. �



40 V. Blanlœil and F. Michel CMH

3. The necessary condition to have a cobordism

Let K0 and K1 be two cobordant links. Let us denote by S the product S2n+1 ×
[0, 1] and by Σ its oriented boundary. The definition of cobordism gives a sub-
manifold C = Φ(K × [0, 1]) of S such that Σ ∩ C = K0

∐
(−K1). Let N be

F0∪C ∪ (−F1) where Fi is a Seifert surface for Ki. By construction N is a closed,
compact, oriented, 2n-submanifold of S.

(3.1) Lemma. There exists a smooth oriented, compact, submanifold W of S
such that N is the boundary of W .

Proof. This lemma is a consequence of classical obstruction theory. If n ≥ 3 a
proof is written in [L2, 70], p. 183. As the existence of W is fundamental to
obtain theorem 2, we write a proof which works in any dimension.

Let Cj for j = 1, . . . , k be the k connected components of C. As C has
a trivial normal bundle in S, it is possible to choose disjoint, closed, tubular
neighbourhoods Uj of Cj and a diffeomorphism Ψ : C × D2 → U =

∐
1≤j≤k

Uj .

Now we have meridians mj on ∂Uj defined by: mj = Ψ(Pj × S1) where Pj is
some point of Cj and mj is oriented such that the linking number of mj and Cj

(in S) is +1. Let X be S\
◦
U , v be the diffeomorphism induced by the inclusion

of ∂X in U , e be the excision isomorphism and ∂i (resp. ∂iX) be the connectant
homomorphism for the pair (S, U) (resp. (X, ∂X)). Then we have the following
commutative diagram:

∂0
X→ H1(X, ∂X)

ρ→ H1(X) σ→ H1(∂X)
∂1
X→ H2(X, ∂X) →

∼=↑ e ↑ v ↑ ∼=↑ e

∂0
→ H1(S, U) → 0 = H1(S) → H1(U)

∼=∂1
→ H2(S, U) → 0

The commutativity of all the squares of the above diagram implies that the homo-
morphism ρ is zero so σ is injective and ∂iX is surjective for 0 ≤ i ≤ 2n−1. We have
the following direct sum decomposition: H1(∂X) = σ(H1(X)) ⊕ v(H1(U)). Any
element of σ(H1(X)) is represented by a differentiable map from ∂X to S1, which
is, up to homotopy, characterized by its degree on each meridian mj , and which
has a unique extension to X . Let g : X → S1 be the unique, up to homotopy,
differentiable map which has degree +1 on each meridian. Thanks to the Thom-
Pontriagin construction there exists a differentiable map f : Σ\(K0

∐
−K1)→ S1

which has
◦
F0
∐

(−
◦
F1) as regular fiber and f has degree +1 on the meridians of

the connected components of K0
∐

(−K1). So f and g have homotopic restrictions
on X ∩Σ and we can choose g such that its restriction on X ∩Σ coincides with f .
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Then g has a regular fiber W such that W ∩ Σ = (F0
∐
−F1) ∩X . The union of

W with a small collar in U is the manifold W such that N = ∂W . �

S x
2 +1 [0, 1]n

K
0

F
0

F
1

K
1

W

(3.2) Let us take A0 (resp. A1) the Seifert form associated to a (n − 1)-
connected Seifert surface F0 (resp. F1) for K0 (resp. K1). Let τ : K0 → K1 be
the diffeomorphism defined by: τ(P ) = Φ(Φ−1(P ) × {1}) where P is any point
of K0. The diffeomorphism τ induces isomorphisms θj : Hj(K0) → Hj(K1) such
that for any j-cycle x of K0, (x, θj(x)) is a boundary in C = Φ(K × [0, 1]). Let
χi : Hn(Ki)→ Hn(Fi) and λi : Hn(Fi)→ Hn(N), i = 0, 1, be the homomorphisms
induced by the inclusions Ki ⊂ Fi ⊂ N . The Mayer-Vietoris exact sequence
associated to the decompostion of N in the union of F0 ∪C and C ∪ (−F1) gives:

→ Hn(K0)
χ→ Hn(F0)⊕Hn(F1) λ→ Hn(N) δ→ Hn−1(K0)→

where χ = (χ0, χ1 ◦ θn) and λ = (λ0, λ1)
(3.3) Remark. Letmi be rk(Hn(Fi)), m be rk(Hn(N)) and r be rk(χ(Hn(K0))).

By Poincaré duality m = m0 +m1, r = rk(δ(Hn(N))) and r = rk(KerS∗i ) where
S∗i is the adjoint of the intersection form Si on Hn(Fi).

(3.4) Construction of the isomorphisms ϕ : KerS∗0 → KerS∗1 and
θ : Tors(CokerS∗0)→ Tors(CokerS∗1).

Let Si∗ : Hn(Fi) → Hn(Fi,Ki) and ∂ : Hn(Fi,Ki) → Hn−1(Ki) be the
homomorphisms given by the long exact sequence for the pair (Fi,Ki). Let
U : Hn(Fi) → HomZ(Hn(Fi);Z) be the universal coefficient isomorphism (Fi is
(n − 1)-connected) and let P : Hn(Fi,Ki) → Hn(Fi) be the Poincaré duality
isomorphism. We have the following commutative diagram:

0 → χi(Hn(Ki)) → Hn(Fi)
Si∗→ Hn(Fi,Ki)

∂→ ∂(Hn(Fi,Ki)) → 0

‖ ‖ ∼=↓ U ◦ P ↓ ∆i

0 → KerS∗i → Hn(Fi)
S∗i→ HomZ(Hn(Fi);Z) d→ CokerS∗i → 0
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By definition ∆i : ∂(Hn(Fi,Ki)) → CokerS∗i is the quotient of the isomorphism
U ◦ P , so ∆i is an isomorphism.

Let us consider again the isomorphism θj : Hj(K0)→ Hj(K1), which is defined
in (3.2) thanks to the existence of the cobordism. Since Fi is (n−1)-connected then
∂(Hn(Fi,Ki)) = H̃n−1(Ki) and θn(Kerχ0) = Kerχ1, so θn−1 ◦ ∂(Hn(F0,K0))=
∂(Hn(F1,K1)).

Let θ be the restriction of the isomorphism ∆1 ◦ θn−1 ◦∆−1
0 on the Z-torsion

of CokerS∗0 .
Let ϕ be the restriction of θn on χ0(Hn(K0)). As χi(Hn(Ki)) = KerS∗i , so ϕ

is defined on KerS∗0 .
We denote by ∆(ϕ) the submodule {(x, ϕ(x)); x ∈ KerS∗0} of Hn(F0)⊕Hn(F1).
(3.5) Remark. By construction ϕ fulfills: ϕ ◦ χ0 = χ1 ◦ θn and ∆(ϕ) =

χ(Hn(K0)) where χ = (χ0, χ1 ◦ θn) as in (3.2).
(3.6) To prove theorem 2, we will construct a metabolizerM (in Hn(F0

∐
−F1))

for A = A0 ⊕ −A1. This metabolizer M will fulfill conditions c.1 and c.2 in
definition (1.2) of the algebraic cobordism, for the isomorphisms ϕ and θ defined
in (3.4). To do that, we have to choose an oriented submanifold W of S with
∂(W ) = N (thanks to (3.1) such a W exists). Let j : Hn(N) → Hn(W ) be the
homomorphism induced by the inclusion of N in W .

(3.7) Lemma. The form A = A0 ⊕−A1 vanishes on λ−1(Ker j∧).

Proof. It is sufficient to prove that A vanishes on λ−1(Ker j). Let a = [x] and
b = [y] be two homology classes in λ−1(Ker j). As λ is induced by the inclusion
of F0

∐
−F1 in N (see (3.2)), there exists two (n + 1)-chains α and β in W such

that ∂α = x and ∂β = y. Let i+ be the positively oriented normal vector field to
W in S. The intersection of α and i+(β) is zero. Hence the linking number in Σ
of x and i+(y) is zero. But this linking number is, by definition, equal to A(a, b),
so A(a, b) = 0 and the lemma is proved. �

(3.8) Lemma. Let m be the rank of H n(N). The rank of Ker j is m
2 .

Proof. The long exact sequence for the pair (W,N) gives the exactness of:

0→ H2n+1(W )→ H2n+1(W,N)→ H2n(N)→ . . .→ Hn+1(W,N)→ Ker j → 0

The alternating sum of the ranks in this exact sequence together with the Poincaré
duality give:

rk(Ker j) =
rk(Hn(N)

2
=
m

2
.

�

(3.9) Lemma. There exists a direct summand decomposition of λ−1(Ker j∧) in
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∆(ϕ)⊕R0⊕R where ∆(ϕ) = {(x, ϕ(x)); x ∈ KerS∗0}, R0 = λ−1(Ker j∧)∩KerS∗0,
and R is any direct summand complement of λ−1(Ker j∧)∩KerS∗ in λ−1(Ker j∧).

Proof. As the considered submodules of λ−1(Ker j∧) are pure, the lemma comes
from the following equalities:

χ(Hn(K0)) = Kerλ ⊂ λ−1(Ker j∧) (see (3.2)),
∆(ϕ) = χ(Hn(K0)) (see (3.5)),
KerS∗ = χ(Hn(K0))⊕KerS∗0 . �

(3.10) Proposition. The submodule M = ∆(ϕ) ⊕ R of λ−1(Ker j∧) is a
metabolizer for A = A0 ⊕−A1, which fulfills: M ∩KerS∗ = ∆(ϕ).

Proof. By lemma (3.9), M ∩KerS∗ = ∆(ϕ). By (3.6), A vanishes on M . So we
only have to show that M is of rank m

2 . As remarked in (3.3), r = rk(δ(Hn(N))),
so rk(δ(Ker j∧)) ≤ r. Let us consider the following exact sequence induced by
(3.2): 0→ ∆(ϕ)

χ→ λ−1(Ker j∧) λ→ Ker j∧ δ→ δ(Ker j∧)→ 0. This exact sequence
together with the equalities: rk(Ker j∧) = m

2 (see (3.8)), rk(∆(ϕ)) = r ; give
rk(λ−1(Ker j∧)) = r + m

2 − rk(δ(Ker j∧)). So rk(λ−1(Ker j∧)) ≥ m
2 .

We can remark that if A is non degenerated (as supposed in theorem 2) then
we have rk(λ−1(Ker j∧)) ≤ 1

2rk(Hn(F0) ⊕ Hn(F1)) = m
2 , because A vanishes

on λ−1(Ker j∧) (see (3.6)). So, if A is non degenerated, rk(λ−1(Ker j∧)) = m
2 ,

rk(δ(Ker j∧)) = r, rk(R0) = 0 and M = λ−1(Ker j∧) is a metabolizer for A.
Come back to the general case. Let r0 be the rank of R0. By construction:

rk(M) = rk(λ−1(Ker j∧))− r0 = r + m
2 − rk(δ(Ker j∧)) − r0.

(3.11) Lemma. The rank l of δ(Hn(N))/δ(Ker j∧) is greater or equal to r0.

Proof. Let {ej}, j = 1, . . . , r0 be a basis of R0. Let {e∗j} be in Hn(N) ⊗Z Q
such that SN (λ(ej), e∗j ) = δij where SN is the intersection form on Hn(N) ⊗Z Q.
The e∗j exists because SN is unimodular. Let R∗ be the submodule of Hn(N)⊗ZQ
generated by {e∗j}. Since R0 ∩Kerλ = {0}, then rk(λ(R0)) = r0. As S vanishes
on R0, then SN vanishes on λ(R0). It implies that rk(R∗) = rk(R0) = r0, and
Ker j∩R∗ = {0}. Since R0 ⊂ KerS∗0, we have S(x, y) = 0 for all x inR0 and all y in
Hn(F0

∐
−F1). So R∗ ∩ λ(Hn(F0

∐
−F1)) = {0} and rk(δ(Hn(N))/δ(Ker j∧)) =

l ≥ rk(δ(R∗)) = rk(R∗) = r0. �

In order to end the proof of (3.10), we only have to show that rk(R) = m
2 − r.

But rk(δ(Ker j∧)) = r − l ; so we already have shown that rk(R) = rk(M) − r =
m
2 − (r − l)− r0.

By lemma (3.11), we have l− r0 ≥ 0, so rk(R) ≥ m
2 − r. But R∩KerS∗ = {0}

by construction, and the form S induced by S on Hn(F0
∐
−F1)/KerS∗ is non-
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degenerate of rank m − 2 r. So rk(R) ≤ m
2 − r because S vanishes on R =

R/(R ∩KerS∗). �

(3.12) Remark. We have found a metabolizer M = ∆(ϕ) ⊕ R for A which
fulfills condition c.1 of the algebraic cobordism without any condition on A. We
already have got theorem 4 (see (1.6)). To prove condition c.2 and M is pure in
G, we will have to choose (n − 1)-connected Seifert surfaces Fi for Ki on which
the Seifert forms Ai are unimodular. So the following proposition (3.13) together
with proposition (3.10) imply theorem 2 stated in (1.4).

Let θn−1 be the isomorphism betweeen Hn−1(K0) and Hn−1(K1) defined in
(3.2), and let θ the isomorphism between Tors(CokerS∗0) and Tors(CokerS∗1) de-
fined in (3.4). Using the notation of (2.2), let ∆(θn−1) (resp. ∆(θ)) be the group
{(x, θn−1(x)) ; x ∈ Tors(Hn−1(K0))} (resp. {(x, θ(x)) ; x ∈ Tors(CokerS∗0)}).

(3.13) Proposition. If A0 and A1 are unimodular the metabolizer M = ∆(ϕ)⊕
R of A = A0⊕−A1, fulfills d(S∗(M)∧) = ∆(θ) ; and M is pure in Hn(F )/KerS∗ .

Proof. Let us denote F0
∐
−F1 by F , K0

∐
−K1 by K, and S∗0 ⊕−S∗1 by S∗.

We consider for F the following commutative diagram already constructed for Fi
in (3.4):

0 → KerS∗ ↪→ Hn(F ) S∗→ Hn(F,K) ∂→ ∂(Hn(F,K)) → 0

‖ ‖ ∼=↓ U ◦ P ∼=↓ ∆0 ⊕∆1

0 → KerS∗ ↪→ Hn(F ) S∗→ HomZ(Hn(F );Z) d→ CokerS∗ → 0

(3.14) Lemma. The equality d(S∗(M)∧) = ∆(θ) is equivalent to the equality
∂(S∗(M)∧) = ∆(θn−1).

Proof. The lemma is a consequence of the two following statements:

The restriction of ∆0 ⊕ ∆1 on ∆(θn−1) is an isomorphism to ∆(θ) because
θ ◦∆0 = ∆1 ◦ θn−1 by construction (see (3.4)).

The restriction of ∆0 ⊕ ∆1 on ∂(S∗(M)∧) is an isomorphism to d(S∗(M)∧)
because the commutativity of the above diagram gives U ◦P (S∗(M)∧) = S∗(M)∧.

�
Let κ : Hn(N)→ Hn(N,C) be the homomorphism which is defined in the long

exact sequence for the pair (N,C) and ρ : Hn(N,C) → Nn(F,K) be the inverse
of the excision isomorphism induced by the inclusion of the pair (F,K) ⊂ (N,C).
Let ξ = ρ ◦ κ : Hn(N) → Hn(F,K) and θ = (Id, θn−1) : Hn−1(K0) → Hn−1(K).
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With the notations used in (3.2) we have the following commutative diagram:

→ Hn(K0)
χ→ Hn(F ) λ→ Hn(N) δ→ Hn−1(K0) →

(?) ‖ (I) ↓ ξ (II) ↓ θ

→ Hn(K)
χ0⊕χ1→ Hn(F ) S∗→ Hn(F,K) ∂→ Hn−1(K) →

The square (I) is commutative by fonctoriality, and (II) is commutative by defini-
tion of ξ and θ.

(3.15) Lemma. If A0 and A1 are unimodular, then we have δ(Ker j∧) =
H̃n−1(K0).

We first show that lemma (3.15) implies proposition (3.13).
We show that M is pure in Hn(F )/KerS∗ , which is equivalent to prove that

the quotient Hn(F )/(KerS∗ +M) is torsion free. Since A = A0 ⊕ −A1 is non-

degenerate M = λ−1(Ker j∧). Furthermore by diagram (?) we get λ(KerS∗) =
Ker ξ. Let pr be the projection of Hn(N) on Hn(N)/(Ker j∧ + Ker ξ), so Ker (pr◦
λ) = M + KerS∗. The quotient of pr ◦ λ induces an injective map from
Hn(F )/(KerS∗ +M) into Hn(N)/(Ker j∧ + Ker ξ).

Claim. The module Hn(N)/(Ker j∧ + Ker ξ) is torsion free.

Proof of the claim. There exists xi, i = 1, . . . , r, in Ker j∧ such that H̃n−1(K0) =
r⊕
i=1

〈δ(xi)〉⊕Tors(H̃n−1(K0)). Let (yi)i=1,... ,r a basis of Ker ξ such that SN (xi, yj) =

δij . By induction on r, we can construct these bases such that Hn(N) = T ⊕⊥ T⊥

where T =
r⊕
i=1

〈xi, yi〉. If we denote by D the module D = T⊥ ∩ Ker j∧ and by

D∗ any direct summand complement of D in T⊥, then we get:
Hn(N)/(Ker ξ + Ker j∧)

∼= D∗ which is torsion free. �

Finally Hn(F )/(KerS∗ +M) is torsion free and M is pure in Hn(F )/(KerS∗).
So if n = 1, the links K0 and K1 have torsion free homology groups (K is a

one dimensional compact manifold), so Tors(CokerS∗) = {0} and we have already
proved proposition (3.13).

Now let us take n ≥ 2.
Thanks to lemma (3.14), the equality: ∆(θn−1) = ∂(S∗(M)∧) gives propo-

sition (3.13). The above diagram (?) and lemma (3.15) imply: θ(Hn−1(K0)) =
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∆(θn−1) ⊂ ∂(S∗(M)∧). To show that the inclusion: ∆(θn−1) ⊂ ∂(S∗(M)∧) is an
equality, it is sufficient to take any x in (∂(S∗(M)∧)∩∂(Hn(F0,K0)), and to show
that such a x is zero.

Let us denote by L (resp. Li) the linking form on Tors (Hn−1(K)) (resp.
Tors (Hn−1(Ki))). By definition (see remark (3.16)) such a form L = L0 ⊕ −L1
is non degenerated and vanishes on ∂(S∗(M)∧) because S0 ⊕−S1 vanishes on M .
Let (y, θn−1(y)) be in ∆(θn−1). Then L(x, (y, θn−1(y))) = L0(x, y) = 0 for all
y ∈ Tors (Hn−1(K0)). The non degeneracy of L0 implies x = 0. This ends the
proof of proposition (3.13). �

(3.16) Remark. The linking form L is defined as follows (see [L-L, 75] prop.
2.1): Let x, y be in Tors (Hn−1(K)) such that p and q are the smallest positive
integers with p.x = q.y = 0. Let x and y be in Hn(F ) such that ∂(S∗(x)⊗ 1

p ) = x

and ∂(S∗(y)⊗ 1
q ) = y. Then: L(x, y) ≡ 1

p.q S(x, y) mod Z.

Proof of lemma (3.15). As shown in (3.10), if A0 ⊕ −A1 is non degenerated,
M = λ−1(Ker j∧) has rank m

2 and is the chosen metabolizer. So λ induces a
monomorphism λ on Hn(F )/M to Hn(N)/Ker j∧ and we get the following exact
sequence:

0→ Hn(F )/M
λ→ Hn(N)/Ker j∧

δ→ H̃n−1(K0)/δ(Ker j∧) → 0.

As λ is injective and M is pure in Hn(F ) there exists two Z-bases {ej ; j=1,... ,m2 }
of Hn(F )/M and {kj ; j=1,... ,m2 } of Hn(N)/Ker j∧ such that λ(ej) = pj .kj with

pj ∈ Z \ {0}. Let E (resp. H) be a direct summand complement of M (resp.
Ker j∧) in Hn(F ) (resp. Hn(N)). Let also {ej; j=1,... ,m2 } (resp. {kj ; j=1,... ,m2 }) be
a Z-basis of E (resp. H) such that ej ≡ ej mod M (resp. kj ≡ kj mod Ker j∧).
By construction λ(ej)−pj.kj = x ∈ Ker j∧. So there exists a (n+1)-chain γ in W
and a positive integer a such that: ∂γ = a λ(ej)−a pj .kj . Let ρ be a (n+ 1)-chain
of S2n+1×[0, 1] with ∂ρ = kj . So a ej is the boundary of γ+a pj.ρ in S2n+1×[0, 1].

Statement: for all m in M , pj divides A(ej ,m).
Let m be in M = λ−1(Kerj∧) and ∆ be a (n+ 1)-chain in S2n+1 × [0; 1] such

that ∂∆ = i+(m). By definition A(a ej ,m) is the intersection in S2n+1 × [0, 1] of
γ + a pj.ρ and ∆. But λ(am) ∈ Ker j so there exists a (n+ 1)-chain µ in W such
that ∂µ = am. We have ∂(i+(µ)) = a i+(m). Since ∂(a∆) = a i+(m), we get
γ ∩ (a∆) = γ ∩ (i+(µ)) = 0. But a > 0, so a(γ ∩∆) = 0 implies γ ∩∆ = 0. Finaly
A(a ej ,m) = a pj.(ρ ∩∆) and pj divides A(ej ,m).

If A is unimodular the statement implies that pj = ±1 for all j = 1, . . . , m2 . So
λ is an isomorphism and his cokernel is zero. As asked we have got: δ(Ker j∧) =
H̃n−1(K0). This ends the proof of lemma (3.15). �

(3.17) Remark. As above we can also prove that: for all m in M pj divides
A(m, ej).
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4. The sufficient condition to have a cobordism

(4.1) Let K0 and K1 be two 2n − 1 dimensional simple links, with n ≥ 3. We
suppose that there exists (n−1)-connected Seifert surfaces F0 and F1, for K0 and
K1, such that the associated Seifert forms A0 and A1 are algebraically cobordant.
We consider K0 (resp. −K1) as embedded in the sphere S2n+1 × {0} (resp.
S2n+1 × {1}) which are oriented as the boundary of S2n+1 × [0, 1].

Let x be in S2n+1 × {0} such that (x× [0, 1]) ∩ (F0
∐
−F1) is empty, and let

U be a ”small” open ball around x in S2n+1 × {0}. The boundary S of the disk
D = (S2n+1 × [0, 1]) \ (U × [0, 1]) contains F0

∐
−F1. Let G be the closure of the

connected sum, in S, of the interiors
◦
F 0 and −

◦
F 1. By construction A = A0⊕−A1

is the Seifert form of K0
∐
−K1, associated to G.

(4.2) Proof of theorem 3 . In order to prove theorem 3 we will do in D, an
embeded surgery on G, the result of which being a manifold G̃ diffeomorphic to
K × [0, 1].

By proposition (2.1) we can choose a good basis B = {(mi,m
∗
i ); i=1,... ,s+r} of

Hn(G). Thanks to J. Milnor ([M1, 61] lemma 6 p. 50), any cycle of G can be
represented by the image of an embedding of Sn. Furthermore:

(4.3) Proposition. There exists s+r disjointed embeddings ψi : Dn+1×Dn →
D such that for any i ∈ {1, . . . , s+ r} we have

1- [ψi(Sn × {0})] = mi,
2- (ψi(Dn+1 ×Dn)) ∩G = ψi(Dn+1 ×Dn) ∩ S = ψi(Sn ×Dn).

Proof. Let ψi : Sn → G be an embedding of Sn which represents mi. Let i, j
with i 6= j, be in {1, . . . , s + r}, then mi and mj are in the metabolizer M and
we have: S(mi,mj) = A(mi,mj) + (−1)nA(mj ,mi) = 0. Since n ≥ 3, thanks to
Whitney’s procedure [Wh, 44] we can choose the ψi such that ψi(Sn)∩ψj(Sn) = ∅.
Since n ≥ 2, the Whitney obstruction to extend ψi to disjoint embeddings ψi of
Dn+1 in the (2n+ 2)-disk D, is the matrix A(mi,mj) which is zero. Furthermore,
A(mi,mi) = 0 is the classical obstruction to extend ψi to ψi : Dn+1 ×Dn → D.
(see [Br, 72] and for details see [Bl, 94] proposition 5.1.2, p.58). We choose this
extension ψi such that the restriction to Sn ×Dn is a tubular neighbourhood of
ψi(Sn) in G. �

So thanks to proposition (4.3) we obtain a submanifold G̃ of D as follows:

G̃ = (G \ (
s+r∐
i=1

ψi(Sn ×Dn)) ∪ (
s+r∐
i=1

ψi(Dn+1 × Sn−1)).

(4.4) Proposition. The inclusion ko (resp. k1) of K0 (resp. K1) in G̃, induces
isomorphisms ko,j (resp. k1,j) from Hj(K0) (resp. Hj(K1)) to Hj(G̃) for all j.
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(4.5) Corollary. We have H∗(G̃,K0) = H∗(G̃,K1) = 0.

This corollary (4.5) and the h-cobordism theorem imply that G̃ is diffeomorphic
to K0 × [0, 1]. More precisely dim G̃ = 2n ≥ 6 and:

h-cobordism Theorem [M2, 65]. Let M be a k-dimensional differentiable com-
pact manifold with ∂M = M0

∐
M1 such that M, M0 and M1 are simply

connected. If H∗(M,M0) = 0 and k ≥ 6 then M is diffeomorphic to M0 × [0, 1].

So to end the proof of theorem 3 we only have to prove proposition (4.4).

Proof of proposition (4.4). According to proposition (2.1), the intersection form
on Hn(F ) splits in an orthogonal sum on the submodules 〈mi,m

∗
i 〉, i = 1, . . . , s+r.

So the proof of (4.4) when s+ r = 1 implies the general case.
Let us suppose that rk(M) = 1 and let m be a generator of M , then Hn(G) =

〈m,m∗〉. We denote by ψ : Dn+1 ×Dn → D an embedding choosen as in propo-
sition (4.3), by η : Sn → G an embedding such that [η(Sn)] = m∗, and by GT the

manifold GT = G \ ψ(Sn×
◦
Dn).

(4.6) The Mayer-Vietoris sequence associated to the following decomposition
of the manifold: G = GT ∪ ψ(Sn ×Dn) gives:

0→ Hn(ψ(Sn × Sn−1))→ Hn(GT )⊕Hn(ψ(Sn ×Dn))→ Hn(G)

δ→ Hn−1(ψ(Sn × Sn−1))→ Hn−1(GT )→ 0.

where δ is given by the intersection of cycles with m.
(4.7) The Mayer-Vietoris sequence associated to the following decomposition

of the manifold: G̃ = GT ∪ ψ(Dn+1 × Sn−1) gives:

0→ Hn

(
ψ(Sn × Sn−1)

) α→ Hn(GT )→ Hn(G̃)
γ→ Hn−1(ψ(Sn × Sn−1))

β→ Hn−1(ψ(Dn+1 × Sn−1))⊕Hn−1(GT )→ Hn−1(G̃)→ 0.

Remark that the homomorphism β is injective into Hn−1(ψ(Dn+1×Sn−1)), hence
γ = 0 and the sequence (4.7) splits up into:

(4.8) 0→ Hn(ψ(Sn × Sn−1)) α→ Hn(GT )→ Hn(G̃)→ 0,

(4.9) 0 → Hn−1(ψ(Sn × Sn−1))
β→ Hn−1(ψ(Dn+1 × Sn−1)) ⊕ Hn−1(GT ) →

Hn−1(G̃)→ 0.
Since rk(M) = 1 = s+r we have to consider the two following cases: s = 0, r =

1 and s = 1, r = 0.
? 1st case: s = 0 and r = 1, then KerS∗ = 〈m,m∗〉.

In sequence (4.6) we have Ker δ = 〈m,m∗〉, then Hn(GT ) = 〈[ψ(Sn×{1})], [η(Sn)]〉
and Hn−1(GT ) = 〈[ψ({1} × Sn−1)]〉. In sequence (4.8) we have Imα =
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〈[ψ(Sn × {1})]〉, so Hn(G̃) = 〈[η(Sn)]〉. By construction of the good basis
(2.1), [η(Sn)] is a generator of Im (Hn(K0)→ Hn(G)). So the inclusion of K0

in G̃ induces the isomorphism: k0,n : Hn(K0)
∼=→ Hn(G̃).

Since Hn−1(GT ) = 〈[ψ({1} × Sn−1)]〉 in sequence (4.9), we have Hn−1(G̃) =
〈[ψ({1}×Sn−1)]〉. Condition c.1 of the algebraic cobordism gives that there ex-
ists a in KerS∗0 such that m = (a, ϕ(a)). If we denote by γ0 : Hn(K0)→ Hn(G)
the homomorphism induced by the inclusion, then we can choose b in Hn−1(K0)
such that Hn−1(K0) = 〈b〉 and b is the dual of γ−1

0 (a) for the intersection form
of K0. There exists B in Hn(G,K0) such that ∂B = b and the intersection be-

tween B and m is +1. The boundary of the n-chain (B− (B ∩ψ(Sn×
◦
Dn))) is

homologous to the (n−1)-cycle b−(ψ({1}×Sn−1)), hence b and [ψ({1}×Sn−1)]
are homologous in Hn−1(G̃) = 〈[ψ({1} × Sn−1)]〉. Thus the inclusion of K0 in
G̃ induces the isomorphism: k0,n−1 : Hn−1(K0)

∼=→ Hn−1(G̃).
? 2nd case: s = 1 and r = 0, then KerS∗ = {0} and Hn(K0) = 0.

In sequence (4.6) we have Ker δ = 〈m〉, then Hn(GT ) = 〈[ψ(Sn × {1})]〉 and
Hn−1(GT ) = 〈[ψ({1}×Sn−1)]〉. In sequence (4.8) we have Imα = 〈[ψ(Sn×{1}]〉.
Since Hn(GT ) = 〈[ψ(Sn × {1})]〉 we have Hn(G̃) = 0 = Hn(K0).

– if S∗(m) is indivisible (i.e. Hn−1(K0) = 0), then δ in (4.6) is surjective.
Thus Hn−1(G̃) = 0 = Hn−1(K0).

– If a 6= 1 is the greatest divisor of S∗(m) (i.e. Hn−1(K0) ∼= Z/aZ) then
condition c.2 of algebraic cobordism together with lemma (3.14) give that
there exists c in Hn−1(K0) such that ∂(1

a S∗(m)) = (c, θn−1(c)). Let b in
Hn−1(K0) be the dual of c for the linking form of K0. There exists B
in Hn(G,K0) such that ∂B = b and the intersection between B and m is

+1. As before the boundary of the n-chain B − (B ∩ ψ(Sn×
◦
Dn)) is the

n-cycle b− ψ({1}× Sn−1), hence b and [ψ({1} × Sn−1)] are homologous in
Hn−1(G). Since Hn−1(GT ) = 〈[ψ({1} × Sn−1)]〉 in sequence (4.9) we have
Hn−1(G̃) = 〈[ψ({1}×Sn−1)]〉. Thus b and [ψ({1}×Sn−1)] are homologous
in Hn−1(G̃) and the inclusion of K0 in G̃ induces the isomorphism: k0,n−1 :

Hn−1(K0)
∼=→ Hn−1(G̃).

Since G̃ is obtained by surgery on n-cycles, this surgery only modifies homology
groups of dimensions n and n − 1. Hence for k 6= n, n − 1 we have Hk(G) ∼=

Hk(K0)
k0,k∼= Hk(G̃). By symmetry we also have the same results with K1.

Finally k0,j and k1,j are some isomorphisms for all j. This ends the proof of
proposition (4.4), and the proof of theorem 3. �

5. Appendix – Alexander polynomials of cobordant links.

Let K be a 2n− 1 dimensional simple link, and ε = (−1)n. One can associate a
polynomial ∆ ∈ Z[X ] to any Seifert surface F for the link K, defined by: ∆(X) =
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det (XA+ εAT ), where A is the Seifert form associated to F . Such a polynomial
∆ is called a Alexander polynomial for the link K. Changing the Seifert surface
to another multiplies ∆ by ±Xm with m in Z.

For a polynomial γ in Z[X ] we define the polynomial γ∗ by: γ∗(X) = Xdeg γ γ(X−1).

(5.1) Proposition. Let K0 and K1 be two cobordant simple 2n−1 dimensional
links. If ∆0 and ∆1 are Alexander polynomials for K0 and K1, then there exists
γ in Z[X ] such that: γ γ∗ = ±∆0 ∆1.

Remark. If F is the Milnor fiber of an algebraic link K, then the associated
Alexander polynomial is the characteristic polynomial of the monodromy. Hence
the above proposition and the monodromy theorem imply corollary (0.7).

Proof of proposition (5.1). We denote by F0 and F1 two (n − 1)-connected
Seifert surfaces for K0 and K1, and by A0 and A1 the associated Seifert forms.
The linksK0 and K1 are cobordant so proposition (3.10) implies that the formA =
A0⊕−A1 has a metabolizer M . Therefore, there exists a basis for Hn(F0)⊕Hn(F1)

such that in this basis the matrix for A is
(

0 B1
B2 B3

)
where Bi, i=1,2,3 are square

matrices. We have ∆0(X).∆1(X) = det (XA + εAT ), hence ∆0(X).∆1(X) =
ε.det (XB1+εBT2 ).det (XB2+εBT1 ). Let γ(X) be det(XB1+εBT2 ), then γ∗(X) =
det(XB2 + εBT1 ). Finally we get γ.γ∗ = ±∆0.∆1. �
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Université de Genève
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