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Abstract. A rotationally symmetric n-dimensional surface in Rn+1, of enclosed volume V and
with boundary in two parallel planes, is evolving under volume-preserving mean curvature flow.
For large volume V , we obtain gradient and curvature estimates, leading to long-time existence
of the flow, and convergence to a constant mean curvature surface.
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Introduction

Consider n-dimensional hypersurfaces Mt, defined by a one parameter family of
smooth immersions xt : Mn → Rn+1, with Mt = xt(Mn). The hypersurfaces Mt

are said to move by mean curvature, if xt = x(·, t) satisfies

d

dt
x(p, t) = −H(p, t)ν(p, t), p ∈Mn, t > 0. (1)

By ν(p, t) we denote a choice of unit normal of Mt at x(p, t), and by H(p, t)
the mean curvature with respect to this normal. The surface area |Mt| of the
hypersurfaces is known to decrease under the flow. So the evolution can be used
for obtaining minimal surfaces in the limit, if it converges.

Here we are interested in the evolution of compact hypersurfaces Mt enclosing
a prescribed volume V . In particular, we consider the evolution equation

d

dt
x(p, t) = −(H(p, t)− h(t))ν(p, t), p ∈Mn, t > 0. (2)

where h(t) is the average of the mean curvature

h(t) =

∫
M
Hdgt∫

M
dgt

,
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and gt the metric on Mt. As initial surface we choose a compact n-dimensional hy-
persurfaceM0, with boundary ∂M0 6= ∅. We assumeM0 to be smoothly embedded
in the domain

G = {x ∈ Rn+1 : 0 < xn+1 < d}, d > 0,

and ∂M0 ⊂ ∂G. The vector ν(p, t) is the outer unit normal.
The surface area |Mt| is again decreasing under the flow defined by (2) and

in addition the enclosed volume is constant (see Section 1). In this case the
hypersurfaces can be expected to converge to a surface of constant mean curvature
which solves the isoperimetric problem.

The motion of surfaces by their mean curvature (1) was first studied by Brakke
[5], using methods of geometric measure theory. Huisken [22] proves that compact,
convex initial surfaces without boundary converge asymptotically to round spheres.
Gage and Hamilton [17], Grayson [19] study the problem for curves in the plane.
In the noncompact case it is shown by Ecker and Huisken in [13] that entire graphs
over Rn of linear growth ‘flatten out’.

The interesting question of the formation of singularities in the nonconvex case
is considered by Huisken [24], Grayson [20], Dziuk and Kawohl [9], and more
recently by Altschuler, Angenent and Giga [1], Ecker [12].

For the volume-preserving flow (2), Huisken [23] proves long-time existence if
the initial hypersurface M0 is compact, without boundary and uniformly convex;
eventually the Mt’s converge to a round sphere enclosing the same volume as M0.

The uniform convexity is crucial for the proof; using a maximum principle for
parabolic systems developed by Hamilton in ([21], Theorem 9.1), Huisken shows
that uniform convexity is preserved for t > 0.

The major difficulty in the volume-preserving evolution (2), and its difference
to the mean curvature flow (1), is how to control h, which introduces a global
character to the problem. Parabolic maximum principles, an important tool in the
investigation of evolution equations (see [10]), either fail or become more subtle.

In this paper, except for the volume constraint, we have a free boundary. A
convexity assumption is not natural. We replace this by assuming the initial sur-
face to be rotationally symmetric, contained in the region G between two parallel
hyperplanes and for a start the surfaces Mt to intersect ∂G orthogonally at the
boundary. The motivation is the fact that in solving the isoperimetric problem
using methods of the calculus of variations, the minimizers prove to be surfaces of
revolution intersecting the obstacle at a right angle [2], [3].

Mean curvature flow (without a volume constraint) for complete rotationally
symmetric surfaces has been studied by Simon [27]. He gives gradient and height
estimates and discusses pinch off behaviour. His approach is especially interesting
for us. Dziuk and Kawohl [9], Grayson [20] and Altschuler, Angenent and Giga [1]
consider the question of developing singularities.

The main theorem we prove is
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Theorem. Assume V, d ∈ R to be given and M0 ⊂ G to be a smooth, rotationally
symmetric, initial hypersurface which intersects ∂G orthogonally at the boundary
and encloses the volume V . Then the flow defined by (2) will exist for all times
t > 0 and will converge to the cylinder C ⊂ G of volume V under the assumption

|M0| ≤
V

d
.

The paper is organised as follows:
In Section 1 we give some definitions and preliminaries. For ‘large’ volume (see

Lemma 1) we prove in Section 2 that the surfaces do not pinch off. Also in this
case h is shown to be bounded. Gradient and curvature estimates (Section 4 and
5) lead to long-time existence and convergence to a constant curvature surface
(Section 6).

Rotationally symmetric surfaces of constant mean curvature in R3 are known
as the Delaunay surfaces [8]; they are plane, the sphere, the cylinder, the catenoid,
the unduloid and the nodoid. In [2] the author proves that among them only the
sphere (hemisphere) or the cylinder can be stable in G, depending on the volume.
The present condition on the volume (see Lemma 1) excludes the existence of
unduloids in G. The flow can only converge to a cylinder, which affirms the result
in [2].

The methods we use here are those introduced by Huisken [22] for the mean
curvature flow, and also used for instance in [10], [13], [14], [23].

Mean curvature flow, but not the volume-preserving problem, is also investi-
gated from different points of view. Evans and Spruck [15], [16], Chen, Giga and
Goto [6], [7] work with hypersurfaces which are defined as level sets of viscosi-
ty solutions of a nonlinear partial differential equation on some domain in Rn+1.
Regularity results are given in [15], [16], [18], [25], [26].

The author would like to thank Klaus Ecker for his interest and support, and
the Department of Mathematics at the University of Melbourne and the Centre for
Mathematics and its Applications at the Australian University for their hospitality.

1. Notations and preliminaries

Let G = {x ∈ Rn+1 : 0 < xn+1 < d}, for given d > 0. We denote by Πi, i = 1, 2,
the two parallel hyperplanes bounding the domain G.

The n-dimensional manifold Mn is assumed to be smoothly embedded in Rn+1,
compact, with boundary ∂M . The one-parameter family of surfaces obtained by
the flow is defined by means of the position vector

x : Mn × [0, t1)→ Rn+1,

where x satisfies the evolution equation (2) above.
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By Mt we denote the imageMt = xt(Mn) and M0 will be a given initial surface.
In addition we assume
(i) The hypersurface M0 is rotationally symmetric about an axis which intersects

Πi orthogonally.
We also use the parametrization

ρS : [0, d]→ R

for the generating curve of a surface S of revolution. Actually, the flow preserves
rotational symmetry (see Fact 1 below).

(ii) The boundary xt(∂M) = ∂Mt is contained in ∂G = ∪i=1,2 Πi.
(iii) Mt intersects ∂G orthogonally at the free boundary; i.e. ρ̇(z) = 0, for z = 0

and z = d. (Here ρ̇ = dρ
dz .)

By g = {gij} and A = {hij} we denote the metric and the second fundamental
form on Mt. For the mean curvature and the norm of the second fundamental
form we have

H = gijhij , |A|2 = gijgklhikhjl.

Let
C̃ = gijgklgmnhikhlmhnj.

Latin indices are used for n and Greek for n + 1 dimensions, if not otherwise
specified.

Facts:
1. The flow preserves rotational symmetry. This is clear from the evolution equa-

tion, since the mean curvature and the normal are symmetric.
2. The surface area |Mt| is decreasing. To see this we need the evolution equation

of the metric
d

dt
gij = 2(h−H)hij

(compare ([23], Proposition 1.1), [22])
Therefore

d

dt

√
detgij = −H(H − h)

√
detgij

and using the mean value property of h

d

dt
|Mt| = −

∫
M

H(H − h)dgt = −
∫
M

(H − h)2dgt ≤ 0.

3. The enclosed volume V is preserved. Denote by Et ⊂ G the (n+1)-dimensional
set, with boundary in G equal to Mt. Then the evolution (2) can be extended
to a vector field on the whole of Et and by the first variation formula and the
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divergence theorem we have

d

dt
Vt =

∫
Et

div
dx

dt
dHn+1 =

∫
∂Et

dx

dt
· νdσ

= −
∫
M

(H − h)dgt = 0.

By standard parabolic theory the flow exists for some short time 0 < t < t1.
We write also [0, Tmax) to indicate the maximal time interval for which the flow
exists.

2A. Height estimates

By purely geometric arguments it is possible to show that if the enclosed volume
is sufficiently large, the surfaces do not pinch off. The condition on the volume
is such that, in R3, there are no parts of unduloids satisfying it and at the same
time intersecting the planes perpendicularly.

We will need the following notation: Given an initial surface M0, we denote by
C the cylinder with same enclosed volume V as M0, and height d.

Lemma 1. If |M0| ≤ V
d , then there exists c0 > 0 such that

ρMt > c0, for 0 ≤ z ≤ d, t ∈ [0, t1].

Proof. We recall that |Mt| ≤ |M0| for all t > 0. Let us now assume that there is
some t1 > 0 such that Mt1 pinches off. We project Mt1 onto the plane Π1, using
π : Rn+1 → Rn. Then

|Mt1 | ≥ |π(Mt1)|.

By the volume constraint any Mt has to intersect the cylinder C at least once.
Therefore

|π(Mt1)| > |π(C)| = ωnρ
n
C =

V

d

and we obtain a contradiction to Mt1 pinching off if only we choose V appropri-
ately. �

Remarks. (i) Knowing the absolute minimizers in R3 (compare [2]), we can
easily see that for small enclosed volume V there is no initial surface satisfying
the condition of the Lemma. If V ≤ π(2

3)4d3 we denote by S the (in this case
absolute) minimizing hemisphere. Then

|S| ≤ |M |
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for any surface M with the same enclosed volume, but

|S| > V

d
(= |π(C)|).

(ii) In R3 there are no unduloids intersecting the planes Πi perpendicularly at the
free boundary and satisfying the volume condition of Lemma 1. As is well-known
[8], the generating curve of the unduloid is obtained by rolling an ellipse along the
z-axis, and tracing the path of either its foci. Let the ellipse be parametrized by
γ : [0, 2π)→ R3, and denote by a, b ∈ R, 0 < b ≤ a its axes and by l(γ) its length.
Then the condition for the unduloid to intersect the planes at right angles is

k
l(γ)

2
= d, k ∈ N,

k
2 the periods, i.e. 2a ≤ d. Consider the cylinder of enclosed volume V = 4πd3 (see
assumption of Lemma 1, for n = 3). Its radius is given by ρ = 2d. Any unduloid
of the same enclosed volume would have to intersect this cylinder. This is not
possible for 2a ≤ d. Thus, assuming V ≥ 4πd3 (actually, we only need V ≥ πd3)
the flow will never converge to an unduloid in R3.

(iii) Height estimates from above.

Assume there exists an R such that ρMt ≥ R at some given time t. We would
then have

|M0| ≥ |Mt| > ωn(R− ρC)n

by comparing the surface area of Mt to that of the n-dimensional annulus of radii
ρC and R. Here ρC = ( V

ωnd
)1/n denotes the radius of the cylinder C of enclosed

volume V . Of course Mt has to intersect this cylinder.
We deduce from the above that

R ≥
(
|M0|
ωn

)1/n
+
(
V

ωnd

)1/n

would contradicts the fact that the evolution decreases surface area.

2B. Estimates on h

Lemma 2. Assume M ⊂ G to be a smooth, rotationally symmetric hypersurface,
intersecting Πi orthogonally at the boundary and with radius function ρ ≥ c0 > 0.
Then the mean value h of the mean curvature satisfies

0 ≤ h ≤ c1,
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where c1 depends on the dimension and the height estimates.

Proof. M being rotationally symmetric we have for the mean curvature H =
κ1 +(n−1)κ2, where κ1 and κ2 denote the principal curvatures. If we parametrize
M by its radius function ρ ∈ C∞([0, d], [c0, R]), then clearly

H = − ρ̈

(1 + ρ̇2)
3
2

+
n− 1

ρ(1 + ρ̇2)
1
2

and

h =
1
|M |

∫
M
Hdg =

∫ d
0

(
− ρ̈

(1+ρ̇2)ρ
n−1 + (n− 1)ρn−2

)
dz∫ d

0 ρ
n−1

√
(1 + ρ̇2)dz

.

For the second term we have

0 ≤ 1
|M |

∫
M

(n− 1)κ2dg ≤ c(n, c0).

For the first we remark that

ρ̈

(1 + ρ̇2)
=

d

dz
(arctanρ̇)

and therefore

nωn
|M |

∫ d

0
− ρ̈

(1 + ρ̇2)
ρn−1dz =

nωn
|M |

∫ d

0
− d

dz
(arctanρ̇)ρn−1dz

=
n(n− 1)ωn
|M |

∫ d

0
(arctanρ̇)ρ̇ρn−2dz.

This is positive, as (arctanρ̇)ρ̇ ≥ 0, and bounded

1
|M |

∫
M
κ1dg ≤

n(n− 1)ωn
|M |

π

2

∫ d

0

√
1 + ρ̇2ρn−2dz ≤ (n− 1)

|M |
π

2

∫
M

1
ρ
dg ≤ c′(n, c0),

since |(arctanρ̇)ρ̇| ≤ π
2 |ρ̇| ≤

π
2

√
1 + ρ̇2. �
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3. Evolution equations

Notation. Let ω = ẋ
|x| ∈ R

n+1, x̂ = (x1, . . . , xn, 0) denote the unit outer normal
to the cylinder intersecting Mt at the point x(p, t). Set

v = (ω, ν)−1.

Remark that v =
√

1 + ρ̇2, where ρ is the radius of Mt, i.e. the “height” of the
generating curve. We call u = 〈x, ω〉 the height function of Mt.

Lemma 3. We have the evolution equations

(i)
(
d

dt
−∆

)
u = h〈ν, ω〉 − n− 1

u
,

(ii)
(
d

dt
−∆

)
v = −|A|2v +

n− 1
u2 v − 2v−1|∇v|2,

(iii)
(
d

dt
−∆

)
H = (H − h)|A|2,

(iv)
(
d

dt
−∆

)
|A|2 = −2|∇A|2 + 2|A|4 − 2hC̃,

where C̃ = gijgklgmnhikhlmhnj.

Proof. (iii) and (iv) are the same as in [23].
(i) We use the notation D for the gradient in Rn+1 and denote by Dω the

(n+ 1)× (n+ 1) matrix of first derivatives of ω. We have

(Dω)αβ =
{ 1

u (δαβ − ωαωβ) for 1 ≤ α, β ≤ n,
0 for α = n+ 1 or β = n+ 1.

We need the identities

〈ν,Dω · ν〉 =
1
u

(νiνi − 〈ω, ν〉2) = 0, (1)

〈x,Dω · ν〉 =
1
u

(xiνi − 〈ω, x〉〈ω, ν〉) = 0, (2)

Du = ω and ∇Mu = ω − 〈ω, ν〉ν. (3)

Using (2) we have

d

dt
u = −(H − h)〈ω, ν〉. (4)
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From (1), (3) and with a suitable choice of basis {ei}1≤i≤n for TxMt we obtain

divMω = divω − 〈Dω · ν, ν〉 =
n− 1
u

and divM (〈Du, ν〉ν) = ei〈Du, ν〉〈, ei〉+ 〈Du, ν〉divMν = 〈ω, ν〉H;
(5)

therefore

∆Mu = divM∇Mu = divMω − divM (〈Du, ν〉ν) =
n− 1
u
−H〈ω, ν〉. (6)

(4) and (6) imply

(
d

dt
−∆

)
u = h〈ν, ω〉 − n− 1

u
.

(ii) As in ([22], Lemma 3.3), we obtain d
dtν = ∇H. Therefore, and by (1)

d

dt
v = −v2〈∇H,ω〉. (7)

The following computation is as in ([4], Prop. 2.1) adapted to our case. For
computing the Laplacian of v we will work with normal coordinates in a neigh-
bourhood of the point x(p, t). Also, we will need the relations

∇eiν = hijg
jkek, ∇eiej = −hijν + (∇eiej)′′, (8)

[ω, ei] = 0, (9)

where ′′ denotes the tangential part of a vectorfield and [ , ] the Lie bracket. Then,
using (8) and (9), we have

∆〈ω, ν〉 = eiei〈ω, ν〉
= ei〈∇ωei, ν〉+ ei〈ω, gjkhijek〉
= 〈∇ei∇ωei, ν〉+ hijg

jk〈∇ωei, ek〉+ ei(hijgjk〈ω, ek〉).

Having normal coordinates at x, Rn+1 being flat, and using (8), (9), as well as the
Codazzi equations, for exchanging derivatives of the hij , we obtain
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ei(hijgjk〈ω, ek〉) = hijg
jk(〈∇ωei, ek〉+ 〈ω,∇eiek〉) + ei(hijgjk)〈ω, ek〉

= hij〈∇ωei, ej〉 − |A|2〈ω, ν〉+ ej(hij)〈ω, ej〉)

and

〈∇ei∇ωei, ν〉 = 〈∇ω∇eiei, ν〉 = 〈∇ω(−hiiν + (∇eiei)′′), ν〉
= −ω(hii) = −ω(hij)gij .

We deduce

∆〈ω, ν〉 = −ω(H) + 2hij〈∇ωei, ej〉 − |A|2〈ω, ν〉+ 〈ω,∇H〉
= −ω(hij)gij − hijω(gij)− |A|2〈ω, ν〉+ 〈ω,∇H〉.

Combining this with (7) we obtain (ii). �

4. Gradient estimates

General assumption. For the remaining of the paper we always assume the
enclosed volume V to be so large that the results of Section 2 hold; i.e. the
evolving surfaces do not pinch off and h is bounded.

Remark. Since we have an evolution of rotationally symmetric surfaces, which
intersect the hyperplanes Πi orthogonally, and v =

√
1 + ρ̇2 along the generating

curve, the following Proposition 4 gives the gradient estimate.

Proposition 4. Under the assumptions of Section 1 and the large volume of
Lemma 1, if we assume v ≤ v0 on the initial surface M0, then

max
t>0

v ≤ c2(n, c0, R, v0).

Proof. Given the Neumann boundary conditions at z = 0 and z = d, we can
equivalently consider the evolution of periodic surfaces M̃t defined along the whole
z-axis. We assume that the product u2v attains a maximum, denoted by K, on
M̃t1 for t1 > 0. The idea is to prove that if K is large enough then ( ddt−∆)u2v ≤ 0
at this maximum point.
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In Lemma 3 we obtained the evolution equations(
d

dt
−∆

)
v = −|A|2v +

n− 1
u2 v − 2v−1|∇v|2,(

d

dt
−∆

)
u = h〈ν, ω〉 − n− 1

u
,

and hence (
d

dt
−∆

)
u2 = 2u

(
hv−1 − n− 1

u

)
− 2|∇u|2.

For the following calculation we remark that

−2∇u2 · ∇v = −2v−1∇v · ∇(u2v) + 2v−1u2|∇v|2.

We have(
d

dt
−∆

)
u2v = u2

(
d

dt
−∆

)
v + v

(
d

dt
−∆

)
u2 − 2∇u2 · ∇v

= u2
(
−|A|2v +

n− 1
u2 v

)
+ v2u

(
hv−1 − n− 1

u

)
− v2|∇u|2 − 2v−1∇v · ∇(u2v)

≤ −(n− 1)v + 2hu

at a maximum K of the product u2v; in particular, v ≥ K
R2 at this point, since

c0 ≤ u ≤ R (Lemma 1). We also have 0 ≤ h ≤ c1(n, c0) (Lemma 2).
We deduce that ( ddt −∆)u2v ≤ 0 at the maximum point whenever

K >
2R3c1(n, c0)

n− 1
.

Therefore

max
t>0

u2v ≤ 2R3c1(n, c0)
n− 1

,

and

max
t>0

v ≤ max
(

2R3c1(n, c0)
(n− 1)c20

, v0

)
.

�
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5. Curvature estimates

In this section we prove that as long as Mt doesn’t pinch off and its generating
curve is a graph over the xn+1-axis with bounded gradient, the curvature and all
its derivatives remain bounded as well.

Propositon 5. Under the assumptions of Proposition 4, there exist positive con-
stants c3(n, c0, R, v0), c4 and c5, such that the curvature of the evolving surfaces
Mt is bounded

max
t>0
|A|2 ≤ c3(n, c0, R, v0)

(
c4√
c5

+
1
c5t

)
, for t ∈ (0, Tmax].

Remark. Actually c3(n, c0, R, v0) depends on c2(n, c0, R, v0) of Proposition 4,
whereas c5 is a technical constant, depending on the chosen testfunction in the
proof, and c4 depends on the dimension, the height estimates and the bounds on
h and v, as from Lemma 2 and Proposition 4.

Proof. We proceed as in ([14], proof of Theorem 3.1) and calculate the evolu-
tion equation of the product g = |A|2ϕ(v2), where ϕ(r) = r

1−kr , k > 0, and
v = 〈ν, ω〉−1. The only difference being the volume constraint, which affects the
evolution equations of |A|2 and v by an additional −2hC̃ and n−1

u2 v, respectively,
(compare Lemma 3), we end up with the inequality(
d

dt
−∆

)
g ≤ −2kg2− 2k

(1− kv2)2 |∇v|
2g−2ϕv−3∇ϕ·∇g−2hC̃(v2)+

2(n− 1)
u2 v2ϕ′

which replaces (20) of [14].
For estimating the seconds-last term in our case, we use Young’s inequality,

and obtain

−2hC̃ϕ(v2) ≤ 2h|A|3ϕ(v2)

≤ 3
2
|A|4ϕ2(v2) +

1
2
h4ϕ−2(v2)

=
3
2
g2 +

1
2
h4ϕ−2(v2).

We now choose k > 3
4 and deduce(

d

dt
−∆

)
g ≤ −c5g2 − a · ∇g + c4(n, c0, c1, c2), (1)
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where c5 > 0 and c1 and c2 denote the constants in the bounds on h and v in
Lemma 2 and Proposition 4.

By Corollary 1.4 in [11], if g satisfies (1), then

g ≤ c4√
c5

+
1
c5t

on Mt, t ∈ (0, T ]. The result follows then from the definition of g as the product
|A|2ϕ(v2) and the gradient estimates. �

For the higher curvature derivatives we have under the assumptions of Propo-
sition 4

Proposition 6. For each m ≥ 1 there is Cm such that

|∇mA|2 ≤ Cm

uniformly on Mt for 0 ≤ t ≤ Tmax ≤ ∞.

Proof. Having obtained uniform bounds on |A|2 (Proposition 5) and h (Lemma 2)
the proof is a repetition of that of Theorem 4.1 in [23].

Thus, we have long-time existence for the flow:

Corollary 7.

Tmax =∞.

6. Convergence to surfaces of constant mean curvature

Having long-time existence for the flow it remains to show that it converges to a
constant mean curvature surface as t→∞.

Proposition 8. The mean curvature H of the evolving surfaces converges to its
average

sup
Mt

|H − h| → 0 as t→∞.
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Proof. We note that

d

dt
|Mt| =

∫
M

(H − h)2dgt

and therefore ∫ ∞
0

∫
M

(H − h)2dgtdt ≤ |M0|.

Given the uniform estimates on all curvature quantities and their derivatives (sec-
tion 5), we have that∫

M
(H − h)2dgt and

d

dt

∫
M

(H − h)2dgt

are uniformly bounded. Thus, we obtain∫
M

(H − h)2dgt → 0 for t→∞.

In order to obtain the result we will now use a standard interpolation argument.
We first estimate the supremum norm using the Sobolev inequality for p > n with
a constant uniform in time; we then use the a-priori estimates we obtained for the
curvature and its derivatives and integration by parts to deduce

sup
Mt

|H − h| ≤
(∫

M
|∇(H − h)|pdgt

)1/p

≤ c
{(∫

M
(H − h)2dgt

)1/2
+
(∫

∂M
(H − h)2dσt

)1/2
}
,

which proves the result. �

Remark. Having long-time existence, the evolution will eventually converge to an
extremum of the surface energy under a volume constraint. The above curvature
estimates provide us then with a regularity result for such surfaces.
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