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Abstract. We introduce new invariants to study the asymptotic behavior of the set of rays and
prove a splitting theorem for the radius of the ideal boundary of an open manifold with K ≥ 0
(Shioya’s Conjecture).
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0. Introduction

Let Mn denote an n-dimensional complete and noncompact connected riemannian
manifold with secctional curvature K ≥ 0. In Theorem 2.2 in [CG] it was proved
that M is diffeomorphic to the normal bundle of a totally geodesic compact sub-
manifold S0, which is called the soul of M . After rigidity theorems of Strake ([St])
and Walschap ([W]), Yim proved Theorem 0.1 below which extends these results
([Ym-2]). A subset S ⊂ M is called a pseudosoul if S and S0 are isometric and
homologous. The space of souls W(M) is the union of the pseudosouls of M . Any
soul is a pseudosoul and W (M) does not depend on the choice of S0 (see [Ym-1]).

0.1. Theorem. The set W (M) is a totally geodesic embedded submanifold which
is isometric to a product manifold S0 × V , where V is a complete manifold of
nonnegative curvature diffeomorphic to Rk, and k is the dimension of the space of
all parallel normal vector fields along the soul S0. Furthermore any pseudosoul in
M is of the form S0 × {p} for some p ∈ V .

Kasue obtained in [K] a compactification of M , in which the boundary M(∞)
is the set of equivalence classes of rays (see the second section in this paper).

∗ The author is indebted to Professor Manfredo do Carmo for his general assistance during
the preparation of this paper.
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Given a metric space (X, d) the radius of X , to be denoted by r(X), is defined
by r(X) = infx∈X supy∈X d(x, y). By the triangle inequality we have diam(X)

2 ≤
r(X) ≤ diam(X), where diam(X) is the diameter of X . By using Theorem 0.1
and estimating the dimension of the space of parallel normal vectors fields along
S0, Shioya proved the following result ([Sy-3], p. 224]).

0.2. Theorem. There exists ε(n) > 0 so that if r
(
M(∞)

)
> π − ε(n), then M is

isometric to Sk × V n−k, where S is a soul of M and V is diffeomorphic to Rn−k.

Again using Theorem 0.1 and proving that any point of M is contained in a
soul, we proved the following result, that was conjectured by Shioya ([Sy-3], p.
224]). Perelman obtained, independently, another proof of it ([P]).

Theorem A. If r
(
M(∞)

)
> π/2, then M is isometric to Sk × V n−k, where S is

a soul of M and V is diffeomorphic to Rn−k. Furthermore, every point of V is a
soul of V .

If r
(
M(∞)

)
= π/2, the conclusion of Theorem A does not hold. In fact by

taking a product of a flat open Möbius band with R we have a counterexample
([Sy-3], p. 224]). The manifold V is not necessarily isometric to Rn−k because of
Example 3.11 in this paper, that shows the existence of a surface M with K ≥ 0,
not isometric to R2, and so that all its points are souls.

All geodesics, unless otherwise stated, are supposed to be normalized. A
geodesic γ: [0,+∞) → M is called a ray starting at p, if γ(0) = p and if the
distance d

(
p, γ(t)

)
= t, for all t > 0. Let Γp be the set of rays which start

at p, and Γ be the set of all rays in M . Take p ∈ M and γ ∈ Γp. Set
Hγ = {x ∈ M

∣∣ for each t ≥ 0, d
(
x, γ(t)

)
≥ t}, γt(s) = γ(t + s), s > 0,

and Ct(p) =
⋂
γ∈Γp Hγt . With the same proof as in Theorem A we can prove the

following result.

Theorem B. Assume that there exists R > 0 and a compact set D ⊂M so that
diam

(
C0(p)

)
≤ R, for all p in the complement M\D. Then M is isometric to

S × V , where S and V are as in Theorem A.

Let R,S ⊂ M and Γ(R,S) be the set of geodesics which are minimal connec-
tions between R and S. For p ∈ M and η ∈ TpM set γη(t) = expp(tη), t ≥ 0,
where exp is the exponencial map and TpM is the tangent space at p. Set
Ap = {v ∈ TpM

∣∣ ||v|| = 1 and γv ∈ Γp}. The mass of rays at p, to be de-
noted by m(Ap), is the Lebesgue measure of the compact set Ap ⊂ Sn−1 ⊂ TpM .
The mass of rays has been extensively studied in dimension two by several authors
([M], [Sg], [Sm-2], [Sy-1], [Sy-2], [SST] etc) who related it with the total curva-
ture of complete noncompact surfaces and with the lenght of the ideal boundary
M(∞). Shioya studied the mass of rays for dimensions higher than two ([Sy-4]).
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Here we introduce two different invariants, the critical function and the radial
function, which are more fruitful for dimensions higher than two. We study their
asymptotic behavior and its topological and geometrical consequences.

For a closed subset L, a point p ∈M\L is said to be a critical point relative
to the distance function from L (see for example [G], p.205), if for every v ∈
TpM there exists σ ∈ Γ(p, L) with the angle ]

(
σ′(0), v

)
≤ π/2. This definition

will be used only in the proof of Proposition 3.6. Similarly we say that p ∈ M is
a critical point of the infinity, and we denote it by p ≺∞, if for all v ∈ TpM
there exists γ ∈ Γp such that ]

(
v, γ′(0)

)
≤ π/2. For each p ∈ M and each

v ∈ TpM set Cp(v,α) = {w ∈ TpM
∣∣ ](v, w) ≤ α}, that is, Cp(v, α) is the cone

with axis v and angle α. The critical function at p, to be denoted by θ(p), is
given by θ(p) = min α, where Ap ⊂ Cp(v, α) and v ∈ TpM . By Proposition 3.8
p ≺ ∞ if and only if θ(p) ≥ π

2 . Thus θ(p) intents to measure how p is close to be
a critical point of the infinity. By Proposition 3.9, if θ(p) > π

2 then {p} is a soul
of M .

0.3. Proposition. If θ ≥ π
2 in M\L for a certain compact set L, then θ ≥ π

2 in
M , that is, x ≺ ∞ for all x. Furthermore, if θ > π

2 in M\L, then θ > π
2 in M .

Thus {x} is a soul for all x.

0.4. Proposition. If there exists a sequence pk →∞, with pk ≺ ∞, then θ ≥ π/4
in M .

Shiga proved (Theorem 2 in [Sg]) that if K > 0 in M2 and m(Ax) attains the
infimum at p ∈M , then m(Ap) = 0. We obtained a similar result for θ(p) without
any restriction on the dimension.

0.5. Proposition. Assume that K > 0 in M\L for a fixed compact set L. If
θ(p) = infx∈M θ(x), then θ(p) = m(Ap) = 0. In other words Ap has a unique
element.

Proposition 0.3 suggests that the infimum of the critical function is attained at
infinity. This is the following result.

Theorem C. It holds that infp∈M θ(p) = lim infp→∞ θ(p).

The radial function at p is the radius r(Ap), where we take ] as a distance
in Ap. It holds that r(Ap) = inf α, where Ap ⊂ Cp(v, α) and v ∈ Ap. Clearly
we have θ(p) ≤ r(Ap) ≤ π. Moreover r(Ap) = π if and only if Ap is symmetric
relative to 0 ∈ TpM . In Theorems D and E below M has only one end. There is
no loss of generality in that, since M(∞) becomes trivial if M has more than one
end (see the second section, after Lemma 2.4).
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Theorem D. Assume that M has only one end. Then we have lim supq→∞ r(Aq) ≤
diam

(
M(∞)

)
.

0.6. Corollary. Assume that M has only one end. Then we have 1
2diam

(
M(∞)

)
≤

lim infq→∞ θ(q) ≤ lim supq→∞ θ(q) ≤ diam
(
M(∞)

)
.

In dimension 2 we have (see the fifth section) 1
2m(Aq), θ(q), r(Aq)→ 1

2
(
2πX (M)

−c(M)
)

= diam
(
M(∞)

)
as q →∞, where X (M) is the Euler characteristic of M

and c(M) is the total curvature of M to be defined in the fifth section. Example
4.3 will show that if n ≥ 3 these limits do not necessarily exist, and that the
inequalities in Theorem D and in Corollary 0.6 are sharp.

0.7. Corollary. If lim supq→∞ r(Aq) = π then M is isometric to V × R. In
particular the same conclusion holds if Apk is symmetric for some sequence pk →
∞ or if lim supq→∞ θ(q) = π.

Theorem E. Assume that M has only one end. Then it holds that infq∈M r(Aq) =
lim infq→∞ r(Aq) = r

(
M(∞)

)
.

We describe next the contents of the various sections of this paper. Basic
facts and notations are recalled in the first section. In the second one we recall
the Kasue’s compactification of M . In the third section we study the asymptotic
behavior of θ(p) and prove Theorem C. Theorems A, B, D and E are proved in the
fourth section. In the fifth one we restrict ourselves to surfaces M2 which admit
total curvature. We obtain for θ(p) and r(Ap) results similar to those that are
known for m(Ap). So the new invariants do not lose information in comparison
with the mass of rays.

1. Basic facts and notations about nonnegatively curved mani-
folds

Consider a closed totally convex set C (that is, C is closed and any geodesic
joining p, q ∈ C is contained in C). By Theorem 1.6 in [CG], C is a k-dimensional
submanifold with smooth interior and a boundary of C0 class. Let int(C) be the
interior of C and ∂C be the boundary of C. Set dim(C) = k. If C is compact, set
Ca = {x ∈ C; d(x, ∂C) ≥ a}. By Theorem 1.10 in [CG], Ca is totally convex. Set
Cmax =

⋂
Ca, for all Ca 6= ∅. The set Cmax is nonempty, compact and totally

convex. It holds that dim(Cmax) < dim(M). From now on C denotes a closed
totally convex subset of M with ∂C 6= ∅. The results in this section are simple
and well-known.

1.1. Lemma. Take p∈M and γ∈Γp. Set Ht = {x
∣∣d(x, γ(s)

)
≥ s− t for s > t}.
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If t ≥ 0 then Ht = Hγt . For t1 ≤ t2 we have Ht1 = (Ht2)t2−t1. It holds that⋃
t≥0 Ht = M and p ∈ ∂H0.

Here ∂X is the topological boundary of X in M .

1.2. Lemma. Take γ ∈ Γp, p ∈ M . Then γ ∈ Γ
(
p, ∂Ct(p)

)
and γ ∈ Γ(p, ∂Hγt),

t > 0. The set Hγt is closed and totally convex, and the set Ct(p) is compact and
totally convex.

1.3. Lemma. Take 0 ≤ a < b and q ∈ ∂Cb. Consider a geodesic γ: [0, b]→ C, γ ∈
Γ(q, ∂C), p = γ(c) = γ∩∂Ca. Then d(q, ∂Ca) = c = b−a, γ ∈ Γ(q, ∂Ca)∩Γ(p, ∂C)
and ∂Cb = ∂

(
(Ca)b−a

)
.

1.4. Lemma. Take q ∈ ∂Ca0 , a0 > 0 and a geodesic γ: [0, ρ] → M with γ(0) =
q, γ(ρ) ∈ ∂C. Suppose that γ ∈ Γ(q, ∂Cb), for a certain b ∈ [0, a0). Then
γ ∈ Γ(q, ∂Cs), for all s ∈ [0, a0).

The following lemma follows from Lemma 1.4.

1.5. Lemma. Take p ∈M and set Ct′ = Ct′(p). Let t > 0 be so that q ∈ int(Ct).
Consider a geodesic γ: [0,+∞)→M, γ ∈ Γ(q, ∂Ct). Then γ ∈ Γ(q, ∂Cs) for all s
so that q ∈ int(Cs). In particular γ is a ray.

2. The points at infinity on nonnegatively curved manifolds

Kasue obtained ([K]) a compactification of an asymptotically nonnegatively curved
manifold. In the particular situation in that K ≥ 0 the proofs become easier but
we outline the construction in this case for completeness.

Take γ, σ ∈ Γ. We say that γ is asymptotic to σ, and we denote it by
γ ≺ σ, if there exist sequences pk → γ(0), tk → +∞, τk ∈ Γ

(
pk, σ(tk)

)
, so that

τ ′k(0) → γ′(0). Consider x ∈ M and set hσ(x) = limt→+∞
(
t − d

(
x, σ(t)

)
. It is

well-known that hσ is well defined and that hσ(x)−hσ(y) ≤ d(x, y). The function
hσ is called the Buseman function associated with σ. The following proposition
about Buseman functions and asymptotic rays is well-known.

2.1. Proposition. Take γ, σ ∈ Γ, γ ≺ σ. Set h = hσ, γt(s) = γ(t + s), s ≥ 0,
Ht = {x

∣∣ d(x, σ(s)
)
≥ s− t, for s > t}. Then we have:

(a) for t ≥ 0 it holds that h
(
γ(t)

)
= t+ h

(
γ(0)

)
;

(b) γt is the unique ray starting at γ(t) which is asymptotic to σ;
(c) q = γ(0) ∈ ∂Ha, for some a ∈ R and γ ∈ Γ(q, ∂Ht) for all t > a.

Take γ, σ ∈ Γp. Set `t = d
(
γ(t), σ(t)

)
. Let αt be the angle opposite to `t
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in the triangle (t, t, `t) in the plane. Set ]∞(γ, σ) = limt→+∞ αt. Such a
limit must exist, since Toponogov-Alexandrov Theorem ([Sm-3], Theorem 2.1)
assures that the function t 7−→ αt is nonincreasing. By Toponogov Theorem
([CE], Theorem 2.2) we have ]

(
γ′(0), σ′(0)

)
≥ αt ≥ ]∞(γ, σ). Let γ, σ ∈ Γ. Set

L∞(γ, σ) = limt→+∞
d
(
γ(t),σ(t)

)
t , if there exists such a limit. By using Toponogov

Theorem, the triangle inequality and Proposition 2.1 (b) it is not difficult to prove
the following lemma.

2.2. Lemma. Let γ ≺ σ. Then L∞(γ, σ) = 0.

The following lemma may be easily proved from Lemma 2.2 and the triangle
inequality.

2.3. Lemma. Take γ, σ ∈ Γ and γ1, σ1 ∈ Γp with γ1 ≺ γ and σ1 ≺ σ. Then
L∞(γ, σ) = L∞(γ1, σ1) = 2 sin ]∞(γ1,σ1)

2 .

If γ, σ ∈ Γ we define ]∞(γ, σ) = ]∞(γ1, σ1), where γ1, σ1 ∈ Γp for some p and
γ1 ≺ γ, σ1 ≺ σ. By Lemma 2.3 ]∞(γ, σ) does not depend on the choice of γ1

and σ1, and L∞(γ, σ) = 2 sin ]∞(γ,σ)
2 .

2.4. Lemma. Let γ, σ, τ ∈ Γp. Then ]∞(σ, τ) ≤ ]∞(σ, γ) + ]∞(γ, τ).

Proof. Fix s > 0. Take sequences tj → +∞ with tj > s and λj ∈ Γ
(
γ(s), σ(tj)

)
.

Set ηj = ]
(
γ′(s), λj ′(0)

)
, βj = π − ηj and dj = d

(
γ(s), σ(tj)

)
. Consider the

triangle (s, tj , dj) in the plane with corresponding angles (θ̃j , β̃j , α̃j). By Topono-
gov Theorem ([CE], Theorem 2.2) and Toponogov-Alexandrov Theorem ([Sm-3],
Theorem 2.1) we have ηj = π − βj ≤ π − β̃j = α̃j + θ̃j ≤ αs + θ̃j , where αs is
the angle opposite to ds = d(γ(s), σ(s)

)
in the triangle (s, s, ds) in the plane. By

passing to a subsequence, we have ηj → ηs = ]
(
γ′(s), λ′(0)

)
, where λ ∈ Γγ(s) and

λ ≺ σ. It is easy to see that θ̃j → 0. Then we have ηs ≤ αs. By making s → ∞
we have lim sup ηs ≤ ]∞(γ, σ).

For any s take a ray µ ∈ Γγ(s), µ ≺ τ . Set ρs = ]
(
µ′(0), γ′(s)

)
. Then

we have ]∞(σ, τ) = ]∞(µ, λ) ≤ ]
(
µ′(0), λ′(0)

)
≤ ηs + ρs. Then ]∞(σ, τ) ≤

lim sup(ηs + ρs) ≤ ]∞(σ, γ) + ]∞(γ, τ). �

We say that the γ and σ are equivalent if ]∞(γ, σ) = 0. Let γ(∞) be the
equivalence class of γ and M(∞) be the set of all such classes. If for suffi-
ciently large t the points γ(t) and σ(t) belong to the same end of M , we set
d∞
(
γ(∞), σ(∞)

)
= ]∞(γ, σ). Otherwise we set d∞

(
γ(∞), σ(∞)

)
= +∞. By the

Splitting Toponogov Theorem ([CE], Theorem 5.1), it can be shown that if M has
more than one end, then M is isometric to S × R, where S is compact. Thus the
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study of M(∞) becomes trivial in this case. By Lemma 2.4, it is easy to see that(
M(∞), d∞

)
is a metric space.

Take a divergent sequence (pk) ⊂ M and γ ∈ Γ. We say that pk → γ(∞)
if dk/tk → 0, where tk = d

(
pk, γ(0)

)
, and dk = d

(
pk, γ(tk)

)
. By the triangle

inequality it is not difficult to see that this definition does not depend on the
choice of γ ∈ γ(∞). It is easy to prove the following lemmas.

2.5. Lemma. Take a sequence pk →∞, p ∈ M and τk ∈ Γ(p, pk). Suppose that
τ ′k(0)→ γ′(0), γ ∈ Γp. Then pk → γ(∞).

2.6. Lemma. If γk, γ ∈ Γp and γ′k(0)→ γ′(0) then γk(∞)→ γ(∞).

The reader can prove that with the topology introduced here the set M̃ =
M ∪M(∞) is compact. Our notion of convergence to a point at M(∞) is not
standard. It agrees with the notion introduced by Kasue because of Lemma 1.5 in
[Sy-3].

3. On the asymptotic behavior of θ(p); proof of Propositions 0.3
to 0.5 and of Theorem C

We initially prove results that will be used in the proof of Theorem C. Let
σ: [a, b]→M be a geodesic, Ps be the parallel transport along σ and L ⊂ [a, b]×R.
Set f[η, σ,L](s, t) = expσ(s) tPsη, (s, t) ∈ L, η ∈ Tσ(a)M . For p ∈ M let 4ηµ be
the triangle determined by η, µ ∈ TpM .

3.1. Lemma. Let σ: [a, b] → int(C) be a geodesic and γ ∈ Γ
(
σ(a), ∂C

)
. Set

α = ]
(
γ′(0), σ′(a)

)
. If d

(
σ(a), ∂C

)
= d

(
σ(b), ∂C

)
then α ≥ π/2. Furthermore if

α = π/2 then ϕ(s) = d
(
σ(s), ∂C

)
is constant.

Proof. By Theorem 1.10 in [CG] ϕ is concave. Since ϕ(a) = ϕ(b) we have ϕ ≥
ϕ(a). By the proof of Theorem 1.10 in [CG], for small (s − a), it holds that
ϕ(s) ≤ ϕ(a) − (s − a) cosα. Since ϕ is concave, this inequality holds for all
s ∈ [a, b]. It follows that α ≥ π/2. If α = π/2, then ϕ is constant. Thus, Lemma
3.1 is proved. �

3.2. Lemma. Let (γ1, γ2, γ3) be a minimizing geodesic triangle in M , with angles
(α1, α2, α3) which is contained in a strongly convex ball B centered at p = γ1(0) =
γ3(`3), where `i is the length L(γi). Suppose that `3 = `1 cosα2 and α1, α2 ≤ π/2.
Set L = {(s, t)

∣∣ 0 ≤ s ≤ `1, 0 ≤ t ≤ (`1−s) cosα2}. Then: α1 = π
2 ; S = expp4vw

is flat and totally geodesic, where v = `1γ
′
1(0) and w = −`3γ′3(`3); γ2 ⊂ ∂S; by

setting f = f [w, γ1, L] the field ∂f/∂t along γ2 is parallel.
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Proof. Take in the plane the triangle 4 = (`1, `2, `3) with angles (α̃1, α̃2, α̃3).
By Toponogov Theorem ([CE], Theorem 2.2) we have αi ≥ α̃i, i = 1, 2, 3. Then
α̃1, α̃2 ≤ π/2.Therefore `1 cos α̃2 ≤ `3 = `1 cosα2. Then α̃2 ≥ α2, hence α̃2 = α2.
Thus, we obtain `3 = `1 cos α̃2. Then α̃1 = π/2, hence α1 = π/2. Since α2 =
α̃2, Toponogov Theorem ([CE], Corollary 2.3) implies that S is flat and totally
geodesic. 4vw is isometric to4. Let ν be the line segment in TpM that joins v and
w. By 3.1 Rauch I in [G] we have `2 = d

(
γ3(0), γ1(`1)

)
≤ L(expp ν) ≤ L(ν) = `2.

Then L(γ2) = L(expp ν). Since γ2 ⊂ B we have γ2 = expp(ν), hence γ2 ⊂ ∂S.
Since S is totally geodesic, the parallel transport of w along γ1 is tangent to S.
Set fs(t) = f(s, t). Fix s ∈ (0, `1). Since S is flat, the Gauss-Bonnet Theorem
may be applied to the geodesic quadrilateral determined by γ1, γ2, γ3 and fs,
thereby concluding that ∂f/∂t is ortogonal to γ2. Thus the field ∂f/∂t along γ2
is parallel. �

The following lemma improves Theorem 1.10 in [CG].

3.3. Lemma. Let σ: [a1, a2] → int(C) be a geodesic. Set α(s) = ]
(
γ′s(0), σ′(s)

)
,

where γs ∈ Γ
(
σ(s), ∂C). Set η = γa1

′(0) and L = {(s, t)
∣∣ s ∈ [a1, a2], 0 ≤

t ≤ r(s)}, where r is the linear function that satisfies r(ai) = d
(
σ(ai), ∂C

)
. Set

f = f [η, σ, L] and fs(t) = f(s, t). Then α(a1) ≥ α(a2). Moreover, if 0 < α(a1) =
α(a2) < π then f(L) is flat and totally geodesic, and fs ∈ Γ

(
σ(s), ∂C

)
for all

s ∈ [a1, a2].

Proof. By the concavity of the function ϕ(s) = d
(
σ(s), ∂C

)
it is not difficult to

see that α(a1) ≥ α(a2). Assume then that 0 < α(a1) = α(a2) < π. Then α(s) is
constant. For simplicity, set α = α(a1).

Claim 1. ϕ(s) = ϕ(a1)− (s− a1) cosα = r(s) for s ∈ [a1, a2].

Proof of Claim 1. By the proof of Theorem 1.10 in [CG], for small s − a1 we
have ϕ(s) ≤ ϕ(a1) − (s − a1) cosα. Since ϕ is concave this inequality holds for
s ∈ [a1, a2]. Similarly we have ϕ(a1) ≤ ϕ(s)− (a1 − s) cosα, and Claim 1 follows.

Claim 2. The statement of Lemma 3.3 holds in the case α = π/2.

Proof of Claim 2. By Claim 1 we have ϕ(s) = ϕ(a1), for all s ∈ [a1, a2]. Then
Lemma 3.3 follows from Theorem 1.10 in [CG].

Claim 3. The statement of Lemma 3.3 holds in the case α < π/2.

Proof of Claim 3. Without loss of generality, we may assume that σ is contained
in a small strongly convex ball around σ(a1). Fix s ∈ [a1, a2]. Set γ = γa1 ,
u = (s − a1) cosα, γs = γ| [0,u], p = γ(u), q = σ(s), v = (s − a1)σ′(a1), w =
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uη, S(s) = expγ(0)4vw and Ls = L ∩ ([0, s] × R). Take µ ∈ Γ(p, q) and set
β = ]

(
−γ′(u), µ′(0)

)
. By Lemma 1.3 we have γ ∈ Γ(p, ∂C). Then d(p, ∂C) =

ϕ(a1)− u = d(q, ∂C). By Lemma 3.1 we obtain β ≤ π
2 . Thus Lemma 3.2 applies

and we have: β = π
2 , S(s) is flat and totally geodesic, µ ⊂ ∂S(s), the parallel

transport of η along σ is tangent to S(s); the field ∂f/∂t along µ is parallel. Since
β = π

2 , Lemma 3.1 implies that the function ψ(s′) = d
(
µ(s′), ∂C

)
is constant.

Then Theorem 1.10 in [CG] implies that fs ∈ Γ(q, ∂C). Since s is arbitrary, we
have f(L) ⊂ C. By Theorem 1.10 in [CG], we obtain that f(L)\S(a2) is flat and
totally geodesic. Since S(a2) is also flat and totally geodesic, we conclude that
f(L) is flat and totally geodesic. Thus Claim 3 is proved.

Claim 4. The statement of Lemma 3.3 holds in the case α > π/2.

Proof of Claim 4. Set x = σ(a1) and γ = γa1 . Take v ∈ TxM contained in the plane
generated by η and σ′(a1), which satisfies |v| = (a2−a1) sinα, ]

(
η, v
)

= π/2, and
]
(
σ′(a1), v

)
< π/2. Set R = [0, ϕ(a1)]× [0, 1], g = f [v, γ,R], and gt(s) = gs(t) =

g(t, s). Without loss of generality, we may assume that σ is contained in a small
strongly convex ball centered at x, and that gt is free of focal points to γ(t) for all t.
By 3.2 Rauch II in [G] we have L

(
g1) ≤ L(γ) = ϕ(a1). From Lemma 1.7 in [CG],

we obtain gϕ(a1) ⊂
(
M\int(C)

)
. Then d

(
g0(1), ∂C

)
≤ L

(
g1) ≤ ϕ(a1). Consider in

the plane the hinge
(
(a2−a1) sinα, (a2−a1), (α−π/2)

)
, which is a right triangle,

whose third side is equal to −(a2 − a1) cosα. By Toponogov Theorem ([CE],
Theorem 2.2) it holds that d

(
g0(1), σ(a2)

)
≤ −(a2 − a1) cosα. Then ϕ(a2) =

d
(
σ(a2), ∂C

)
≤ d

(
g0(1), ∂C

)
+ d
(
g0(1), σ(a2)

)
≤ ϕ(a1) − (a2 − a1) cosα = r(a2).

By Claim 1 all inequalities above become equalities. Set w = (a2 − a1)σ′(a1).
Let S = expx4vw. By Toponogov Theorem ([CE], Corollary 2.3) S is flat and
totally geodesic and fa2 ∈ Γ

(
σ(a2), g0(1)

)
. Set ` = −(a2 − a1) cosα. Then

ϕ(a2) = ϕ(a1)− (a2−a1) cosα = L
(
g1)+L

(
(fa2)| [0,`]

)
. Then fa2

′(`) = (g1)′(0),
and fa2 ∈ Γ

(
σ(a2), ∂C

)
. Now we apply Claim 3, replacing α by π−α and changing

the orientation of σ. We conclude that f(L) is flat and totally geodesic, and that
fs ∈ Γ

(
σ(s), ∂C

)
for all s ∈ [a1, a2]. Thus Claim 4 and Lemma 3.3 are proved. �

3.4. Lemma. Let p, q ∈ M and σ: [0, a] → M be a geodesic with σ(0) = p and
σ(a) = q. Take γ ∈ Γp and τ ∈ Γq, τ ≺ γ. Set α = ]

(
γ′(0), σ′(0)

)
, η =

]
(
τ ′(0), σ′(a)

)
, L = [0, a]× [0,+∞), f = f [γ′(0), σ, L] and fs(t) = f(s, t). Then

α ≥ η. If 0 < α = η < π then f(L) is flat and totally geodesic, and fs ∈ Γ for all
s ∈ [0, a].

Proof. We may assume that 0 < α < π. Set Ht = Hγt . By Lemma 1.1 for large
t > 0 we have q ∈ int(Ht). By Proposition 2.1 (c), τ ∈ Γ(q, ∂Ht). Then we use
Lemma 3.3 and conclude the proof. �
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3.5. Lemma. Take p, q ∈M with q 6∈ C0(p). Let σ: [0, a]→M be a geodesic with
σ(0) = p and σ(a) = q. Then there exists γ ∈ Γq such that ]

(
γ′(0), σ′(a)

)
< π/2.

Proof. Set Ct = Ct(p). By Proposition 1.3 in [CG] there exists t > 0 so that
q ∈ int(Ct). Let γ ∈ Γ(q, ∂Ct). By Lemma 1.5, we have γ ∈ Γq. Set α =
]
(
γ′(0), σ′(a)

)
and ϕ(s) = d

(
σ(s), ∂Ct

)
. By the proof of Theorem 1.10 in [CG]

for small |s − a| it holds that ϕ(s) ≤ ϕ(a) − (s − a) cosα. Since ϕ is concave
this inequality holds for s ∈ [0, a]. Then ϕ(0) − ϕ(a) ≤ a cosα. Since q /∈ C0
Proposition 1.3 in [CG] implies that ϕ(0)− ϕ(a) > 0, hence α < π/2. �

Now we present some comments about critical points of the infinity.

3.6. Proposition. Let p ∈ M and t > 0. For each q ∈
(
Ct(p)

)max we have
q ≺ ∞. In particular q ≺ ∞ for any q in a soul.

Proof. Fix t > 0. Set Ct = Ct(p). At every q ∈ Ctmax the distance from ∂Ct as a
function assumes a maximum. Thus q is a critical point of the distance function
from ∂Ct. Take w ∈ TqM . Since q is a critical point of the distance function from
∂Ct, there exists γ ∈ Γ(q, ∂Ct) such that ]

(
γ′(0), w

)
≤ π/2. By Lemma 1.5 we

have γ ∈ Γq, hence q ≺ ∞. �

Proposition 3.6 says that if some family {Ct(p)} has a reduction of dimension
at q ∈ M , (that is, if q ∈

(
Ct(p)

)max), then q ≺ ∞. Conversely, we will see that
if p ≺ ∞, then the family {Ct(p)} has a reduction of dimension at p, that is,
C0(p) =

(
Ct(p)

)max. Thus, p ≺ ∞ if and only if some family {Ct(q)}t>0 has a
reduction of dimension at p. More precisely, we have the following result.

3.7. Proposition. We have p ≺∞ if and only if Ct(p)max = C0(p), t > 0.

Proof. Set Ct = Ct(p). By Proposition 3.6 it suffices to show that if p ≺ ∞, then
C0 = Ct

max, that is, C0 has no interior points in the sense of the topology of
M . Let q be an interior point of C = C0 and take σ: [0, a] → C, σ ∈ Γ(p, q). Set
ϕ(s) = d

(
σ(s), ∂C0

)
. We have ϕ ≥ 0, ϕ(0) = 0 and ϕ(a) > 0. Since ϕ is concave

we obtain ϕ(s) > 0, for s ∈ (0, a]. Then σ(s) ∈ int(C), for s ∈ (0, a]. Let γ ∈ Γp.
By Lemma 1.2 we have γ ∈ Γ(p, ∂Ct) and by Proposition 1.7 in [Ym-1] we obtain
]
(
γ′(0), σ′(0)

)
> π/2. Thus p 6≺ ∞ and the proof is complete. �

3.8. Proposition. We have p ≺∞ if and only if θ(p) ≥ π
2 .

Proof. Assume that θ(p) < π
2 . Take v ∈ TpM such that Ap ⊂ Cp

(
v, θ(p)

)
. Then

](−v, w) > π/2, for all w ∈ Ap, hence p 6≺ ∞. Assume now that p 6≺ ∞. Then
there exists v ∈ TpM such that ](v, w) > π/2 for all w ∈ Ap. Therefore there
exists α < π/2 such that Ap ⊂ Cp(−v, α), hence θ(p) ≤ α < π/2. Thus the proof
is complete. �
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3.9. Proposition. Let p ∈ M . If θ(p) > π
2 , then C0(p) = {p}, hence {p} is a

soul.

Proof. Suppose that there exists q ∈ C0(p) with q 6= p. Let σ ∈ Γ(p, q). Since θ(p) >
π
2 , we haveAp 6⊂ Cp

(
−σ′(0), π/2

)
. Then there exists v ∈ Ap such that]

(
v, σ′(0)

)
<

π/2. By the formula for the first variation, for small s > 0 we have σ(s) /∈ C0(p),
but this is false, since C0(p) is totally convex. Thus the proof is complete. �

3.10. Lemma. Let p ∈M and v ∈ TpM satisfy Ap ⊂ Cp
(
v, θ(p)

)
. Then Aγv(t) ⊂

Cγv(t)
(
γv
′(t), θ(p)

)
, t ≥ 0, hence θ(p) ≥ θ

(
γv(t)

)
, t ≥ 0.

Proof. Assume that there exists w ∈ Aγv(t) with w /∈ Cγv(t)
(
γv
′(t), θ(p)

)
. Then

]
(
w, γv

′(t)
)
> θ(p). By Lemma 3.4 there exists µ ∈ Ap such that ](µ, v) > θ(p),

but this contradicts the hypotheses. �

We now start proving Propositions 0.3 to 0.5 and Theorem C.

Proof of Proposition 0.3. Assume first that θ ≥ π
2 in M\L and suppose that there

exists p ∈ L such that θ(p) < π
2 . Take v as in Lemma 3.10 and set σ = γv. Let

γ ∈ Γp. Then ]
(
γ′(0), v

)
< π/2. By Theorem 5.1 in [CG] σ goes to infinity, and

for a large t > 0 we have σ(t) 6∈ L, hence θ
(
σ(t)

)
≥ π

2 . By Lemma 3.10 we have
θ(p) ≥ θ

(
σ(t)

)
≥ π

2 , and this is a contradiction.
Assume now that θ > π

2 in M\L and suppose that there exists p ∈ L such
that θ(p) ≤ π

2 . Because of the first part we have θ(p) = π
2 . Let v, σ be as above.

If σ goes to infinity, the proof is completed as in the first part. Thus we assume
that σ

(
[0,+∞)

)
stays in the compact set L. Take γ ∈ Γp. By Theorem 5.1 in

[CG] we have ]
(
γ′(0), v

)
≥ π/2. Since θ(p) = π

2 we have ]
(
γ′(0), v

)
≤ π/2, hence

]
(
γ′(0), v

)
= π/2. Set Ht = Hγt . By Theorem 8.22 in [CG] we have σ

(
[0,+∞)

)
⊂

∂Hσ = ∂H0. From this and Lemma 1.1 we obtain d
(
σ(t), ∂Hs

)
= s, s > 0, t ≥ 0.

By Lemma 1.2 we have γ ∈ Γ(p, ∂Hs), s > 0. Let Pt be the parallel transport
along σ and set τs(t) = expσ(t) sPt

(
γ′(0)

)
. Theorem 1.10 in [CG] implies that τs

is a geodesic and d
(
σ(t), τs(t)

)
= s for all t ≥ 0. Thus τs stays in a compact set.

For large s we have θ
(
γ(s)

)
> π

2 and {γ(s)} is a soul. By Theorem 5.1 in [CG] τs
goes to infinity in both directions, and we have a contradiction. �

The following example has been mentioned in the Introduction.

3.11. Example. There exists a surface M with K ≥ 0, not isometric to R2, such
that all its points are souls of M . In fact, take O, v ∈ R3. Set C = ∂CO(v, β),
where β > π/6. By cutting C along a ray starting at O we obtain a sector with
angle 2π sinβ. Thus, it is easy to see that θ(p) = π sinβ > π/2, for p 6= 0. Modify
C in a neighborhood of O to obtain a C∞ nonnegatively curved surface M . For
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large d(O, p) we have still θ(p) = π sinβ > π/2. By Proposition 0.3 all points of
M are souls and M is not isometric to R2.

Proof of Proposition 0.4. Since pk ≺ ∞ Proposition 3.7 implies that C0(pk) =
Ct(pk)max, t > 0. Fix p ∈ M . If p ∈ C0(pk) Proposition 3.6 implies that p ≺ ∞,
hence θ(p) ≥ π

2 and Proposition 0.4 follows. Thus we assume that p /∈ C0(pk), for
all k. Let σk ∈ Γ(p, pk). Since p /∈ C0(pk) Lemma 3.5 implies that there exists
γk ∈ Γpk such that ]

(
γk
′(0),−σk ′(0)

)
< π/2. By passing to a subsequence, we

may admit that σk ′(0)→ v ∈ Ap and that γk ′(0)→ w ∈ Ap. Since ](v, w) ≥ π/2,
we have θ(p) ≥ π/4, thus concluding the proof. �

Proof of Proposition 0.5. Assume that θ(p) = infx∈M θ(x) and suppose that θ(p) >
0. If θ(p) = π then all geodesics of M are lines, hence M is isometric to Rn,
and this contradicts the hypotheses. Thus we may assume that 0 < θ(p) < π.
Take v as in Lemma 3.10. Set θs = θ

(
γv(s)

)
, s > 0. Lemma 3.10 implies that

θ(p) ≥ θs. By the minimality of θ(p) we have θ(p) = θs. By Lemma 3.10 we
obtain Aγv(s) ⊂ Cγv(s)

(
γv
′(s), θ(p)

)
= Cγv(s)

(
γv
′(s), θs

)
. By the definition of θs

there exists γ ∈ Γγv(s) so that ]
(
γ′(0), γv′(s)

)
= θs = θ(p). Take τ ∈ Γp, τ ≺ γ.

Lemma 3.4 implies that β = ]
(
τ ′(0), v

)
≥ θ(p). By the definition of θ(p) we have

β = θ(p). Since 0 < θ(p) < π Lemma 3.4 assures that there exists τ̃ ∈ Γp such
that γ, τ̃ and γv bound a flat totally geodesic surface, and this contradicts the
hypotheses of the Proposition, thus concluding the proof. �

Proof of Theorem C. Let (qk) ⊂M be so that θ(qk)→ η = infx∈M θ(x). We must
prove that there exists pk →∞ with θ(pk)→ η.

Case 1. There exists (qkj ) such that θ(qkj ) = π
2 , for all j.

In this case we have η = π
2 . Suppose that there exists a compact set L such

that θ > η = π
2 in M\L. By Proposition 0.3 we have θ > π

2 in M , but this
contradicts the hypothesis of Case 1. Thus, such a set L does not exist, hence
there exists (pk) ⊂M with pk →∞ such that θ(pk) = π

2 = η, thus concluding the
proof in this case.

Case 2. There exists k0 ∈ N such that θ(qk) 6= π
2 , for each k > k0.

Take k > k0 and vk ∈ TqkM so that Aqk ⊂ Cqk
(
vk, θ(qk)

)
. If θ(qk) > π

2
Proposition 3.9 implies that {qk} is a soul, and by Theorem 5.1 in [CG] γvk goes to
infinity. If θ(qk) < π

2 then there exists γ ∈ Γp such that ]
(
γ′(0), vk) < π/2, and by

Theorem 5.1 in [CG] γvk goes to infinity. Fix p ∈M . Choose pk = γvk (tk), where
tk is sufficiently large so that d(pk, p) > k. By Lemma 3.10 we have θ(qk) ≥ θ(pk),
hence θ(pk)→ η. Since pk →∞, the proof is complete. �
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4. On the radius and diameter of M(∞); proofs of Theorems A,
B, D and E

Kasue proved (Remark of Theorem 4.3 in [K]) the following result.

4.1. Lemma. Let N be an asymptotically nonnegatively curved manifold with only
one end and γ, σ ∈ Γ. For each t take σt ∈ Γγ(t), σt ≺ σ. Then ]

(
γ′(t), σ′t(0)

)
→

]∞
(
γ(∞), σ(∞)

)
as t→ +∞.

We need the following modification of Lemma 4.1

4.2. Lemma. Let M have only one end, p ∈ M and (pk) ⊂ M be so that pk →
x ∈ M(∞). For all k choose σk ∈ Γpk in such a way that σk(∞) → y ∈ M(∞),
and take τk: [0, sk] → M with τk ∈ Γ(p, pk). Then ηk = ]

(
τk
′(sk), σk ′(0)

)
→

]∞(x, y).

Proof. Since (ηk) is bounded, it suffices to show that any convergent subsequence
of (ηk) converges to ]∞(x, y). Thus we assume that ηk → η and prove that η =
]∞(x,y). By passing to a subsequence we have τk ′(0)→ γ′(0), γ ∈ Γp. Lemma
2.5 implies that γ(∞) = x. Set εk = ]

(
γ′(0), τk ′(0)

)
. Let γ̃k ∈ Γpk , γ̃k ≺ γk.

By Lemma 2.2 we obtain γ̃k(∞) = γ(∞) = x. Set ε̃k = ]
(
γ̃′k(0), τk ′(sk)

)
. By

Lemma 3.4 we have ε̃k ≤ εk → 0. We obtain ηk ≥ ]
(
σk
′(0), γ̃′k(0)

)
− ε̃k. Then

ηk ≥ ]∞
(
σk(∞), x

)
− ε̃k. By taking limits we obtain η ≥ ]∞(y, x).

Fix k. Take tj → +∞. Set qj = σk(tj). Let µj : [0, uj ] → M, µj ∈ Γ(p, qj).
Set βk = π − ηk and dkj = d

(
pk, µj(sk)

)
. Let (tj , uj , sk) be a triangle in the

plane with angles (αkj , βkj , θkj). By Toponogov Theorem we have ηk = π − βk ≤
π−βkj = αkj+θkj . For large j we have uj > sk. By Theorem 2.1 in [Sm-3] we have
ηk ≤ α′kj+θkj , where α′kj is the angle opposite to dkj in the triangle (sk, sk, dkj) in
the plane. By passing to a subsequence we may admit that µj ′(0)→ σ̃′k(0), where
σ̃k ∈ Γp. Set dk = d

(
pk, σ̃k(sk)

)
. Take the triangle (sk, sk, dk) in the plane. Let αk

be the angle opposite to dk. Then 2 sin(α′kj/2) = dkj/sk → dk/sk = 2 sin(αk/2)
as j → +∞, hence α′kj → αk. Since θkj → 0 we have ηk ≤ αk.

It remains to prove that αk→ ]∞(x,y). By passing to a subsequence assume
that σ̃′k(0) → σ′(0), where σ ∈ Γp. Since σ̃k ≺ σk, it follows from Lemma 2.2
that σ̃k(∞) = σk(∞). Then σ̃k(∞) → y. Since σ̃′k(0) → σ′(0) Lemma 2.6
implies that σ̃k(∞) → σ(∞). Thus we obtain σ(∞) = y. Set ek = d

(
pk, γ(sk)

)
,

fk = d
(
σ(sk), σ̃k(sk)

)
, and d̃k = d

(
γ(sk), σ(sk)

)
. By the triangle inequality we

have d̃k/sk − ek/sk − fk/sk ≤ dk/sk ≤ d̃k/sk + ek/sk + fk/sk. Since pk → x we
have pk → γ(∞). Then ek/sk → 0. Since σ̃′k(0) → σ′(0) Lemma 2.5 implies that
σ̃k(sk) → σ(∞). Therefore fk/sk → 0. Since γ(∞) = x and σ(∞) = y Lemma
2.3 implies that d̃k/sk → 2 sin

(
]∞(x, y)/2

)
. Then dk/sk → 2 sin

(
]∞(x, y)/2

)
,

hence 2 sin (αk/2) = dk/sk → 2 sin
(
]∞(x, y)/2

)
. Then αk → ]∞(x,y). Thus

we have η ≤ ]∞(x,y), hence η = ]∞(x,y), thereby concluding the proof. �
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Proof of Theorems A and B

Claim 1. Fix p ∈ M . There exists a compact set D̃ ⊂ M such that p /∈ C0(z),
for all z ∈M\D̃.

Proof of Claim 1. The hypotheses of Theorem B clearly imply Claim 1. Assume
then the hypotheses of Theorem A. Suppose that the statement of Claim 1 is
false. Then there exists a sequence pk → ∞ such that p ∈ C0(pk) for all k. Take
τk: [0, tk] → M , with τk ∈ Γ(p, pk). By passing to a subsequence we assume that
pk → x ∈ M(∞). Take y ∈ M(∞) so that ]∞(x, y) = maxw∈M(∞) ]∞(x,w) ≥
r
(
M(∞)

)
. Choose σk ∈ Γpk so that σk(∞) = y. If ]

(
τ ′k(tk), σ′k(0)

)
> π/2 the

first variation formula implies that p /∈ C0(pk) and this is false. Thus Lemma 4.2
implies that π/2 ≥ ]

(
τ ′k(tk), σ′k(0)

)
→ ]∞(x, y), hence r

(
M(∞)

)
≤ π/2, and this

contradicts the hypotheses of Theorem A. Thus Claim 1 is proved.

Claim 2. For all p ∈M , we have C0(p) = S(p), where S(p) is the soul of the set
Ct(p), t > 0.

Proof of Claim 2. Assume that Claim 2 is false. If p ∈ S(p), take q ∈ C0(p)\S(p).
If p 6∈ S(p), take q ∈ S(p). Let σ: [−a,+∞) → M be a geodesic with σ(−a) =
q, a > 0 and σ(0) = p. Theorem 5.1 in [CG] implies that σ goes to infinity. By
Claim 1, for a large t we have p /∈ C0

(
σ(t)

)
, and by Lemma 3.5 there exists γ ∈ Γp

such that ]
(
γ′(0),−σ′(0)

)
< π/2. By the formula for the first variation, for small

s > 0, we have σ(−s) /∈ Hγ , hence σ(−s) /∈ C0(p). This contradiction concludes
the proof of Claim 2.

Claim 3. M is isometric to S×V , where Sk is a soul of M and V is diffeomorphic
to Rn−k.

Proof of Claim 3. Let p ∈ M . By Proposition 1.3 in [CG] and by Claim 2 above
we have p ∈ C0(p) = S(p). Thus W (M) = M . Claim 3 follows from Theorem 0.1.

Claim 4. For all p2 ∈ V it holds that {p2} is a soul of V .

Proof of Claim 4. It suffices to show that C0(p2) = {p2}. Let d̃(x, y) be the
distance between x and y in V . Take q2 ∈ C0(p2). Fix p1 ∈ S. Set p = (p1, p2)
and q = (p1, q2). Let γ ⊂ M, γ ∈ Γp. Since S is compact and any minimizing
geodesic in M is a product of minimizing geodesics, we have γ(t) =

(
p1, γ2(t)

)
,

with γ2 ⊂ V, γ2 ∈ Γp2 . Since q and γ(t) have the same first coordinate, it
follows that d

(
q, γ(t)

)
= d̃

(
q2, γ2(t)

)
≥ t, for all t ≥ 0, since q2 ∈ C0(p2). Then

q ∈ C0(p) = S(p). By Theorem 0.1 S(p) is of the form S × {r2} for a certain
r2 ∈ V . Thus p and q have the same second coordinate, hence p2 = q2. �
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Proof of Theorem D. Consider a divergent sequence (pk) which satisfies r(Apk )→
η = lim supq→∞ r(Aq). Fix p ∈M . Take τk: [0, sk]
→ M, τk ∈ Γ(p, pk). Let σk ∈ Γpk be so that ηk = ]

(
τk
′(sk), σk ′(0)

)
is

maximal. By passing to a subsequence we assume that τk ′(0)→ γ′(0), γ ∈ Γp and
σk(∞) → y ∈ M(∞). Take γk ∈ Γpk , γk ≺ γ. Then pk → x = γ(∞) = γk(∞).
Set αk = ]

(
τk
′(0), γ′(0)

)
. By Lemma 3.4 we have δk = ]

(
γk
′(0), τk ′(sk)

)
≤

αk → 0. Take v ∈ Apk . Then ]
(
v, γk

′(0)
)
≤ ]

(
v, τk

′(sk)
)

+ δk ≤ ηk + δk, hence
r(Apk) ≤ ηk + δk. Lemma 4.2 applies and we conclude that ηk → ]∞(x, y). By
taking limits we obtain η ≤ ]∞(x, y) ≤ diam

(
M(∞)

)
. �

Proof of Corollary 0.6. Since θ(q) ≤ r(Aq) it remains only to show that
lim infq∈M θ(q) ≥ 1

2diam
(
M(∞)

)
. Let q ∈ M and v ∈ TqM be so that Aq ⊂

Cq
(
v, θ(q)). For γ, σ ∈ Γq, we have 2θ(q) ≥ ]

(
γ′(0), v

)
+ ]

(
v, σ′(0)

)
≥ ]

(
γ′(0), σ′(0)

)
≥ ]∞

(
γ(∞), σ(∞)

)
.

Then 2θ(q) ≥ diam
(
M(∞)

)
. Thus Corollary 0.6 follows. �

4.3. Example. Let M = P × Rm, where P is a paraboloid. Let p ∈ P be the
pole, (qk) ⊂ Rm, qk → ∞, and (rk) ⊂ P , rk → ∞. Since M contains a line we
have diam

(
M(∞)

)
= π. A curve γ = (γ1, γ2) is a ray in M if and only if either

γi is a (not necessarily normalized) ray for i = 1, 2, or if γi is constant and γj is a
ray, for i 6= j. Then we have A(p,qk) = Sm+1, hence θ

(
(p, qk)

)
= r(A(p,qk)) = π =

diam
(
M(∞)

)
, m(A(p,qk)) = vol(Sm+1), and we have that A(rk, qk) is an (m+ 1)-

hemisphere, hence θ
(
(rk , qk)

)
= r(A(rk ,qk)) = π

2 = 1
2diam

(
M(∞)

)
, m(A(rk ,qk)) =

vol(Sm+1)/2. Thus the limits of m(Ax), r(Ax) and of θ(x) do not exist, and the
inequalities in Theorem D and in Corollary 0.6 are sharp.

Proof of Corollary 0.7. By Theorem D we have diam
(
M(∞)

)
≥ π. Then there

exists a line in M and Corollary 0.7 follows. �

Proof of Theorem E. With a proof similar and easier to that of Theorem C we
have η = infq∈M r(Aq) = lim infq→∞ r(Aq). Let p ∈ M and v, w ∈ Ap be so
that ](v, w) = r(Ap). Take u ∈ Ap so that ]∞

(
γv(∞), γu(∞)

)
is maximal.

We have r(Ap) = ](v, w) ≥ ](v, u) ≥ ]∞
(
γv(∞), γu(∞)

)
≥ r

(
M(∞)

)
, hence

η ≥ r
(
M(∞)

)
. Take x ∈ M(∞) so that maxy∈M(∞)]∞(x, y) = r

(
M(∞)

)
and

γ ∈ Γ so that γ(∞) = x. Let pk = γ(sk), sk → +∞. Take σk ∈ Γpk so
that ηk = ]

(
γ′(sk), σ′k(0)

)
is maximal. By passing to a subsequence we assume

that σk(∞) → y ∈ M(∞). Clearly pk → γ(∞) = x. By Lemma 4.2 we obtain
ηk → ]∞(x, y). Since ηk is maximal we have Apk ⊂ Cpk

(
γ′(sk), ηk

)
, hence

η ≤ r(Apk) ≤ ηk. By taking limits we obtain η ≤ ]∞(x, y) ≤ r
(
M(∞)

)
, and this

completes the proof. �

4.4. Corollary. Let M have only one end. Take compact sets Kj ⊂ Kj+1 ⊂M so
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that
⋃
j Kj = M . Then r

(
M(∞)

)
= lim infj→+∞

∫
Kj

r(Ax) dM(x)∫
Kj

dM(x)
≤ lim supj→+∞∫

Kj
r(Ax)dM(x)∫
Kj

dM(x)
≤ diam

(
M(∞)

)
, where dM denotes the volume element of M .

Proof. By [Ya] M has infinite volume. Thus we can do a proof entirely similar to
that of Theorem 1 in [Sm-2].

5. The radial function in dimension 2

Along this section N will denote a complete and noncompact connected surface
with finite topological type admitting total curvature. Let L be a compact subset
of N . Set c(L) =

∫
LKdN . We say that N admits total curvature if there

exists c(N) ∈ [−∞,+∞] such that, for each increasing sequence of compact sets
Lj ⊂ M with

⋃
j Lj = M , we have limj→+∞ c(Lj) = c(N). By Theorem 2.4 in

[Sy-2] we have diam
(
M(∞)

)
= 1

2
(
2πX (N) − c(N)

)
. For any measurable subset

X ⊂ N we may define c(X) in a similar manner.
In dimension two, several results which are true for the mass of rays remain

valid for r(Ap) and θ(p). We will prove here one of these results. The other ones
can be proved similarly.

Theorem F. (similar to [Sm-2], p.196, [SST], p.352 and [Sy-1], Theorem A) If N
has only one end, then we have limp→∞ 2r(Ap) = limp→∞ 2θ(p) = min{2πX (N)
−c(N), 2π}.

5.1. Lemma. If there is no line inN then 2r(Ap)−m(Ap)→ 0, as p→∞.

Proof. Initially we prove that 2θ(p)−m(Ap)→ 0 as p→∞.
Fix ε > 0. Take a compact set L, so that c(X) < ε for each measurable set

X ⊂ N\L, and so that N\L is homeomorphic to a halfcylinder. Since there is no
line in N , there exists a compact set Q with L ⊂ Q satisfying that N\Q is also a
halfcylinder and that, for each p ∈ N\Q, if v ∈ Ap then γv ∩ L = ∅.

Fix p ∈ N\Q. Take u1, u2 ∈ Ap so that ](u1, u2) = 2θ(p), that is, u1 and
u2 make a maximal angle in Ap. Let E be the region bounded by γu1 and γu2

which is homeomorphic to a halfplane and S = {u ∈ TpN
∣∣ |u| = 1 and γu(t) ∈

E for small t > 0}. Then S is a closed arc and S\Ap =
⋃
j∈N Vj , where Vj is an

open arc. Set ∂Vj = {vj , wj}, vj , wj ∈ Ap. LetDj be the closed region bounded by
γvj and γwj which satisfies γu(t) ∈ Dj for small t > 0 and u ∈ Vj . Lemma 1.2
in [Sm-2] applies (see also Theorem A, (4) in [Sm-1]) to each region Dj . Since
Dj is homeomorphic to a half plane we have m(Vj) = ](vj , wj) = c(Vj), hence
0 ≤ 2θ(p) −m(Ap) = m(S) −m(Ap) =

∑
jm(Vj) =

∑
j c(Dj) = c

(⋃
j Dj

)
< ε,
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where the last inequality is due to the fact that
⋃
j Dj ⊂ N\L. Thus 2θ(p)−

m(Ap)→ 0 as p→∞.
Consider a sequence pk →∞. Let vk ∈ TpkN be so that Apk ⊂ Cpk

(
vk, θ(pk)

)
.

Take wk ∈ Apk so that δk = ](vk, wk) is minimal. Then δk → 0, otherwise
2θ(pk)−m(Apk ) 6→ 0. We have r(Apk) ≤ θ(pk) + δk and Lemma 5.1 follows. �

Proof of Theorem F. Consider initially the case in which c(N) ≤ 2π
(
X (N) − 1

)
.

Then 2πX (N)− c(N) ≥ 2π. By Theorem A in [Sy-1] we have limp→∞ m(Ap) =
min{2πX (N) − c(N), 2π} = 2π. Since 2π ≥ 2r(Ap) ≥ 2θ(p) ≥ m(Ap) we ob-
tain limp→∞ 2r(Ap) = limp→∞ 2θ(p) = 2π = min{2πX (N) − c(N), 2π}, and the
theorem is proved in this case.

Suppose that c(N) > 2π
(
X (N)− 1

)
. By Theorem A in [Sg] (see also [Sm-2], p.

204) there is no line inN . Then Lemma 5.1 applies and we obtain limp→∞ 2r(Ap)−
m(Ap) = 0. By Theorem A in [Sy-1] we have limp→∞ m(Ap) = min{2πX (N) −
c(N), 2π}, hence limp→∞ 2r(Ap) = limp→∞ 2θ(p) = min{2πX (N)− c(N), 2π}.

�
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