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c© 1997 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Critical values of autonomous Lagrangian systems
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Abstract. Let M be a closed manifold and L : TM → R a convex superlinear Lagrangian. We
consider critical values of Lagrangians as defined by R. Mañé in [5]. Let cu(L) denote the critical
value of the lift of L to the universal covering of M and let ca(L) denote the critical value of
the lift of L to the abelian covering of M . It is easy to see that in general, cu(L) ≤ ca(L). Let
c0(L) denote the strict critical value of L defined as the smallest critical value of L − ω where
ω ranges among all possible closed 1-forms. We show that ca(L) = c0(L). We also show that
if there exists k such that the Euler-Lagrange flow of L on the energy level k′ is Anosov for all
k′ ≥ k, then k > cu(L). Afterwards, we exhibit a Lagrangian on a compact surface of genus two
which possesses Anosov energy levels with energy k < ca(L), thus answering in the negative a
question raised by Mañé. This example also shows that the inequality cu(L) ≤ ca(L) could be
strict. Moreover, by a result of M.J. Dias Carneiro [4] these Anosov energy levels do not have
minimizing measures. Finally, we describe a large class of Lagrangians for which cu(L) is strictly
bigger than the maximum of the energy restricted to the zero section of TM .
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1. Introduction

Let Mn be a closed manifold and let L : TM → R be a C∞ Lagrangian satisfying
the following hypotheses:
• Convexity. For all x ∈M , the restriction of L to TxM has everywhere positive

definite Hessian.
• Superlinear growth. Let || || denote a Riemannian metric on M . Then

lim
||v||→∞

L(x, v)
||v|| = +∞,

uniformly for x ∈ M . This condition is clearly independent of the choice of
Riemannian metric, since M is compact.

∗Both authors were supported by grants from CSIC and CONICYT # 301
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The Euler-Lagrange equation,

d

dt

(
∂L

∂v
(x, ẋ)

)
− ∂L

∂x
(x, ẋ) = 0

generates a smooth complete flow ϕt : TM → TM which is defined as follows.
Given (x, v) ∈ TM , consider the unique solution x : R→M of the Euler-Lagrange
equation with initial conditions

x(0) = x, ẋ(0) = v.

Now define ϕt : TM → TM by

ϕt(x, v) = (x(t), ẋ(t)).

Recall that the energy E : TM → R is defined by

E(x, v) =
∂L

∂v
(x, v).v − L(x, v).

Since L is autonomous, E is a first integral of the flow ϕt. Observe that for all
x ∈M , E restricted to TxM is a function that achives its minimum at (x, 0). Let
us set

e = max
x∈M

E(x, 0) = −min
x∈M

L(x, 0).

For any k > e, the energy level E−1(k) is a smooth closed hypersurface of TM
that intersects each tangent space TxM in a sphere containing the origin in its
interior.

One of our aims will be the study of Anosov energy levels, that is, regular
energy levels on which the flow ϕt is an Anosov flow. We showed in [7] that those
energy levels must verify that k > e and they are free of conjugate points. In
the present paper we shall describe new relations between Anosov energy levels
and certain critical values recently introduced by Ricardo Mañé in his unfinished
manuscript [5]. We begin by summarizing Mañé’s results; proofs of these results
have been given by Gonzalo Contreras, Jorge Delgado and Renato Iturriaga in [3].

Recall that the action of the Lagrangian L on an absolutely continuous curve
u : [a, b]→M is defined by

AL(u) =
∫ b

a

L(u(t), u̇(t)) dt.

Given two points, x1 and x2 in M , denote by C(x1, x2) the set of absolutely
continuous curves u : [0, T ]→M , with u(0) = x1 and u(T ) = x2. For each k ∈ R
we define the action potential Φk : M ×M → R by

Φk(x1, x2) = inf{AL+k(u) : u ∈ C(x1, x2)}.
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Mañé showed [5, 3] that there exists c(L) ∈ R such that
• if k < c(L), then Φk(x1, x2) = −∞, for all x1 and x2;
• if k ≥ c(L), then Φk(x1, x2) > −∞ for all x1 and x2 and Φk is a Lipschitz

function;
• if k ≥ c(L), then

Φk(x1, x3) ≤ Φk(x1, x2) + Φk(x2, x3),

for all x1, x2 and x3 and

Φk(x1, x2) + Φk(x2, x1) ≥ 0,

for all x1 and x2;
• if k > c(L), then for x1 6= x2 we have

Φk(x1, x2) + Φk(x2, x1) > 0.

Observe that in general the action potential Φk is not symmetric, however
defining dk : M ×M → R by

dk(x1, x2) = Φk(x1, x2) + Φk(x2, x1),

the properties above say that dk is a metric for k > c(L) and a pseudometric for
k = c(L). The number c(L) is called the critical value of L.

It is important for our purposes to indicate that the results above also hold
for coverings of M , i.e. suppose M̂ is a covering of M with covering projection p.
Take the lift of the Lagrangian L to M̂ which is given by

L̂(x̂, v̂) = L(p(x̂), dp(v̂)).

Then we define for each k ∈ R the action potential Φ̂k just as above and the
results hold for L̂. Thus we have a critical value for L̂. It is immediate that

c(L̂) ≤ c(L).

More generally, if M1 and M2 are coverings of M such that M1 covers M2, then

c(L1) ≤ c(L2), (1)

where L1 and L2 denote the lifts of the Lagrangian L to M1 and M2 respectively.
Also note that if M1 is a finite covering of M2 then

c(L1) = c(L2). (2)

Among all possible coverings of M there are two distinguished ones; the uni-
versal covering which we shall the denote by M̃ , and the abelian covering which we
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shall denote by M . The latter is defined as the covering of M whose fundamental
group is the kernel of the Hurewicz homomorphism π1(M) 7→ H1(M,R). When
π1(M) is abelian, M̃ is a finite covering of M .

The universal covering of M gives rise to the critical value

cu(L) def= c(L̃),

and the abelian covering of M gives rise to the critical value

ca(L) def= c(L).

Let β : H1(M,R)→ R denote Mather’s action function and α : H1(M,R)→
R its convex dual. Mañé showed (cf. Section 2) that

α([ω]) = c(L− ω),

for any closed 1-form ω whose cohomology class is [ω], and he defined the strict
critical value of L as

c0(L) def= min{c(L− ω) : [ω] ∈ H1(M,R)}.

We shall prove in Section 2 the following theorem.

Theorem 1.1.
ca(L) = c0(L).

From inequality (1) it follows that

cu(L) ≤ ca(L),

which naturally raises the question,

Question I. Is it true that
cu(L) = ca(L)?

Mañé posed us the following question,

Question II. If the energy level k is Anosov, is it true that

k > ca(L)?
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We shall see that the answer to both questions is negative, however we shall
show in Section 3:

Theorem 1.2. If there exists k such that for all k′ ≥ k, the energy level k′ is
Anosov, then

k > cu(L).

In Section 4 we shall exhibit on a compact surface of genus two a Lagrangian
of the type kinetic energy plus a magnetic field which possesses an energy level
k with k < ca(L) and such that for all k′ ≥ k the energy level k′ is Anosov. By
Theorem 1.2

cu(L) < k < ca(L),

which gives negative answers to Questions I and II.
M.J. Dias Carneiro showed [4] that if µ is a minimizing measure (cf. Section

2), then its support is contained in a fixed energy level k with k ≥ c0(L). Our
example and Theorem 1.1 show that Anosov energy levels do not necessarily
contain minimizing measures.

In [5] Mañé describes an example of the form kinetic energy plus a magnetic
field and a potential for which e < c0(L). We shall describe in Section 5 a large
class of Lagrangians verifying the sharper inequality: e < cu(L) (we note that the
inequality e ≤ cu(L) always holds, cf. Section 5). Actually we prove,

Theorem 1.3. Let θ be the 1-form on M given by

θx(v) =
∂L

∂v
(x, 0)(v).

If θ is closed then
e = c0(L).

Suppose in addition that L(x, 0) = 0 for all x ∈M . If e = cu(L), then θ is closed.

Let M be a closed manifold endowed with a Riemannian metric and let θ denote
a smooth 1-form on M . Consider a Lagrangian of the type kinetic energy plus a
magnetic field, i.e.,

L(x, v) =
1
2
〈v, v〉x + θx(v).

The energy function associated with L is

E(x, v) =
1
2
〈v, v〉x ,

therefore in this case e = maxx∈M E(x, 0) = 0. If θ is not closed, Theorem 1.3
immediately implies that cu(L) > 0.
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Finally let us describe one more consequence of Theorem 1.2. Suppose that
the geodesic flow associated with the Riemannian metric is Anosov. Then by
structural stability the Euler-Lagrange flow of L is Anosov for any sufficiently
large value of the energy. However, Theorem 1.2 shows that it cannot be Anosov
for all values of the energy otherwise cu(L) = 0. Let E denote the smallest possible
value of the energy such that for all k′ > E the energy level k′ is Anosov. Theorem
1.2 immediately implies the following lower bound for E .

Corollary 1.4.
E ≥ cu(L).

In [8] we obtained lower bounds for E in terms of dθ and the curvature tensor
of M and we proved through different methods that E cannot vanish if θ is not
closed.

We would like to thank Gonzalo Contreras and Renato Iturriaga for many
useful discussions and for making their manuscript [3] readily available to us.

2. Proof of Theorem 1.1

We begin by recalling the main ingredients of Mather’s theory [6]; results on
minimal geodesics on arbitrary Riemannian manifolds were previously obtained
by V. Bangert [1].

Let M(L) be the set of probabilities on the Borel σ-algebra of TM that have
compact support and are invariant under the flow ϕt. Let H1(M,R) be the first
real homology group of M . Given a closed 1-form ω on M and ρ ∈ H1(M,R), let
< ω, ρ > denote the integral of ω on any closed curve in the homology class ρ. If
µ ∈ M(L), its homology is defined as the unique ρ(µ) ∈ H1(M,R) such that

< ω, ρ(µ) >=
∫
ω dµ,

for all closed 1-forms on M . The integral on the right-hand side is with respect
to µ with ω considered as a function ω : TM → R. The function ρ : M(L) →
H1(M,R) is surjective [6].

The action of µ ∈M(L) is defined by

AL(µ) =
∫
Ldµ.

Finally we define the function β : H1(M,R)→ R by

β(γ) = inf{AL(µ) : ρ(µ) = γ}.
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The function β is convex and superlinear and the infimum can be shown to be
a minimum [6] and the measures at which the minimum is attained are called
minimizing measures. In other words, µ ∈M(L) is a minimizing measure if

β(ρ(µ)) = AL(µ).

An absolutely continuous curve u : [0, T ] → M is called an L-minimizer if it
minimizes the action AL over the class of absolutely continuous curves defined on
[0, T ] with the same end points as u.

Choose a basis γ1, . . . , γr of H1(M,R) and let ω1, . . . , ωr be closed 1-forms
whose cohomology classes form a dual basis in H1(M,R). Given two points x and
y in M , their difference vector x− y ∈ H1(M,R) is defined by

x− y =
r∑
i=1

(∫
τ

ωi

)
γi,

where τ is a C1 curve in M connecting y to x and ωi is the lift of ωi to M .
We shall need the following proposition due to Mather [6, Proposition 1].

Proposition 2.1. Let ui : [0, Ti] → M be a sequence of L-minimizers such that
Ti →∞ and ui(Ti)−ui(0)

Ti
→ γ ∈ H1(M,R) as i→∞. Then

lim
i→∞

1
Ti
AL(ui) = β(γ).

Mañé [5, 3] established a connection between the critical values of a Lagrangian
as described in the introduction and the convex dual of Mather’s β function. He
showed that

c(L) = −min
{∫

Ldµ : µ ∈M(L)
}
. (3)

Let us recall how the convex dual α : H1(M,R)→ R of β is defined. Since β
is convex and superlinear we can set

α([ω]) = max{< ω, γ > −β(γ) : γ ∈ H1(M,R)},

where ω is any closed 1-form whose cohomology class is [ω]. The function α is also
convex and superlinear. Mather [6] showed that

α([ω]) = −min
{∫

(L− ω) dµ : µ ∈M(L)
}
,
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and therefore using (3) we obtain the remarkable equality

c(L− ω) = α([ω]), (4)

for any closed 1-form ω whose cohomology class is [ω]. From the duality bewteen
α and β we have

−β(0) = min{α([ω]) : [ω] ∈ H1(M,R)}

= min{c(L− ω) : [ω] ∈ H1(M,R)}.

Finally, Mañé defined the strict critical value of L as

c0(L) def= min{c(L− ω) : [ω] ∈ H1(M,R)}.

We shall use the following result of Mañé [5, 3] that exhibits the relevance of
the critical values for variational problems on fixed energy levels.

Theorem 2.2. Suppose k > c(L). Then, given x1 6= x2 in M , there exists a
solution x(t) of the Euler-Lagrange equation with energy k such that for some
T > 0, x(0) = x1, x(T ) = x2 and

AL+k(x|[0,T ]) = Φk(x1, x2).

Theorem 2.2 also holds for coverings, i.e. if we replace M by a covering and L
by the lifted Lagrangian.

We state now the result of M.J. Dias Carneiro [4] that we mentioned in the
introduction.

Theorem 2.3. If µ is a minimizing measure with homology γ, then its support
is contained in a fixed energy level k and k = α([ω]), where [ω] is the slope of a
supporting hyperplane through (γ, β(γ)). In particular, k ≥ c0(L).

We now show,

Lemma 2.4. For any closed 1-form ω on M we have

ca(L− ω) = ca(L).

Proof Let ω denote the lift of ω to the abelian covering of M . Since the form ω is
exact, the action potential of L− ω and the action potential of L coincide on the
diagonal of M ×M . This readily implies the lemma. �
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Proof of Theorem 1.1. By equality (4) we can take a closed 1-form ω such that

c0(L) = c(L− ω).

By the previous lemma and (1) we have

ca(L) = ca(L− ω) ≤ c(L− ω) = c0(L). (5)

To complete the proof of the theorem we need to show

ca(L) ≥ c0(L).

We shall assume that M is non-compact otherwise M is a finite covering of M
and by (2), ca(L) = c(L) ≥ c0(L).

Suppose that ca(L) < c0(L). Take k such that ca(L) < k < c0(L). Fix a point
q ∈ M and take a sequence of points qi such that d(q, qi) → ∞ (we provide M
with a Riemannian metric and we lift it to M).

By Theorem 2.2 there exists for each i a solution xi(t) of the Euler-Lagrange
equations with energy k such that for some Ti > 0, xi(0) = q, xi(Ti) = qi and

AL+k(xi|[0,Ti]) = Φk(q, qi) (6)

Since the solutions have energy k, there exists a constant a such that ||ẋi(t)|| < a
for all i and all t. Therefore

d(q, qi) ≤ aTi.

It follows that Ti →∞. Let µi denote the probability measure uniformly distribut-
ed along the projection of xi|[0,Ti] to M and let µ denote a point of accumulation
of µi. Equality (6) implies that xi|[0,Ti] are L-minimizers and we thus can apply
Proposition 2.1 to deduce that

lim
i→∞

1
Ti
AL(xi|[0,Ti]) = AL(µ) = β(ρ(µ)).

Therefore µ is a minimizing measure. Since the support of µ is clearly contained
in the energy level k, Theorem 2.3 implies that k ≥ c0(L) thus obtaining a con-
tradiction. �
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3. Proof of Theorem 1.2

The theorem is an immediate consequence of the following two propositions and
the fact that the Anosov energy levels form an open set.

Proposition 3.1. If k < cu(L), there exists a solution x̃ : R → M̃ of the Euler-
Lagrange equation with energy k′ ≥ k and T > 0 such that x̃(0) = x̃(T ).

Proposition 3.2. If the energy level k′ is Anosov, then any solution x̃ : R→ M̃
of the Euler-Lagrange equation with energy k′ is one to one.

Proof of Proposition 3.1. By the definition of the critical value, if k < cu(L) there
exist T0 > 0 and an absolutely continuous closed curve u : [0, T0] → M̃ with

p̃
def= u(0) = u(T0) such that

A
L̃+k(u) < 0. (7)

Let C(T0) denote the set of all absolutely continuous closed curves w : [0, t]→
M̃ such that t ≤ T0 and p̃ = w(0) = w(t). The same arguments that prove Tonelli’s
Theorem [6] allow us to conclude that the action A

L̃+k takes a finite minimum
value on the set C(T0) and minimizers are solutions of the Euler-Lagrange equation.
In other words, there exists a solution x̃ : R→ M̃ of the Euler-Lagrange equation
and T ∈ [0, T0] such that x̃|[0,T ] minimizes the action A

L̃+k on the set C(T0). By
(7) the minimum value has to be negative and therefore T 6= 0. Let k′ be the
energy of the solution x̃. To complete the proof of the proposition we need to
show that k′ ≥ k.

Let us define for each λ > 0 the following function:

F (λ) def=
∫ λT

0
(L̃+ k)(x̃λ, ˙̃xλ) dt

where x̃λ(t) : [0, λT ]→ M̃ is defined as x̃λ(t) = x̃( tλ). Let us compute F ′(1).

F ′(λ) = T L̃
(
x̃λ(λT ), ˙̃xλ(λT )

)
+
∫ λT

0

∂L̃

∂λ
dt+ kT,

but

∂L̃

∂λ
=
∂L̃

∂x̃

∂x̃λ
∂λ

+
∂L̃

∂v

∂ ˙̃xλ
∂λ

= −∂L̃
∂x̃

˙̃xλ

(
t

λ

)
t

λ2 −
∂L̃

∂v

(
1
λ3

¨̃xλ

(
t

λ

)
t+

˙̃xλ( tλ)
λ2

)
,
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therefore

F ′(1) = T L̃
(
x̃(T ), ˙̃x(T )

)
+ T k −

∫ T

0

(
∂L̃

∂x̃
˙̃x+

∂L̃

∂v
¨̃x

)
t dt−

∫ T

0

∂L̃

∂v
˙̃xdt

= T L̃
(
x̃(T ), ˙̃x(T )

)
+ T k −

∫ T

0

∂L̃

∂v
˙̃x dt−

∫ T

0

d

dt
(L̃)t dt

= T L̃
(
x̃(T ), ˙̃x(T )

)
+ T k −

∫ T

0

∂L̃

∂v
˙̃x dt+

∫ T

0
L̃ dt− L̃ t

∣∣T
0

= Tk −
∫ T

0
k′ dt

= T (k − k′).

Now observe that since x̃|[0,T ] minimizes the action A
L̃+k on the set C(T0) we

must have F ′(1) ≤ 0 and therefore k′ ≥ k as desired. �

Remark 3.3. Note that the proposition also holds if we consider any covering of
M and its associated critical value and not just the universal covering.

Also observe that if in the previous proof T 6= T0 then by the minimizing
condition F ′(1) is actually zero and therefore the energy of x̃ must be precisely k.
If this were the case we could have had the same conclusion of Theorem 1.2 but
only assuming that the energy level k is Anosov.

Proof of Proposition 3.2. A crucial ingredient in the proof of this proposition are
the results we obtained in [7]. Let us recall them. Let π : TM → M denote the
canonical projection and, if v ∈ TM , let V (v) denote the vertical fibre at v defined

as usual as the kernel of dπv : TvTM → Tπ(v)M . If the energy level Σ def= E−1(k′)
is Anosov, let Es denote the weak stable subbundle and let Ws denote the weak
stable foliation. We showed in [7] that for all v in the energy level k′ we have

Es(v) ∩ V (v) = {0}.

This is equivalent to saying that the weak stable foliation Ws is transverse to the
fibres of the fibration by (n− 1)-spheres

π|Σ : Σ→M.

Let M̃ denote the universal covering of M with projection p : M̃ → M . Let
Σ̃ denote the lifting of Σ to TM̃ via the map dp : TM̃ → TM . Observe that
Σ̃ coincides with the energy level k′ of the lifted Lagrangian L̃. We also have a
fibration by (n− 1)-spheres

π̃|
Σ̃

: Σ̃→ M̃.
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Let W̃s be the lifted foliation which is in turn a weak stable foliation for the
Euler-Lagrange flow of L̃ restricted to Σ̃. The foliation W̃s is also transverse to
the fibration π̃|

Σ̃
: Σ̃→ M̃ since the map dp is a local diffeomorphism. Since the

fibres are compact a result of Ehresman (cf. [2]) implies that for every v ∈ Σ̃ the
map

π̃|W̃s(v) : W̃s(v)→ M̃,

is a covering map. Since M̃ is simply connected, π̃|W̃s(v) is in fact a diffeomorphism

and W̃s(v) is simply connected. Consequently, W̃s(v) intersects each fibre of the
fibration π̃|

Σ̃
: Σ̃→ M̃ at just one point.

Now let x̃ : R→ M̃ be a solution of the Euler-Lagrange equation with energy
k′. Then for each t ∈ R, (x̃(t), ˙̃x(t)) belongs to W̃s(x̃(0), ˙̃x(0)) and therefore
x̃(0) = x̃(T ) for T 6= 0 if and only if x̃ gives rise to a closed orbit of the Euler-
Lagrange flow of L̃. But W̃s(x̃(0), ˙̃x(0)) cannot contain periodic orbits since it is
simply connected, and we conclude that x̃ : R→ M̃ is one to one. �

4. The example

In this section we shall exhibit a convex superlinear Lagrangian L on a closed
orientable surface of genus two with energy levels k′ which are Anosov for all
k′ ≥ 1/2 and 1/2 < c0(L). By Theorem 1.2, cu(L) < 1/2 and we obtain negative
answers to Questions I and II in the introduction.

We start with a few preliminaries. Let M be a closed manifold endowed with
a Riemannian metric and let θ denote a smooth 1-form on M . Our Lagrangian
will be of the form

L(x, v) =
1
2
〈v, v〉x − θx(v). (8)

The energy function associated with L is

E(x, v) =
1
2
〈v, v〉x ,

therefore in this case e = maxx∈M E(x, 0) = 0. Let L : TM → T ∗M denote the
Legendre transform associated with L and let ωcan denote the canonical symplectic
form of T ∗M . It is well known that the Euler-Lagrange flow ϕt associated with L
can be obtained as the Hamiltonian flow of E with respect to the symplectic form
L∗ωcan.

Let π : TM →M denote the canonical projection. Let ω0 denote the symplec-
tic form on TM obtained by pulling back ωcan via the Riemannian metric. An
easy computation shows that

L∗ωcan = ω0 + π∗dθ. (9)
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The flow ϕt models the motion of a particle of unit mass and charge under the
effect of a magnetic field, whose Lorentz force Y : TM → TM is the bundle map
determined uniquely by:

dθp(u, v) = 〈Yp(u), v〉 ,
for all u and v in TM .

We shall need the Jacobi equation associated with the Euler-Lagrange flow
of L, this equation was obtained in [8] but we include its derivation here for
completeness. Take a curve Z : (−ε, ε) → TM with Z(0) = v, Z ′(0) = ξ and

consider the variation f(s, t) = π(ϕt(Z(s))). Set Jξ(t)
def= ∂f

∂s (0, t), γs
def= f(s, t)

and γ0
def= γ. Let R denote the Riemann curvature tensor of the Riemannian

metric and let D denote covariant derivative. Recall the well known identity:

D

ds

D

dt

∂f

∂t
=
D

dt

D

dt

∂f

∂s
+R

(
∂f

∂t
,
∂f

∂s

)
∂f

∂t
.

Since the Euler-Lagrange flow ϕt can be obtained as the Hamiltonian flow of E
with respect to the symplectic form L∗ωcan, it can be easily verified using (9) that
γs satisfies the following equation of motion (Newton’s law):

D

dt
γ̇s = Y (γ̇s).

Combining the last two equalities we obtain:

J̈ξ +R(γ̇, Jξ)γ̇ =
D

ds
(Y (γ̇s)).

Note that the map (p, v) → Y (p, v) is a (1,1)-tensor. Thus using the covariant
derivative ∇ on (1,1)-tensors induced by the Riemannian connection we obtain:

D

ds
Y (γ̇s) = (∇JξY )(γ̇s) + Y (J̇ξ)

and we deduce the Jacobi equation:

J̈ξ +R(γ̇, Jξ)γ̇ − Y (J̇ξ)− (∇JξY )(γ̇) = 0. (10)

Suppose now that M is a closed oriented surface and let Ωa denote the area
form associated with the Riemannian metric. Any other 2-form Ω can be written
as Ω = FΩa for a smooth function F : M → R. The form Ω is exact if and only if∫

M

FΩa = 0.

We shall exhibit now a Riemannian metric on an orientable surface of genus
two and a smooth function F : M → R such that FΩa is exact and if we write
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FΩa = dθ, then the Euler-Lagrange flow of the Lagrangian given in (8) is Anosov
on the energy level k′ for all k′ ≥ 1/2 and 1/2 < c0(L).

To construct the Riemannian metric and the function F we proceed as follows.
Let Sl denote the one-parameter family of negatively curved compact surfaces of
genus two that is indicated in Figure 1, where l is the length of the unit speed
closed geodesic γ. Let Kl denote the Gaussian curvature of Sl. The curve γ
divides Sl into two surfaces with boundary: S+

l and S−l . We shall assume that
for each l, Sl admits an isometric involution I that fixes γ and interchanges S+

l

with S−l . Morever, we suppose that there exists a disk D+ contained in S+
l such

that the metric on it does not change with l and it has constant curvature -1. Let
D−

def= I(D+). We choose the orientation of γ induced by S+
l .

D+ D--f

γ

f

I

Lorentz Force

length l

v

fiv
v -fiv

Figure 1. The surface Sl and the magnetic field.

Let f : S+
l → R be a non-negative function with support contained in D+ and

such that
−1 + f2(x) ± 〈∇f(x), iv〉 < 0, (11)

for all (x, v) in the unit sphere bundle of D+; iv denotes the vector v rotated π/2
according to the orientation of Sl. Set m =

∫
D+ fΩa > 0 and note that m is

independent of l. Finally our function F will be defined as

F (x) =
{
f(x) if x ∈ S+

l ;
−f(Ix) if x ∈ S−l .

Clearly ∫
Sl

FΩa = 0.

Let Ll denote the Lagrangian given by the metric on Sl and a 1-form θ that
satisfies dθ = FΩa. Note that we can express the Lorentz force associated to the
magnetic field dθ as

Y (v) = F (π(v))iv. (12)
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Let us compute the action of Ll + c0(Ll) on γ.

ALl+c0(Ll)(γ) =
l

2
+ c0(Ll)l −

∫
γ

θ.

By Stokes Theorem,

ALl+c0(Ll)(γ) = l

(
1
2

+ c0(Ll)
)
−
∫
D+

fΩa = l

(
1
2

+ c0(Ll)
)
−m.

Observe that γ is null-homologous and since by Theorem 1.1, c0(Ll) = ca(Ll), it
follows from the definition of critical value that

ALl+c0(Ll)(γ) ≥ 0,

therefore

l

(
1
2

+ c0(Ll)
)
−m ≥ 0,

which implies, since m is positive, that

lim
l→0

c0(Ll) =∞. (13)

We shall show now that for all l, the energy level k′ for k′ ≥ 1/2 is Anosov.
Combining this fact with (13) it follows that for l small enough we obtain a surface
Sl and a function F with the desired properties.

We are going to define for each v with energy k′, the corresponding strong
stable space Ess(v) and the strong unstable space Esu. Let c : R→ Sl denote the
solution of the Euler-Lagrange equation with energy k′ > 0 and initial condition
v. Since {ċ, iċ} is an orthonormal basis of TċSl we can write any Jacobi field J as

J = xċ+ yiċ.

We only need to consider Jacobi fields arising from variations in the energy level,
that is (J(0), J̇(0)) ∈ TvE

−1(k′) which is equivalent to saying that
〈
J̇ , ċ
〉
≡ 0.

Since J must also satisfy the Jacobi equation (10) a straightforward computation
using (12) shows that the functions x and y must satisfy the following scalar
equations:

ẋ = Fy, (14)

ÿ +
(

2k′Kl(c) + F 2(c)− 〈∇F (c), iċ〉
)
y = 0. (15)

Now the same proof that shows that the geodesic flow on a compact surface of
negative curvature is Anosov allows us to deduce that if any v with energy k′

satisfies
2k′Kl(πv) + F 2(πv)− 〈∇F (πv), iv〉 < 0, (16)
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then there exist constants C, λ > 0, and solutions ys, yu of the equation (15) such
that

|ys(t)| ≤ C e−λt, for all t ≥ 0,

|yu(t)| ≤ C eλt, for all t ≤ 0.

Since F is uniformly bounded, we can associate for each pair of solutions ys, yu

as above, a pair of solutions xs, xu of equation (14) by setting

xs(0) def= −
∫ ∞

0
F (c(t))ys(t) dt,

xu(0) def=
∫ ∞

0
F (c(−t))yu(−t) dt.

It is easily seen that

xs(t) = −
∫ ∞
t

F (c(τ))ys(τ) dτ,

xu(t) =
∫ t

−∞
F (c(τ))yu(τ) dτ.

Then xs(t) and xu(t) converge exponentially fast as t → ∞. Let Js denote the
unique Jacobi field determined by the initial conditions (xs(0), ys(0), F (πv)ys(0),
ẏs(0)) and let Ju denote the unique Jacobi field determined by the initial condi-
tions (xu(0), yu(0), F (πv)yu(0), ẏu(0)). Then

Ess(v) = R(Js(0), J̇s(0)),

Esu(v) = R(Ju(0), J̇u(0))

are clearly the strong stable and unstable spaces.
Therefore if equation (16) is satisfied for all v with energy k′, the Euler-

Lagrange flow on the energy level k′ is Anosov. Let us check that equation (16) is
satisfied for our choice of F .

Observe that outside D+ and D− the function F vanishes and therefore in-
equality (16) reduces to

2k′Kl(πv) < 0,

which is satisfied since we have chosen our surfaces with negative curvature. Inside
the disks the metric does not change with l and has constant negative curvature
-1, and thus (16) reduces to

−2k′ + F 2(πv)− 〈∇F (πv), iv〉 < 0,

which is satisfied for any k′ ≥ 1/2 because of our choice of f in (11).
Finally we note that (13) implies that the gap between cu(L) and c0(L) can be

made as large as one wishes.



Vol. 72 (1997) Critical values of Lagrangians 497

5. Proof of Theorem 1.3

Let us prove first that in general

e ≤ cu(L). (17)

Take a point x̃ ∈ M̃ such that e = −L(p(x̃), 0). Then by considering a curve
u : [0, T ]→ M̃ such that u(t) = x̃ for all t ∈ [0, T ] we have

Φ̃cu(L)(x̃, x̃) ≤ (−e+ cu(L))T,

which implies inequality (17).

We begin now with the proof of the theorem. Let ψ(x) def= L(x, 0) and L0(x, v)
def= L(x, v)−θx(v)−ψ(x). Then L0(x, 0) = L(x, 0)−ψ(x) ≡ 0. Note that L0(x, ∗) is
a convex superlinear function and ∂L0

∂v (x, 0) ≡ 0. Hence L0(x, ∗) has its minimum
at v = 0, therefore

L0(x, v) ≥ 0,

and it vanishes if and only if v = 0. Observe that

e = − min
x∈M

L(x, 0) = −min
x∈M

ψ(x) = max
x∈M

(−ψ(x)).

Suppose now that dθ ≡ 0, then

c0(L) = c0(L0 + ψ + θ) = c0(L0 + ψ).

Note that for all x ∈ M , e+ ψ(x) ≥ 0 and L0 ≥ 0, therefore if u : [0, T ]→ M is
any absolutely continuous curve we have∫ T

0
(L0(u, u̇) + ψ(u) + e) dt ≥ 0,

which implies that e ≥ c(L0 + ψ) ≥ c0(L0 + ψ). Therefore e = c0(L).
We shall show now that if ψ(x) = 0 for all x ∈ M and dθ 6≡ 0, then 0 = e <

cu(L). If dθ 6≡ 0 there exists a smooth oriented embedded 2-disk D in M such
that

m
def=
∫
D

dθ < 0. (18)

Fix a Riemannian metric onM and let γε : [0, Tε]→M denote the parametrization
of the boundary of D (with its induced orientation) with speed

√
ε. The length of

the boundary of D -which is independent of ε- equals
√
εTε

def= l. Now we write

AL+ε(γε) =
∫ Tε

0
(L(γε, γ̇ε) + ε) dt =

∫ Tε

0
(L0(γε, γ̇ε) + ε) dt+

∫ Tε

0
θγε(γ̇ε) dt.
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By Stokes Theorem we have:

AL+ε(γε) =
∫ Tε

0
(L0(γε, γ̇ε) + ε) dt+m. (19)

Since L0(x, 0) = 0 and ∂L0
∂v (x, 0) = 0 for all x ∈ M , there exist constants C > 0

and D > 0 such that for all (x, v) ∈ TM with ||v|| ≤ D we have L0(x, v) ≤ C||v||2.
Therefore for ε small enough we have∫ Tε

0
(L0(γε, γ̇ε) + ε) dt ≤ (Cε+ ε)Tε = (C + 1)l

√
ε.

Combining the last inequality with (19) we obtain:

AL+ε(γε) ≤ (C + 1)l
√
ε+m.

Therefore if ε is small enough, the last inequality and (18) give

AL+ε(γε) < 0,

which shows that cu(L) > 0 since the boundary of D is a contractible curve. �

As an immediate corollary of Theorem 1.3 we have,

Corollary 5.1. If L is a Lagrangian of the form

L(x, v) =
1
2
〈v, v〉x + θx(v),

with dθ 6≡ 0, then
0 = e < cu(L).

Without the hypothesis L(x, 0) = 0 for all x ∈ M , the second assertion of
Theorem 1.3 is not true. Endow M with a Riemannian metric and consider a
1-form θ with support in a neighborhood U of M and such that θ is not closed.
Note that there exists a constant a such that

1
2
〈v, v〉x + θx(v) + a > 0,

for all (x, v) ∈ TM . Consider a smooth function ψ : M → R with support in a
neighborhood V disjoint from U and such that

a = max(−ψ).
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Our Lagrangian L will be

L(x, v) =
1
2
〈v, v〉x + θx(v) + ψ(x).

Clearly e = a = max(−ψ).
Since the supports of θ and ψ are disjoint we observe that if u : [0, T ]→M is

any absolutely continuous curve then

AL+e(u) ≥ 0,

and thus e ≥ c(L). It follows that for this Lagrangian

e = cu(L) = c0(L) = c(L),

but the 1-form θ is not closed.
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