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The K-theory of p-compact groups

A. Jeanneret and A. Osse∗

Abstract. In this paper, we show that the p-adic K-theory of a connected p-compact is the ring
of invariants of the Weyl group action on the K-theory of a maximal torus. We apply this result
to show that a connected finite loop space admits a maximal torus if and only if its complex
K-theory is λ-isomorphic to the K-theory of some BG, where G is a compact connected Lie
group.
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Introduction

Let G be a compact Lie group and BG its classifying space. In [5] Atiyah and Segal
have shown that the complex K-theory ring K∗(BG;Z) is isomorphic to the I-adic
completion of the complex representation ring R(G). Assume G is connected and
fix a maximal torus T ⊂ G with Weyl group W . The preceding result is equivalent
to the isomorphism

K∗(BG;Z) ∼= K∗(BT ;Z)W , (∗)
where the last term stands for the ring of invariants of the natural W -action on
K∗(BT ;Z) (see [4]).

In [15] Dwyer and Wilkerson introduce the concept of p-compact group, where
p stands for a prime. Their original results and subsequent works ([16], [23], [24])
show that these objects constitute a natural homotopy theoretic generalization
of compact Lie groups. For instance, p-compact groups have maximal tori, Weyl
groups, etc. We refer to Section 1 for the precise definitions. In this introduction,
we would like to emphasize the fact that all the structure of a p-compact group
is concentrated at the single prime p. Therefore it is natural to consider p-adic
K-theory rather than ordinary K-theory. In this framework, our main result is the
following generalization of the isomorphism (∗):
∗Supported by grant No 20–43215.95 of the Swiss National Fund for Scientific Research
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Theorem. Let X be a connected p-compact group, i : T −→ X a maximal torus
and W the corresponding Weyl group. The classifying map Bi : BT −→ BX
induces a ring isomorphism

K∗(BX ;Zp̂) ∼= K∗(BT ;Zp̂)W .

As a first application we study the ordinary complex K-theory of finite loop
spaces. More precisely, if L is a connected finite loop space, we show that
K1(BL;Z) = 0 and K0(BL;Z) is torsion free and without zero divisors. Our
results are much more complete for finite loop spaces with maximal tori. In the
case of a compact connected Lie group, we obtain a non-analytical proof of the
isomorphism (∗). Moreover we have the following generalization of a result due to
Notbohm and Smith ([27, Theorem 5.1]):

Theorem. Let L be a connected finite loop space. Then L admits a maximal torus
if and only if there exists a compact connected Lie group G such that K∗(BL;Z)
is λ-isomorphic to K∗(BG;Z).

In Section 1, we recall the basic definitions of the theory of p-compact groups.
In the same section we use a theorem of Kane and Lin to deduce that the p-
adic K-theory of a 1-connected p-compact group is an exterior algebra. As the
reader will see, our arguments depend heavily on this result. Section 2 contains
the crucial step of the proof of our main result, namely the map Bi : BT −→ BX
above induces a finite ring homomorphism in mod p K-theory. To achieve this
goal, we appeal to Dwyer’s transfer and we show that any p-compact toral group
P “embeds” into some unitary group U(N). The technical Section 3 deals with
the reduction of the general situation to the 1-connected case. In Section 4 we
combine Dwyer’s transfer with Kane and Lin’s theorem and the finiteness result of
Section 2 to conclude. Some consequences of our main result are given in Section 5.
The last section is devoted to the announced application to finite loop spaces.

Notations. Throughout the paper, p is a fixed prime number, Zp̂ the ring of p-
adic integers and Qp̂ = Q⊗Zp̂ the fraction field of Zp̂. For any space Y the symbol
H∗Qp̂(Y ) stands for Q⊗H∗(Y ;Zp̂) and Yp̂ for the Bousfield–Kan p-completion of Y .

1. Backgrounds

The purpose of this section is to fix the notation and to recall the definitions and
the results we are going to use. The interested reader is referred to the seminal
paper of Dwyer and Wilkerson ([15]) for a much more complete presentation.

A loop space X is a triple (X,BX ; e), where X is a space, BX a connected
pointed space and e : X −→ ΩBX a homotopy equivalence; BX is called the
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classifying space of X . Such a loop space will be called a p-compact group if the
following additional conditions are satisfied:

1. X is Fp-finite, i.e., H∗(X ;Fp) is a finite dimensional Fp-vector space;
2. π0(X) is a finite p-group and πn(X) is a finitely generated Zp̂-module for

any n ≥ 1.
A morphism f : X −→ Y between two p-compact groups is a pointed map

Bf : BX −→ BY . The morphism f is a monomorphism (respectively, an epimor-
phism) if the homotopy fiber Y/X of Bf is Fp-finite (respectively, the classifying

space of a p-compact group). A short exact sequence X
f−→ Y

g−→ Z of p-compact

groups is a sequence such that BX
Bf−→ BY

Bg−→ BZ is a fibration up to homotopy.
Two morphisms f, g : X −→ Y are conjugate if the maps Bf and Bg are freely
homotopic.

The centralizer of a morphism f : X −→ Y of p-compact groups is the loop
space

CY (f(X)) := (ΩMap(BX,BY )Bf ,Map(BX,BY )Bf ; id).
The morphism f will be called central if the basepoint evaluation map

ev: Map(BX,BY )Bf −→ BY

is a homotopy equivalence.
A p-compact torus (of rank n) is a p-compact group T such thatBT ' K(Znp̂ , 2).

A p-compact toral group P is a p-compact group fitting into a short exact sequence
T −→ P −→ π, where T is a p-compact torus and π a finite p-group. A maximal
torus for a p-compact group X is a monomorphism i : T −→ X whose centralizer
is a p-compact toral group. One of the fundamental results of [15] says that any
p-compact group admits a maximal torus, unique up to conjugacy.

Let i : T −→ X be a maximal torus for a p-compact group X . We replace the
map Bi : BT −→ BX by an equivalent fibration BT ′ −→ BX ; the Weyl space
WT (x) is defined as the space of self-maps of BT ′ over BX . In Proposition 9.5 of
[15], it is shown that the space WT (X) is homotopically discrete and WT (X) :=
π0(WT (X)) is a finite group under composition; WT (X) (or simply WX) is called
the Weyl group of X (with respect to the maximal torus i). By construction the
Weyl spaceWT (X) acts on BT ′; the Borel construction of this action gives a loop
space called the normalizer of T and denoted N (T ). Thus we have a homotopy
fibration sequence BT −→ BN (T ) −→ BWT (X). In general, the loop spaceN (T )
is not a p-compact group: π0(N (T )) ∼= WT (X) is seldom a p-group. However, one
obtains a p-compact group Np(T ) by performing the Borel construction for the
action of the submonoid WT (X)p given by the union of components of WT (X)
which project onto a p-Sylow subgroup of WT (X); Np(T ) is called the p-normalizer
of T .

For future use, some other important results of [15] are recorded in the following

Theorem 1.1. Let i : T −→ X be a maximal torus for a connected p-compact
group X, with Weyl group WX .
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1. The homotopy action of WX on BT induces a faithful representation of WX

as a reflection group in the Qp̂-vector space H2
Qp̂(BT ).

2. The map Bi induces a ring isomorphism

H∗Qp̂(BX) ∼= H∗Qp̂(BT )WX .

Throughout the paper we will be dealing with Z/2-graded K-theories. The
ordinary periodic complex K-theory will be denoted K∗(−;Z). For any abelian
group A, K∗(−;A) denotes the K-theory with coefficients in A, as defined by
Adams in [1, p. 220]. In the sequel we will be mainly interested in the cases
A = Z/pr and Zp̂. Apart their relevance to our problem, these theories enjoy the
following property ([17]). Assume that A = Z/pr or Zp̂. If Y is a CW-complex
and {Yα} the family of its finite subcomplexes, then

K∗(Y ;A) ∼= lim
←
K∗(Yα;A).

In other words, there are no phantom maps for these K-theories. From this result,
it is straightforward to check that

K∗(−;Zp̂) ∼= lim
←
K∗(−;Z/pr).

We also observe that K0(−;Zp̂) is represented by Zp̂ × BUp̂, while K1(−;Zp̂) is
represented by Up̂; as usual U stands for the infinite unitary group.

The K-theory of 1-connected mod p finite H-spaces has been computed by Kane
and Lin (see [18, §44-1]). For the p-compact groups, their result implies

Theorem 1.2. Let X be a 1-connected p-compact group.
1. The K-theory of X is an exterior algebra

K∗(X ;Zp̂) ∼= EZp̂(η1, . . . , ηr),

where the generators η1, . . . , ηr are in K1(X ;Zp̂).
2. The K-theory of BX is a power series ring

K∗(BX ;Zp̂) ∼= Zp̂[[ξ1, . . . , ξr]],

where the generators ξ1, . . . , ξr are in K0(BX ;Zp̂).

Proof. By Theorem 1.1. above and Theorem 3.1 in [7], there is a connected CW-
complex Y of finite type with BX ' Yp̂. Since BX is 2-connected, the construction
in [7] also shows that Y is 1-connected. Given this fact, Proposition VI.6.5 of
[12] implies that (ΩY )p̂ ' Ω(Yp̂) ' X . Hence standard arguments show that
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⊕i≥0Hi(ΩY ;Z(p)) is finitely generated over the ring Z(p) of p-local integers. As
ΩY is an associative H-space, we can use Corollary 10.4 of [10] to show that
K∗(X ;Zp̂) ∼= K∗(ΩY ;Zp̂) is an exterior algebra over Zp̂. The second assertion
follows from a Rothenberg–Steenrod spectral sequence argument and the fact that
there are no phantoms in p-adic K-theory. �

We write H∗∗Qp̂(−) for the direct product
∏
n≥0H

n
Qp̂(−); it is a Z/2-graded Qp̂-

algebra, graded by:

Heven
Qp̂ (−) =

∏
n≥0

H2n
Qp̂ (−), Hodd

Qp̂ (−) =
∏
n≥0

H2n+1
Qp̂ (−).

The Chern character
ch: K∗(−;Zp̂) −→ H∗∗Qp̂(−)

is a Z/2-graded ring homomorphism whose definition is as in [19, p. 282].

Proposition 1.3. Let X be a 1-connected p-compact group.
1. The rationalization of the Chern character

ch
⊗

Qp̂ : K∗(X ;Zp̂)
⊗

Qp̂ −→ H∗∗Qp̂(X)

is an isomorphism.
2. The Chern character

ch: K∗(BX ;Zp̂) −→ H∗∗Qp̂(BX)

is a monomorphism.

Note. The rationalization of the Chern character for BX is not necessarily onto.
This is due to the non-surjectivity of the inclusion Zp̂[[ξ]]⊗Q ↪→ Qp̂[[ξ]].

Proof. Let us first consider the case of the space X . Proceeding as above, there
is a 1-connected CW-complex of finite type V whose p-completion is homotopy
equivalent to X . Take any finite subcomplex Ṽ of V such that Ṽ ↪→ V induces an
isomorphism in cohomology with Zp̂-coefficients and observe that the composition

Ṽ ↪→ V → Vp̂ ' X

induces an isomorphism in p-adic K-theory. The problem is now reduced to the
case of a finite complex where the assertion is true (see [4]).

To treat the case of BX , let us fix the exterior generators η1, . . . , ηr of
K∗(X ;Zp̂). By the first part of the proof, we have H∗Qp̂(X) ∼= EQp̂(y1, . . . , yr),
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where yi = ch(ηi) for i = 1, . . . , r. The map α : ΣX −→ BX , adjoint to the
homotopy equivalence e : X −→ ΩBX , induces a commutative diagram

K∗(BX ;Zp̂)
a∗−−−−→ K∗(ΣX ;Zp̂)

ch
y ych

H∗∗Qp̂(BX) α∗∗−−−−→ H∗∗Qp̂(ΣX).

Now observe that the generators ξ1, . . . , ξr of K∗(BX ;Zp̂) may be chosen so that
α∗(ξi) = σ(ηi), with σ the suspension isomorphism. Similarly, it is possible to
choose generators x1, . . . , xr of H∗∗Qp̂(BX) such that α∗∗(xi) = σ(yi). The commu-
tative diagram above implies that ch(ξi) is congruent, modulo decomposables, to
xi. We now invoke Theorem 1.2 to conclude the proof. �

2. A finiteness result

Let R and S be graded commutative rings; a ring homomorphism φ : R −→ S
is called finite if S is a finitely generated φ(R)-module. The present section is
devoted to the proof of

Theorem 2.1. Let X be a p-compact group and i : T → X a maximal torus.
Then the map Bi induces a finite ring homomorphism

Bi∗ : K∗(BX ;Fp) −→ K∗(BT ;Fp).

This result will follow from a sequence of five propositions. The principal
ingredients are the “main theorem” of [15] and Dwyer’s transfer ([14]).

Proposition 2.2. If X is a p-compact group, then there are homogeneous classes
b1, . . . , br ∈ H∗(BX ;Fp) which generate a polynomial subalgebra R = Fp[b1, . . . , br]
in H∗(BX ;Fp) and such that the inclusion R ⊂ H∗(BX ;Fp) is finite.

Proof. By Theorem 2.4 of [15] (alias the “main theorem”), H∗(BX ;Fp) is a finitely
generated graded algebra over Fp. It suffices then to invoke the graded version of
Noether normalization theorem (as stated for example in [8, Theorem 2.2.7]). �

Before going farther, a well-known observation is in order. Suppose that there
exists a monomorphism h : X → U(n)p̂, where U(n)p̂ denotes the p-compact group
obtained by p-completing the unitary group U(n). Let j : T (n) −→ U(n)p̂ be a
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maximal torus. By [15, Prop. 8.11], there exists a monomorphism g : T −→ T (n)
making the following diagram commutative:

BT (n)

Bg
↗
�
�
�

yBj
BT

Bi−→ BX
Bh−→ BU(n)p̂

The map Bg induces a surjective (hence finite!) homomorphism in mod p K-
theory. Using the Atiyah–Hirzebruch spectral sequence, one shows that Bj∗ :
K∗(BU(n)p̂;Fp) −→ K∗(BT (n);Fp) is also finite. It follows that the morphism
Bi∗ : K∗(BX ;Fp) −→ K∗(BT ;Fp) is finite.

Unfortunately we do not know yet if every p-compact group admit a monomor-
phism into some U(n)p̂. But for the present purpose, the following proposition
will be sufficient.

Proposition 2.3. Let P be a p-compact toral group. Then there exists a monomor-
phism φ : P −→ U(n)p̂ for some integer n.

Proof. If P is finite the answer is well-known; thus we may assume that P fits into
a short exact sequence T −→ P −→ π, where T is a p-compact torus of rank r ≥ 1
and π a finite p-group. The discrete approximation of this sequence gives rise to
a short exact sequence of discrete groups (see Proposition 3.7 in [16])

{1} −→ T̆ −→ P̆ −→ π −→ {1},

with T̆ = (Z/p∞)r. We write l for the order of π and embed the latter into the
symmetric group Σl, via the regular representation. By a theorem of Kaloujnine
and Krasner (Theorem 7.37 in [29]), there exists an embedding of P̆ into the
wreath product T̆ oΣl ∼= (Z/p∞ oΣl)r. Our candidate for the monomorphism φ is
the p-completion of the composite

P̆
α
↪→ (Z/p∞ oΣl)r

β
↪→ (S1 o Σl)r

γ
↪→ U(l)r ⊂ U(lr).

The morphism γ is just the inclusion of the normalizer of the standard maximal
torus of U(l)r. By a result of Quillen (see [28]), Bγ and the classifying map
of the last inclusion induce finite homomorphisms on mod p cohomology. The
morphism β is given by the natural inclusion Z/p∞ ⊂ S1; therefore Bβ induces an
isomorphism on mod p cohomology. By Proposition 9.11 of [15], we will be done
if we can prove that the composite

B(β ◦ α) : BP̆ −→ B(S1 oΣl)r



Vol. 72 (1997) The K-theory of p-compact groups 563

induces a finite morphism on mod p cohomology.
In the proof of Proposition 12.1 of [15], it is shown that there exists a finite

subgroup inclusion ν : Pm ↪→ P̆ with Bν∗ : H∗(BP̆ ;Fp) −→ H∗(BPm;Fp) injective
and finite. Consider now the diagram

Pm

ν

∩y
�
�
�
↘
β◦α◦ν

P̆ ⊂−−−→
β◦α

(S1 oΣl)r

The ring homomorphism B(β ◦α ◦ν)∗ is finite, by Quillen’s result ([28]). Since
H∗(B(S1 oΣl)r;Fp) is noetherian and Bν∗ injective, the ring homomorphism B(β◦
α)∗ is finite; it follows that Bφ∗ is also finite. �

Proposition 2.4. Let X be a p-compact group and i : T −→ X a maximal torus.
If the Atiyah–Hirzebruch spectral sequence

E∗,∗2 (BX) = H∗(BX ;K∗(pt;Fp)) =⇒ K∗(BX ;Fp)

degenerates (i.e., there exists an integer n0 such that En0(BX) ∼= E∞(BX)), then
the ring homomorphism Bi∗ : K∗(BX ;Fp) −→ K∗(BT ;Fp) is finite.

Proof. We write Zn(BX) ⊂ E2(BX) for the pre-image of the submodule of cycles
in En(BX). We clearly have a chain of inclusions

E2(BX) ⊃ Z2(BX) ⊃ · · · ⊃ Zn(BX) ⊃ · · · ⊃ Z∞(BX) =
⋂
n≥2

Zn(BX).

For n ≥ 2, set

Rn = Fp[bp
n−1

1 , . . . , bp
n−1

r ]⊗K∗(pt;Fp) ⊂ E2(BX),

where b1, . . . , br are as in Proposition 2.2. For all n ≥ 2, the inclusion Rn ⊂
E2(BX) is finite and (by construction) Rn is contained in Zn(BX). By hypothesis
there is an integer n0 such that Zn0(BX) = Z∞(BX), thus Rn0 ⊂ Z∞(BX). Since
i : T −→ X is a monomorphism, Bi induces a finite ring homomorphism in mod p
cohomology; it follows that the composite

Rn0 ↪→ E2(BX) Bi∗−−→ E2(BT )

is also finite. At the E∞-level, we obtain a diagram

Rn0 −→ E∞(BX)
E∞(Bi∗)−−−−−−→ E∞(BT ),
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whose composite coincides with the preceding one (since E2(BT ) = E∞(BT )). In
particular the morphism Rn0 −→ E∞(BT ) is finite; this imply the finiteness of
the map E∞(Bi∗) : E∞(BX) −→ E∞(BT ). We now invoke Corollary 1 (p. 41) of
[9] to conclude that Bi∗ : K∗(BX ;Fp) −→ K∗(BT ;Fp) is finite as claimed. �

Proposition 2.5. Let X be a p-compact group and i : T −→ X a maximal torus.
Let Np denote the p-normalizer of this maximal torus. If the Atiyah–Hirzebruch
spectral sequence degenerates for BNp, then it also degenerates for BX.

Proof. Let j : Np −→ X be the canonical monomorphism and

τ : (BX+)p̂ −→ ((BNp)+)p̂

be the transfer associated to the map Bj (see [14, Example 1.1]). Here the notation
(Y+)p̂ stands for the p-completion of the suspension spectrum of the space Y+ =
Y
∐
pt. We consider the diagram

E2(BX) ⊃ Z2(BX) ⊃ · · · ⊃ Zn(BX) ⊃ . . . ⊃ Z∞(BX)

τ∗

x
yBj∗

E2(BNp) ⊃ Z2(BNp) ⊃ · · · ⊃Zn(BNp) ⊃ . . . ⊃ Z∞(BNp)

Since τ∗ is induced by a stable map, we have τ∗(Zn(BNp)) ⊂ Zn(BX) for all
n ≥ 2. By hypothesis there exists an integer n0 such that Zn0(BNp) = Z∞(BNp).
Let x ∈ Zn0(BX), then Bj∗(x) ∈ Zn0(BNp) = Z∞(BNp) and

x = χ−1(τ∗ ◦Bj∗)(x) ∈ Z∞(BX),

where χ is the Euler characteristic of the space X/Np. Dwyer and Wilkerson have
shown that χ is invertible mod p (see the proof of 2.4 (p. 431) in [15]). Thus we
have proved that Zn0(BX) = Z∞(BX). �

Proposition 2.6. For any p-compact toral group P , the Atiyah–Hirzebruch spec-
tral sequence for BP degenerates.

Proof. By Proposition 2.3 there exists a monomorphism φ : P −→ U(n)p̂. Hence
the induced homomorphism Bφ∗ : H∗(BU(n);Fp) −→ H∗(BP ;Fp) is finite. Since
H∗(BU(n);Fp) is concentrated in even degrees, the naturality of the spectral se-
quence implies that R = Im(Bφ∗)⊗K∗(pt;Fp) consists of permanent cycles. We
can now invoke Proposition 4.1 of [6] to conclude. �

To complete the proof of Theorem 2.1, it suffices to recall that the p-normalizer
Np is p-toral. We close the section by our main application of this theorem.
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Theorem 2.7. Let X be a 1-connected p-compact group and i : T −→ X a maxi-
mal torus. The ring homomorphism

Bi∗ : K∗(BX ;Zp̂) −→ K∗(BT ;Zp̂)

makes K∗(BT ;Zp̂) into a free and finitely generated K∗(BX ;Zp̂)-module.

Proof. For simplicity, we set

SX := K∗(BX ;Zp̂) and ST := K∗(BT ;Zp̂).

It is well-known that ST is a power series ring over Zp̂. By Theorem 1.2, the same
is true for SX . Consequently we have the universal coefficient formulas (see [1,
p. 201])

K∗(BX ;Fp) = SX⊗Zp̂Fp and K∗(BT ;Fp) = ST⊗Zp̂Fp.

Our Theorem 2.1 and Theorem 8.4 (p. 58) of [21], imply that the homomorphism
Bi∗ : SX −→ ST is finite. We now observe that both rings are noetherian, local,
regular and of the same dimension. And so we can apply Proposition 22 (p. IV-37)
of [30] to conclude that ST is free over SX . �

3. Reduction to the one-connected case

The following results of [24] and [23] will play an important role in this section.

Theorem 3.1. Let X be a connected p-compact group and π the torsion subgroup
of π1(X). Set Y = X〈1〉×S, where X〈1〉 denotes the 1-connected cover of X and
S a p-compact torus of rank dimQp̂(π1(X)⊗Qp̂).

1. There is a short exact sequence of p-compact groups

{1} −→ π
f−→ Y

g−→ X −→ {1},

where the monomorphism f : π → Y is central.
2. Let i1 : T1 −→ X〈1〉 and i : TX −→ X be maximal tori for the respective
p-compact groups. Set also TY = T1 × S, then

j = i1 × id : TY −→ Y

is a maximal torus and there exists a short exact sequence

{1} −→ π
ϕ−→ TY

γ−→ TX −→ {1}
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which makes the following diagram commutative (up to homotopy):

Bπ Bπ

Bϕ

y yBf
BTY

Bj−−−−→ BY

Bγ

y yBg
BTX

Bi−−−−→ BX.

3. Let WY (respectively WX) denote the Weyl group of the maximal torus j
(respectively i); note that, by construction, the group WY acts trivially on
BS. There exists an isomorphism Φ: WY → WX such that, for any w in
the Weyl group WY , the diagram

BTY
w−−−−→ BTY

Bγ

y yBγ
BTX

Φ(w)−−−−→ BTX

commutes (up to homotopy).

Proof. The first part is proved in [24, Theorem 5.4], while the last two are contained
in [23, Theorem 2.5]. �

In order to exploit fully the theorem above, we must study some properties of
central monomorphisms. The main tool of this study is an observation of Dwyer
and Wilkerson ([16, Lemma 5.3]):

Lemma 3.2. Let
Z1yf1

Z2
f2−−−−→ Z0

be a diagram of p-compact groups and suppose that the morphism f2 is cen-
tral. Then there is up to conjugacy a unique morphism of p-compact groups
µ(f1, f2) : Z1 × Z2 → Z2 which is conjugate to f1 on Z1 × {1} and to f2 on
{1} × Z2.

Until further notice we will keep the data and notation of Theorem 3.1. The
classifying space Bπ possesses a multiplication

Bµ : Bπ ×Bπ → Bπ;
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the unit for Bµ will be chosen to be the basepoint of Bπ. Let R denote either
a ring Z/pr (r ≥ 1) or the p-adic ring Zp̂. By a well-known result of Atiyah
(see [3]), K∗(Bπ;R) is free and finitely generated over R. This fact implies
for any p-compact group Z, that K∗(Bπ × BZ;R) is naturally isomorphic to
K∗(Bπ;R)⊗RK∗(BZ;R) (see [3, Lemma 1.4]). Thus the multiplication of Bπ
induces a Hopf algebra structure on K∗(Bπ;R).

By Lemma 3.2 there is up to conjugacy a unique morphism k : π × Y → Y
which is conjugate to f on π × {1} and to the identity on {1} × Y . It is easily
checked that the homomorphism

Bk∗ : K∗(BY ;R) −→ K∗(Bπ;R)⊗RK∗(BY ;R)

defines a K∗(Bπ;R)-comodule structure on K∗(BY ;R).
Let us now consider the maximal torus j : TY → Y , with Weyl group WY . By

Lemma 6.5 of [16], ϕ is up to conjugacy the unique morphism making the following
diagram commutative

BTY

Bϕ

↗
�
�
�

yBj
Bπ

Bf
−−−−→ BY

This uniqueness implies that the morphis ϕ is WY -invariant, i.e., for any w in the
Weyl group WY , the morphisms ϕ and w ◦ ϕ are conjugate.

We proceed as above to obtain a morphism κ : π × TY → TY (unique up to
conjugacy) such that

Bκ∗ : K∗(BTY ;R) −→ K∗(Bπ;R)⊗RK∗(BTY ;R)

defines a K∗(Bπ;R)-comodule structure on K∗(BTY ;R). The uniqueness of
κ and the WY -invariance of ϕ imply that, for all w ∈ WY , the induced map
w∗ : K∗(BTY ;R) −→ K∗(BTY ;R) is a K∗(Bπ;R)-comodule homomorphism.
Once again Lemma 3.2 implies that Bj∗ : K∗(BY ;R) −→ K∗(BTY ;R) is a
K∗(Bπ;R)-comodule homomorphism.

We write A for K∗(Bπ;Zp̂) and Ar for K∗(Bπ;Z/pr). The universal coefficient
formula implies K∗(Bπ;Z/pr) ∼= K∗(Bπ;Zp̂)

⊗
Z/pr, that is, Ar ∼= A

⊗
Z/pr.

Since BX is 1-connected, we may and we will assume that the fibration Bπ −→
BY −→ BX is principal. This allows us to use the Rothenberg–Steenrod spectral
sequence for this fibration. Its E2-term is given by

E∗,∗2 = Cotor∗Ar (K
∗(BY ;Z/pr);Z/pr).

Recall that CotornAr(−;−) is the n-th derived functor of the cotensor product
−�Ar− (we refer to [3] for more details).
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The next proposition is due to Anderson and Hodgkin ([3, Prop. 3.5]). It is
the main ingredient for the study of this spectral sequence.

Proposition 3.3. For all Ar-comodules B and all n > 0,

CotornAr (B;Z/pr) = 0.

The problem with the above fibration is that K∗(BY ;Z/pr) is not a finite
Z/pr-module, hence the spectral sequence may not converge. This difficulty can
be solved by replacing BX by the p-completion Zp̂ of a CW-complex of finite type
Z ([7]). For the m-th skeleton Z(m) of Z, consider the induced principal fibration

Bπ ⊂−−−→ p−1(Z(m))yp
Z(m)

By Proposition 3.3, the Rothenberg–Steenrod spectral sequence of this fibration
collapses. It follows that

K∗(BX ;Z/pr) ∼= lim
←
K∗(Z(m);Z/pr)

∼= lim
←
K∗(p−1(Z(m));Z/pr)�ArZ/pr

∼= K∗(BY ;Z/pr)�ArZ/pr.

Note that the third isomorphism is due to the fact that Ar is a free Z/pr-module.

Theorem 3.4. Let X be a connected p-compact group, π the torsion subgroup
of π1(X) and A = K∗(Bπ;Zp̂). Let Bπ

Bf−−→ By
Bg−−→ BX be the fibration of

Theorem 3.1. The map Bg induces an isomorphism

Bg∗ : K∗(BX ;Zp̂)
∼=−→ K∗(BY ;Zp̂)�AZp̂. (1)

Note. The isomorphism (1) is equivalent to the exactness of the sequence

0 −→ K∗(BX ;Zp̂)
Bg∗−−→ K∗(BY ;Zp̂)

Ψ−→ K∗(BY ;Zp̂)⊗A,

where Ψ is the definig morphism for the cotensor product.

Proof. We give only the main steps. To begin with, recall that A ∼= lim
←
Ar and

K∗(BY ;Zp̂) ∼= lim
←
K∗(BY ;Z/pr). Moreover the modules A and Ar are free over
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their respective ground rings. Apply the left exact functor lim
←

(−) to the inverse
system of exact sequences

0 −→ K∗(BX ;Z/pr) Bg∗−−→ K∗(BY ;Z/pr) Ψ−→ K∗(BY ;Z/pr)⊗Ar

to conclude. �

Our next step is to investigate the relationship between the K-theory of BX
and the K-theory of its maximal torus BTX . Of course Theorem 3.4 applies to
the fibration Bπ

Bϕ−−→ BTY
Bγ−−→ BTX . By naturality we obtain, for any w in the

Weyl group WX , the commutative diagram (with exact nows):

0→ K∗(BTX ;Zp̂)
Bγ∗−−−−→ K∗(BTY ;Zp̂)

ψ−−−−→ K∗(BTY ;Zp̂)⊗A

w∗
y Φ(w)∗

y Φ(w)∗⊗id
y

0→ K∗(BTX ;Zp̂)
Bγ∗−−−−→ K∗(BTY ;Zp̂)

ψ−−−−→ K∗(BTY ;Zp̂)⊗A.

It follows that the projection Bγ : BTY −→ BTX induces an isomorphism

K∗(BTX ;Zp̂)WX ∼= K∗(BTY ;Zp̂)WY �AZp̂. (2)

The isomorphisms (1) and (2) fit together in the commutative diagram:

K∗(BX ;Zp̂) ∼= K∗(BY ;Zp̂)�AZp̂yBi∗
yBj∗

K∗(BTX ;Zp̂)WX ∼= K∗(BTY ;Zp̂)WY �AZp̂

The theorem we want to prove asserts that the ring homomorphism Bi∗ :
K∗(BX ;Zp̂) −→ K∗(BTX ;Zp̂)WX is an isomorphism. Obviously this will be
achieved if we can prove that Bj∗ is an isomorphism onto the ring of invariants
K∗(BTY ;Zp̂)WY . We recall here that

BY = BX〈1〉 ×BS, BTY = BT1 ×BS and Bj = Bi1 × id.

As the Weyl group WY acts trivially on S, it suffices to show that Bi1 induces an
isomorphism onto the ring of invariants. In other words it is enough to deal with
the 1-connected case. This is settled in the next section.
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4. The one-connected case

In this section X is a 1-connected p-compact group, i : T −→ X a maximal torus
and j : N −→ X the normalizer of i. Thus we have a commutative diagram

BT

Bh

y
�
�
�
↘
Bi

BN −−−−→
Bj

BX

Let τ : (BX+)p̂ −→ (BN+)p̂ be the transfer associated to the map Bj ([14,
Example 1.1]). Since the Euler characteristic of X/N is equal to 1 (this is a
consequence of Proposition 9.5 in [15]), the composite

(BX+)p̂
τ−→ (BN+)p̂

(Bj)p̂−−−→ (BX+)p̂

is a homotopy equivalence; its inverse will be denoted ψ. We introduce further
notations:
i) τ̃ is the composite

(BX+)p̂
ψ−→ (BX+)p̂

τ−→ (BN+)p̂;

ii) F is defined by the cofibre sequence

(BX+)p̂
τ̃−→ (BN+)p̂

ν−→ F ;

iii) θ denotes the composite

(BN+)p̂
∇−→ (BN+)p̂ ∨ (BN+)p̂

ν∨(Bj)p̂−−−−−→ F ∨ (BX+)p̂.

Proposition 4.1.
1 . For E∗(−) = H∗(−;Zp̂) or K∗(−;Zp̂), the map

E∗(θ) : E∗(F )
⊕

E∗(BX+) −→ E∗(BN+), (y, z) 7→ ν∗(y) + (Bj)∗(z)

is an isomorphism.
2 . For any y ∈ K∗(F ;Zp̂), (Bh∗ ◦ ν∗)(y) = 0.

Proof. Let us first notice that E∗(BX+) ∼= E∗((BX+)p̂), and similarly for BN+.
By the definition of τ̃ , we have

(Bj)p̂ ◦ τ̃ ∼ id(BX+)p̂ . (3)
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Granted this fact, the long exact sequence in E∗(−) of the cofibration

(BX+)p̂
τ̃−→ (BN+)p̂

ν−→ F

yields an inverse for E∗(θ).
By the second part of Theorem 11, Bj∗ : H∗Qp̂(BX) −→ H∗Qp̂(BN) is an iso-

morphism; hence (by what we have just proved), H̃∗Qp̂(F ) = 0. The second claim
follows from a diagram chase in

K∗(F ;Zp̂)⊕K∗(BX ;Zp̂)
∼=−→ K∗(BN ;Zp̂)

Bh∗−−→ K∗(BT ;Zp̂)
∩

ch

y ch

y ch

y
H∗∗Qp̂(BX)

∼=
−−−−−→ H∗∗Qp̂(BN) Bh∗∗−−−→ H∗∗Qp̂(BT )

�

Proposition 4.2. The maps τ̃ ◦ Bi and Bh induce the same homomorphism in
p-adic K-theory, hence

Im(Bi∗) = Im(Bh∗) ⊂ K∗(BT ;Zp̂).

Proof. Let x ∈ K̃∗(BN ;Zp̂). By Proposition 4.1, there exist y ∈ K̃∗(F ;Zp̂) and
z ∈ K̃∗(BX ;Zp̂) such that x = ν∗(y) +Bj∗(z). On the one hand, Proposition 4.1
implies

Bh∗(x) = Bh∗(ν∗(y) +Bj∗(z))
= (Bh∗ ◦ ν∗)(y) + (Bj ◦Bh)∗(z)
= 0 +Bi∗(z).

On the other hand, (3) implies

(Bi∗ ◦ τ̃∗)(x) = (Bi∗ ◦ τ̃∗)(ν∗(y) +Bj∗(z))
= (Bi∗ ◦ τ̃∗ ◦ ν∗)(y) +Bi∗((Bj ◦ τ̃)∗)(z)
= 0 +Bi∗(z).

And we have obtained Bi∗ ◦ τ̃∗ = Bh∗. �

The preceding proposition reduces the determination of the image of Bi∗ to
that of Bh∗. A partial description of Im(Bh∗), which is sufficient for our purpose,
is provided by

Proposition 4.3. Let |W | denote the order of the Weyl group W = π0(N), then

Im(Bh∗)⊗ Zp̂[1/|W |] = K∗(BT ;Zp̂)W ⊗ Zp̂[1/|W |].
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Proof. As easily checked, there is (up to homotopy) a fibre square

BT ×W p−−−−→ BT

pr1

y yBh
BT

Bh−−−−→ BN

where p(x, ω) = ω(x) and pr1(x, ω) = x, for any x ∈ BT and ω ∈ W = WT (X).
Let tr be the transfer associated to the map Bh. Using the naturality and the
product formulae for the transfer (see Theorem 2.6 and Theorem 2.8 in [14]) and
applying p-adic K-theory, we obtain, for any ξ ∈ K∗(BT ;Zp̂):

(Bh∗ ◦ tr∗)(ξ) =
∑
w∈W

w∗(ξ). (4)

The proposition is an immediate consequence of this equation. �

Note. As the reader may have noticed, the equality (4) is the well known double
coset formula for finite coverings. If one could prove such a formula for the fibration
Bi : BT −→ BX , then most of the arguments in this section would drastically
simplify.

We are now in position to complete the proof of our main result:

Proposition 4.4. Let X be a 1-connected p-compact group, i : T −→ X a max-
imal torus and W the Weyl group. Then the classifying map Bi induces an iso-
morphism

K∗(BX ;Zp̂) ∼= K∗(BT ;Zp̂)W .

Proof. The injectivity of Bi∗ follows from Proposition 1.3 and the commutativity
of the diagram

K∗(BX ;Zp̂)
Bi∗−−→ K∗(BT ;Zp̂)

∩ ∩

ch

y
ych

H∗∗Qp̂(BX)
Bi∗∗
⊂−−−→ H∗∗Qp̂(BT )

To show that the image of Bi∗ is the ring of invariants, we consider the diagram

K∗(BT ;Zp̂)W ⊂−−→ Frac(K∗(BT ;Zp̂)W )

Bi∗

x
x

∪
K∗(BX ;Zp̂) ⊂−−→ Frac(K∗(BX ;Zp̂)),
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where Frac(−) denotes the field of fractions of the corresponding integral domain.
By Propositions 4.2 and 4.3, the right vertical map is an isomorphism. In Theo-
rem 2.7, we showed that Bi∗ : K∗(BX ;Zp̂) ↪→ K∗(BT ;Zp̂) is finite, in particular
K∗(BX ;Zp̂) ↪→ K∗(BT ;Zp̂)W is integral. As K∗(BX ;Zp̂) is integrally closed (it
is a power series ring over Zp̂), we obtain that the left vertical map is also an
isomorphism. �

5. Applications to p-compact groups

Having completed the proof of our main result, we can safely turn to some of its
consequences. The first one generalizes Proposition 1.2 in [27]:

Theorem 5.1. Let T be a p-compact torus and X a connected p-compact group.
The natural map

[BT,BX ] −→ Homλ(K∗(BX ;Zp̂),K∗(BT ;Zp̂))

is a bijection, where Homλ(−,−) stands for the set of λ-ring homomorphisms.

Proof. Let iX : TX −→ X be a maximal torus for X and WX the corresponding
Weyl group. It is not difficult to check (or see Proposition 1.2 of [27]) the bijectivity
of the natural map

[BT,BTX ]
∼=−→ Homλ(K∗(BTX ;Zp̂),K∗(BT ;Zp̂)).

The Weyl group WX acts on the domain and codomain of this map, and the latter
is equivariant with respect to these actions. As easily seen, left composition with
BiX induces a commutative diagram

[BT,BTX ]/WX

∼=−−−−→ Homλ(K∗(BTX ;Zp̂),K∗(BT ;Zp̂))/WXy y
[BT,BX ] −−−−→ Homλ(K∗(BX ;Zp̂),K∗(BT ;Zp̂)).

Proposition 8.11 of [15] and Proposition 4.1 of [25] imply that the left vertical arrow
of the diagram is bijective. Next we combine our main result with Theorem 4.1 of
[31] to obtain the surjectivity of the right vertical arrow. To show its injectivity,
we first observe that a nonzero vector space over an infinite field cannot be a union
of a finite number of its proper subspaces (see [20, p. 78]). It follows that we can
adapt the proof of [26, Lemma 7.1] to obtain our injectivity result. This completes
the proof of our theorem. �
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Our second application extends Proposition 1.3 to all connected p-compact
groups.

Theorem 5.2. Let X be a connected p-compact group.
1. The Chern character

ch: K∗(BX ;Zp̂) −→ H∗∗Qp̂(BX)

is a monomorphism.
2. For all x ∈ H∗Qp̂(BX), there exists ξ ∈ K∗(BX ;Zp̂) such that

ch(ξ) = Mx+ higher terms,

where M denotes the order of the Weyl group of X.

Proof. Let iX : TX −→ X be a maximal torus and WX the corresponding Weyl
group. The naturality of the Chern character and of the action of WX implies the
commutativity of the diagram

K∗(BX ;Zp̂)
Bi∗X−−−−→ K∗(BT ;Zp̂)WX

ch
y ych

H∗∗Qp̂(BX)
Bi∗∗X−−−−→ H∗∗Qp̂(BT )WX .

To complete the proof, we invoke our main result and the fact that the claims are
true for tori. �

The third application will be useful in the sequel:

Proposition 5.3. Let X be a connected p-compact group and let

Es,t2 = Hs(BX ;Kt(pt;Zp̂) =⇒ Ks+t(BX ;Zp̂)

be the p-adic Atiyah–Hirzebruch spectral sequence for BX. Given s, t, there exists
an integer r = r(s, t) such that Es,tr = Es,t∞ .

Proof. Recall that there are no phantoms in p-adic K-theory. Thus one can adapt
the “proof of necessity” of Theorem 3.3 in [13], but their reference to Theorem 3.2
of that paper has to be replaced by our Theorem 5.2. This change in their argument
is needed because of the following example: the work of Anderson and Hodgkin
([3]) imply that K̃∗(K(Z, 3);Zp̂) = 0, but H3

Qp̂(K(Z, 3)) = Qp̂. �
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6. Applications to finite loop spaces

In this section we study the K-theory of finite loop spaces; let us first recall the
basic definitions.

A loop space (L,BL; e) is said finite if H∗(L;Z) is a finitely generated Z-
module. By a well-known result of Hopf, H∗(L;Q) is an exterior algebra whose
number of generators is called the rank of the finite loop space. A connected finite
loop space L admits a maximal torus if there is a pointed map Bi : BT −→ BL,
with BT = K(Zn; 2), satisfying the two conditions:

1. The homotopy fiber L/T of Bi is Z-finite, that is, H∗(L/T ;Z) is a finitely
generated Z-module.

2. The ranks of T and L are equal.
The Weyl group of a maximal torus i : T −→ L is defined exactly as in Sec-

tion 1. The relationship between finite loop spaces and p-compact groups has been
investigated by Møller and Notbohm:

Proposition 6.1 ([25]). Let L be a connected finite loop space with maximal torus
i : T −→ L. Then for any prime p:

1. The triple (Lp̂, BLp̂, ep̂) is a p-compact group and the p-completed map
ip̂ : Tp̂ −→ Lp̂ is a maximal torus.

2. Let W (respectively, Wp̂) be the Weyl group of the maximal torus i (respec-
tively, ip̂). The p-completion induces an isomorphism Wp̂

∼= W .

Let us begin with a general result on the K-theory of finite loop spaces.

Theorem 6.2. Let L be a connected finite loop space.
1. The Chern character

ch: K0(BL;Z) −→ Heven(BL;Q)

is injective. Consequently the ring K0(BL;Z) is torsion free and has no
zero divisors.

2. K1(BL;Z) = 0.

Proof. For the first point, consider the commutative diagram

K0(BL;Z) ê−−−−→
∏
p
K0(BL;Zp̂)

ch
y y(chp)

Heven(BL;Q) −−−−→
∏
p
Heven
Qp̂ (BL).

By Theorem 5.2, the right vertical map is injective. Since

H∗(BL;π∗+1(BU)⊗Q) = 0,
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Lemma 2 in [22] implies that the map ê is also injective.
Let us deal with the second point. For any sufficiently large prime number p,

H∗(BL;Zp̂) is concentrated in even degrees; hence the p-adic Atiyah–Hirzebruch
spectral sequence is trivial for such p. This observation, our Proposition 5.3,
Lemma 4.1 in [2] and Theorem 3.3 in [13] imply that:

K1(BL;Z) ∼= lim
←
K1(BL(n);Z),

where the inverse limit is taken over the skeleta of BL. Now Lemma 2 in [22]
implies that K1(BL;Z) injects into

∏
K1(BL;Zp̂) and this product is zero by our

main result. �

For finite loop spaces with maximal tori, we have an integral version of our
main result:

Theorem 6.3. Let L be a connected finite loop space with maximal torus i : T −→
L and W the corresponding Weyl group. Then the map Bi induces a ring isomor-
phism:

K∗(BL;Z) ∼= K∗(BT ;Z)W .

Proof. The version of Sullivan’s arithmetic square given by W. Meier (in [22])
applies in our case. It gives rise to the following commutative diagram, with exact
rows:

0→ K0(BL;Z) −−−−→ K0(BL;Q)⊕K0(BL; Ẑ) −−−−→ K0(BL;Af )

Bi∗
y Bi∗

y Bi∗
y

0→ K0(BT ;Z) −−−−→ K0(BT ;Q)⊕K0(BT ; Ẑ) −−−−→ K0(BT ;Af )

(5)

where Ẑ is the profinite completion of Z and Af = Ẑ⊗Q the ring of finite adeles.
Recall that if E is a Q-algebra (in particular, E = Q or E = Af ), then

K0(−;E) ∼=
∏
n≥0

H2n(−;E).

In our case, Theorem 1.2 of [25] implies that K0(BL;E) ∼= K0(BT ;E)W . On the
one hand the map Bi : BT −→ BL, p-completion and Proposition 6.3 provide a
commutative square

K0(BLp̂;Zp̂)
∼=−−−−→ K0(BL;Zp̂)

∼=
y y

K0(BTp̂;Zp̂)Wp̂
∼=−−−−→ K0(BT ;Zp̂)W .
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On the other hand, K0(−; Ẑ) ∼=
∏
K0(−;Zp̂), where the product is taken over

all the prime numbers. With all these observations, an easy diagram chase in (5)
yields K0(BL;Z) ∼= K0(BT ;Z)W . �

In [25, Theorem 1.2] Møller and Notbohm showed that the Weyl group of a
connected finite loop space with maximal torus is crystallographic. This combines
with the preceding theorem to imply that a connected finite loop space with a
maximal torus has the K-theory of the classifying space of some compact connected
Lie group. We will now show that this condition characterizes the finite loop spaces
which have maximal tori.

Theorem 6.4. Let L be a connected finite loop space. Then L admits a maxi-
mal torus if and only if there exists a compact connected Lie group G such that
K∗(BL;Z) is λ-isomorphic to K∗(BG;Z).

This result can be viewed as a generalization of a theorem of Notbohm–Smith
([27, Theorem 5.1]). In fact, our proof will follow the same pattern as theirs. We
deal first with some preliminaries.

Let L be a connected finite loop space. Consider the two filtrations ofK∗(BL;Z)
defined by setting, for n = 0, 1, . . .

i) Sn(L) = Ker(K∗(BL;Z) −→ K∗(BL(n−1);Z)), where BL(n) is the n-th
skeleton of BL.

ii) Cn(L) = {ξ ∈ K∗(BL;Z) s.t. chr(ξ) = 0, for r = (0, 1, . . . , n − 1}, where
chr(−) denotes the r-th component of the Chern character.

Then one easily checks that:
1. For any n, Sn(L) and Cn(L) are λ-ideals of K∗(BL;Z) and Sn(L) ⊂ Cn(L).

Moreover if L is a torus T , then Sn(T ) = Cn(T ) = In where I is the
augmentation ideal.

2. For any prime p,

K∗(BL;Zp̂) ∼= lim
←

(K∗(BL;Z)/Sn(L)⊗ Zp̂).

3. For any prime p,

K∗(BL;Qp̂) ∼= lim
←

(K∗(BL;Z)/Sn(L)⊗Qp̂)
∼= lim
←

(K∗(BL;Z)/Cn(L)⊗Qp̂).

Next we consider the integral version of Theorem 5.1.

Proposition 6.5. Let L be a connected finite loop space and T a torus. Then the
natural map

α : [BT,BL] −→ Homλ(K∗(BL;Z),K∗(BT ;Z))

is a bijection.
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Proof. Let ϕ : K∗(BL;Z) −→ K∗(BT ;Z) be a λ-homomorphism. Consider the
composite

ϕ̄n : K∗(BL;Z)/Sn(L) −→ K∗(BL;Z)/Cn(L) −→ K∗(BT ;Z)/In,

where the first arrow is the canonical surjection and the second arrow is induced
by ϕ (the notation is as above). Then define

ϕp̂ : K∗(BL;Zp̂) −→ K∗(BT ;Zp̂)

as the inverse limit of the ϕ̄n⊗Zp̂’s. Since ϕp̂ is a λ-homomorphism, it is induced
by a map fp̂ : BTp̂ −→ BLp̂ (see Theorem 5.1). On the rational side, the λ-
homomorphism ϕ induces (via the Chern character) a graded homomorphism

ϕQ : H∗(BL;Q) −→ H∗(BT ;Q).

As BL andBT are rationally products of Eilenberg–MacLane spaces, ϕQ is induced
by a map fQ : BTQ −→ BLQ.

To obtain a map f : BT −→ BL out of the fp̂’s and fQ, we will use Sullivan’s
arithmetic square (as presented in [22, Theorem 4]). Thus it suffices to check that,
for any prime p, the two composites

BT −→ BTp̂
fp̂−−−−→ BLp̂ −→ (BLp̂)Q,

BT −→ BTQ
fQ−−−−→ BLQ −→ (BLp̂)Q

are homotopic. By choosing a rational equivalence BL −→
∏k
i=1K(Z, 2ni) and

observing that the two composites represent elements of the product∏k
i=1H

2ni(BT ;Qp̂), it is sufficient to show the commutativity of the following
diagram

H∗Qp̂(BLp̂)
f∗
p̂−→ H∗Qp̂(BTp̂)

cp(L)↙ ∼= ∼=
↘ cp(T )

H∗(BL;Qp̂) H∗(BT ;Qp̂)

∼=
↖ c0(L) c0(T )↗ ∼=

H∗(BLQ;Qp̂)
f∗Q−→ H∗(BTQ;Qp̂).

This is equivalent to showing that the two homomorphisms

ψ1 = cp(T ) ◦ f∗p̂ ◦ cp(L)−1 and ψ2 = c0(T ) ◦ f∗Q ◦ c0(L)−1
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are equal. Since ψ1 and ψ2 areQp̂-linear, it is sufficient to check the equality on the
subring H∗(BL;Q) ⊂ H∗(BL;Qp̂). Assume that we are given x ∈ Hk(BL;Q).
As K1(BL;Z) = 0, there exists η ∈ K0(BL;Z) and an integer M such that
ch(η) = Mx+ higher terms (see [13, Theorem 3.2]). By construction the following
diagram is commutative

H∗∗(BL;Qp̂)
ch← K∗(BL;Zp̂)

ip(L)←− K∗(BL;Z) ch→ H∗∗(BL;Q)
i0(L)−→ H∗∗(BL;Qp̂)

ψ1

y ϕp̂

y ϕ

y ϕQ

y ψ1

y
H∗∗(BT ;Qp̂)

ch← K∗(BT ;Zp̂)
ip(T )←− K∗(BT ;Z) ch→ H∗∗(BT ;Q)

i0(T )−→ H∗∗(BT ;Qp̂).

By Theorem 4 in [22], we have ch ◦ ip(L) = i0(L) ◦ ch on the upper horizontal line
and ch◦ ip(T ) = i0(T )◦ch on the lower one. This implies the desired equality; and
we have shown that α is surjective. Its injectivity is a consequence of Theorem 2
and Lemma 2 in [22] and of our Theorem 5.1. �

Proof of Theorem 6.4. One of the implications has been established in Theorem 6.3;
thus we are left with the second one. By hypothesis, there is a torus T and a finite
group W of λ-automorphisms of K∗(BT ;Z) such that

K∗(BL;Z)
λ∼= K∗(BT ;Z)W .

Let ϕ denote the composite K∗(BL;Z) ∼= K∗(BT ;Z)W ⊂ K∗(BT ;Z); the pre-
ceding theorem provides us with a map f : BT −→ BL inducing ϕ in (integral)
K-theory. Clearly the ranks of T and L are equal. Thus we will be done if we can
show that the homotopy fiber V of f is Z-finite. We have the following properties:

1. V is homotopy equivalent to a CW-complex of finite type;
2. For any prime p, V is Fp-good and π1(Vp̂) ∼= π1(V ) ⊗ Zp̂ (see Section 7 in

[11]).

Let us now fix a prime p and consider the p-completion fp̂ : BTp̂ −→ BLp̂. Let
also BiL : BTL −→ BLp̂ be a maximal p-torus. By Proposition 8.11 in [15], there
exists a map Bψ : BTp̂ −→ BTL such that BiL ◦Bψ = fp̂. In p-adic K-theory this
yields the following commutative diagram

K∗(BTL;Zp̂)xBi∗L ↘Bψ
∗

K∗(BLp̂;Zp̂) −→
f∗
p̂

K∗(BTp̂);Zp̂)



580 A. Jeanneret and A. Osse CMH

Since K∗(BL;Zp̂) ∼= K∗(BT ;Zp̂)W (via f∗p̂ ), Theorem 4.1 in [31] provides us with
a λ-ring homomorphism Φ: K∗(BTp̂;Zp̂) −→ K∗(BTL;Zp̂) such that Φ◦f∗p̂ = Bi∗L
Passing to fields of fractions and using some Galois theory, one checks that the
composites Φ◦Bψ∗ and Bψ∗ ◦Φ are λ-isomorphisms. In other words, Bψ induces
an isomorphism in p-adic K-theory. It follows that Bψ is a homotopy equivalence,
so that fp̂ : BTp̂ −→ BLp̂ is also a maximal torus. Since the homotopy fiber of fp̂
is Vp̂ (see [11, Proposition 4.2]), we obtain that H∗(Vp̂;Fp) ∼= H∗(V ;Fp) is a finite
dimensional Fp̂-vector space. Property 1) above now combines with the universal
coefficient theorem to imply that H∗(V ;Z) is a finitely generated abelian group.�

Acknowledgements
We would like to thank W. G. Dwyer, U. Suter and U. Würgler for helpful dis-
cussions. Part of this work was doen while the second author was visiting the
Department of Mathematics of the Ohio State University (Columbus). He would
like to thank the members of this institution, especially H. Glover and G. Mislin,
for their warm hospitality.

References

[1] J. F. Adams, Stable homotopy and generalized homology, The University of Chicago Press,
1974.

[2] D. W. Anderson, There are no phantom cohomology operations in K-theory, Pac. J. Math.
107 (1983), 279–306.

[3] D. W. Anderson and L. Hodgkin, The K-theory of Eilenberg–MacLane complexes, Topology
7 (1968), 317–329.

[4] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Symp.
Pure Math. III, AMS (1961), 7–38.

[5] M. F. Atiyah and G. Segal, Equivariant K-theory and completion, J. Diff. Geom. 3 (1969),
1–18.

[6] A. M. Bajer, The May spectral sequence for a finite p-group stops, J. Algebra 167 (1994),
448–459.

[7] V. Belfi and C. W. Wilkerson, Some examples in the theory of p-completions, Indiana Univ.
Math. J. 25 (1976), 565–576.

[8] D. J. Benson, Polynomial invariants of finite groups, London Mathematical Society Lecture
Notes 190. Cambridge University Press, 1993.
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