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On foliated circle bundles over closed orientable
3-manifolds
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Abstract. We show that there exists a family of smooth orientable circle bundles over closed
orientable 3-manifolds each of which has a codimension-one foliation transverse to the fibres of
class C0 but has none of class C3. There arises a necessary condition induced from the Milnor-
Wood inequality for the existence of a foliation transverse to the fibres of an orientable circle
bundle over a closed orientable 3-manifold. We show that with some exceptions this necessary
condition is also sufficient for the existence of a smooth transverse foliation if the base space is
a closed Seifert fibred manifold.
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§ 1. Introduction and statements of results

Suppose ξ = {E → Σ} is an orientable circle bundle over a closed orientable
surface Σ. In [M] and [W] the necessary and sufficient condition for the ex-
istence of a codimension-one foliation on E which is transverse to each fibre
is obtained: Denote by χ(ξ) the Euler number of the circle bundle ξ and set
χ (Σ) = max{0,−χ(Σ)}, where χ(Σ) denotes the Euler characteristic of Σ. Then
there exists a codimension-one foliation transverse to the fibres on the total space
E if and only if |χ(ξ)| ≤ χ (Σ). Though a similar inequality is obtained in non-
orientable case, we omit it for simplicity. We call this inequality Milnor-Wood
inequality. In the case that the base is a 3-manifold, this Milnor-Wood inequali-
ty induces a necessary condition for the existence of a codimension-one foliation
transverse to the fibres. That is, suppose ξ = {E →M} is an orientable circle bun-
dle over a closed orientable 3-manifold M , and if there exists a codimension-one
foliation transverse to the fibres on the total space E, then the following condition
is satisfied:

(MW) : | 〈e(ξ), z〉 | ≤ x(z) for any z ∈ H2(M ; Z).
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Here, 〈 , 〉 denotes Kronecker product, e(ξ) ∈ H2(M ; Z) is the Euler class of ξ and
x is Thurston norm, that is, the pseudonorm on H2(M ; Z) defined as follows: for
any z ∈ H2(M ; Z), x(z) is defined to be the minimum χ (Σ) of all (singular or
embedded) surfaces Σ in M each of which represents the given homology class z.
Originally, Thurston norm was defined in [Th2] based on embedded surfaces rep-
resenting the homology class and it was conjectured by Thurston that it coincides
with the singular norm, the norm based on singular surfaces. D. Gabai showed in
[Ga] that both of them coincide with the half of Gromov norm.

As another setting to study foliated circle bundles, bounded cohomology could
be efficiently used. In fact, E. Ghys [Gh2] showed that the Gromov norm of
the Euler class of a foliated circle bundle is less than or equal to 1/2. Also, he
proved that a class in the second bounded cohomology H2

b (Γ; Z) of any discrete
countable group Γ is realizable in Homeo+(S1) if and only if it contains a cocycle
taking only the values 0 and 1. Here, Homeo+(S1) denotes the group of all
orientation preserving homeomorphisms of the circle, and we say that a class
c ∈ H2

b (Γ; Z) is realizable in Homeo+(S1) if there is a homomorphism ϕ : Γ →
Homeo+(S1) such that the class c is the pull-back of the bounded Euler class
eu ∈ H2

b (Homeo+(S1); Z) by ϕ: c = ϕ∗(eu).
In this paper, we consider the problem that asks if the condition (MW) is

sufficient for the existence of a codimension-one foliation transverse to the fibres.
In fact, we show the following:

Theorem 1. There exists a family of smooth orientable circle bundles over closed
orientable 3-manifolds each of whose total spaces has a codimension-one C0 foli-
ation transverse to the fibres and has none of class C3.

On the other hand, we have the following existence theorem:

Theorem 2. Suppose ξ = {E → M} is a smooth orientable circle bundle over a
closed orientable Seifert fibred manifold M . Assume that H1(M ; Z) is torsion-
free if the Euler number of the Seifert fibration is zero. Then, there exists a
codimension-one C∞ foliation transverse to the fibres on the total space E if and
only if the Euler class e(ξ) satisfies the condition (MW).

For the definition of the Euler number of Seifert fibrations, see the proof of
Theorem 2 in Section 4.

Remark 1. Concerning Theorem 2, note that the triviality of the Euler number
does not necessarily imply the fact that the first homology group is torsion-free.
That is, there is a Seifert fibred manifold M whose Euler number is zero such that
H1(M ; Z) has torsion.

Remark 2. Any torsion class in H2(M ; Z) can be realized as the Euler class
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of a C∞ foliated circle bundles over M . In fact, it can be proved that for any
torsion class e ∈ H2(X ; Z) of any dimensional closed manifold X there exists a
C∞ foliated circle bundle ξ over X such that e(ξ) = e.

Note. After this work was done and I talked the proof of Theorem 1 in a meeting
at Atami, H. Minakawa informed me that he constructed a smooth orientable circle
bundle over a closed orientable 3-manifold which admits C0 transverse foliation
to the fibres but none of class C2.

§ 2. A rigidity theorem of Ghys

Let Σ be a closed orientable surface of genus greater than one. We denote by
Homeo+(S1) and Diff r+(S1) the group of all orientation preserving homeomor-
phisms of the circle and the group of all orientation preservingCr diffeomorphisms
of the circle (0 ≤ r ≤ ∞), respectively. Note that Homeo+(S1) = Diff 0

+(S1). Two
homomorphisms ψ1, ψ2 : π1(Σ) → Homeo+(S1) are said to be Cr conjugate if
there is an orientation preserving Cr diffeomorphism of the circle f(∈ Diff r+(S1))
such that ψ1(γ) = fψ2(γ)f−1 for any γ ∈ π1(Σ).

A foliated circle bundle is completely determined by its total holonomy homo-
morphism. Precisely, the following holds (see [HH] for example):

Proposition. The correspondence which assigns to a foliated circle bundle its
total holonomy is a natural bijection between the set of all Cr (resp. C0) isomor-
phism classes of orientable foliated circle bundles over a Cr manifold X and the
set of all Cr (resp. topological) conjugacy classes of homomorphisms from π1(X)
to Diff r+(S1) (resp.Homeo+(S1)).

By this correspondence we consider that a homomorphism π1(X)→ Diff r+(S1)
is an equivalent of an orientable Cr foliated circle bundle over X .

Let PSL(2,R) denote the projective special linear group of degree 2. It is well
known that PSL(2,R) is isomorphic to the group of all orientation preserving
isometries of Poincaré disk of hyperbolic geometry. Moreover,PSL(2,R) naturally
acts the circle at infinity and therefore it may be considered as a subgroup of
Diff∞+ (S1).

Suppose that ψ1, ψ2 : π1(Σ) → PSL(2,R) are two injective homomorphisms
and their images are cocompact, discrete subgroups of PSL(2,R). Then it is
known that ψ1 and ψ2 are topological conjugate. However, they are C1 conjugate
only if their images are conjugate in PSL(2,R) (cf. [Gh1], [S] ). See also [Gh2],
[Ma1], [Ma2].

Consider now the minimum case in Milnor-Wood inequality, that is the case
χ(ξ) = χ(Σ). It is the case of the unit tangent circle bundle of a closed hyperbolic
surface Σ. In the sense of smooth conjugacy, it is shown that this is the only
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foliated circle bundle in this case. That is, E. Ghys proved the following:

Theorem 2.1. ([Gh3]) Suppose ψ : π1(Σ) → Diff r+(S1) (3 ≤ r ≤ ∞) is a ho-
momorphism with χ(ψ) = χ(Σ). Then, there exists an injective homomorphism
ϕ : π1(Σ) → PSL(2,R) whose image is a cocompact discrete subgroup such that
ψ is Cr conjugate to ϕ.

§ 3. Non-smoothable foliated circle bundles

In this section, we prove Theorem 1. First, we construct a circle bundle and then
we show that it has the desired property.

Construction. Let Σ be a closed orientable surface of genus g > 1 and M →
S1 an orientable Σ-bundle over the circle with the monodromy diffeomorphism
f : Σ → Σ. Assume f is not isotopic to a periodic diffeomorphism. This bundle
M → S1 defines a simple foliation F whose leaves are the fibres of the bundle.
Denote by e(TF) the Euler class of the tangent bundle to F . Let ξ = {E → M}
be the orientable circle bundle over M whose Euler class e(ξ) is equal to e(TF). In
other words, the bundle ξ is the unit tangent circle bundle to the simple foliation
F .

Verification. Now we prove that ξ has no C3 transverse foliation. We consider
Σ ⊂ M as the fibre over the base point 0 ∈ R/Z = S1. First, note that by the
definition of e(ξ), ξ restricted to Σ is isomorphic to the unit tangent circle bundle
over Σ as circle bundles:

ξ|Σ ∼= {T1Σ→ Σ} (1)

Assume on the contrary to the assertion that there exists a homomorphism ψ :
π1(M)→ Diff r+(S1) (3 ≤ r ≤∞) such that e(ψ) = e(ξ). Then, ξ is isomorphic to
the foliated circle bundle Eψ →M as circle bundles, where Eψ →M is defined by
the homomorphism ψ. Therefore, by Ghys’ rigidity theorem and (1), ψ|Σ is Cr

conjugate to a representation of π1(Σ) into PSL(2,R) with respect to a hyperbolic
metric on Σ. That is, suppose π1(M) is presented as

π1(M) =

〈
ai, bi, t

∣∣∣∣∣
g∏
i=1

[ai, bi], tait−1f∗(ai)−1, tbit
−1f∗(bi)−1

〉
,

where ai and bi (i = 1, . . . , g) are standard generators on Σ, then, up to Cr

conjugacy, we can assume that ψ(ai), ψ(bi) ∈ PSL(2,R) (i = 1, . . . , g). Moreover,
since tait−1f∗(ai)−1 = 1, we have

ψ(t)ψ(ai)ψ(t)−1 = ψ(f∗(ai)). (2)
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Similarly, for bi ∈ π1(M), we have

ψ(t)ψ(bi)ψ(t)−1 = ψ(f∗(bi)). (3)

On the other hand, since the isometry group of a closed hyperbolic surface is
finite, the non-periodic diffeomorphism f cannot be an isometry of Σ equipped
with any hyperbolic metric. Therefore, there is a closed geodesic γ in Σ such
that length(γ) 6= length[f(γ)], where length[f(γ)] denotes the length of the unique
closed geodesic which is freely homotopic to f(γ). The length of a closed geodesic
is related to the derivative of the corresponding element of PSL(2,R) at its (ex-
panding) fixed point: the length is equal to the logarithm of the derivative. Ob-
viously this derivative, called the multiplier, is an invariant of smooth conjugacy.
Therefore, the fact length(γ) 6= length[f(γ)] contradicts (2) and (3).

Construction for C0 case. We denote by f̃ the extension of a lift of f to the
circle at infinity of the Poincaré disk. It is known that f̃ is homeomorphism of the
circle but cannot be differentiable unless f is an isometry of Σ (cf. for example
[CB] and [I]). Under the presentation of π1(M) as above, we define

ψ(γ) =


ϕ(ai) · · · if γ = ai

ϕ(bi) · · · if γ = bi

f̃ · · · if γ = t

on the generators, where ϕ is a faithful representation of π1(Σ) into PSL(2,R)
with respect to a hyperbolic metric on Σ. Then we have a homomorphism ψ :
π1(M)→ Homeo+(S1) such that e(ψ) = e(ξ). �

§ 4. Existence of foliated circle bundles

This section is devoted to the problem of existence of foliated circle bundles. The
coefficient group of all homology and cohomology groups will be Z unless otherwise
noted. Suppose that M is a closed orientable 3-manifold and a second cohomology
class e ∈ H2(M) which satisfies the condition (MW) is given. That is, assume
that for any z ∈ H2(M) the inequality | 〈e, z〉 | ≤ x(z) holds. Then we consider
the following question:

Question. Does there exist a Cr foliated circle bundle ξ over M such that e(ξ) =
e?

As we proved Theorem 1 in the previous section, in the case r ≥ 3 the answer
is negative in general. However, we have an affirmative case. In fact, we will prove
Theorem 2.
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We will give a geometric proof here. An alternative proof based on the setting
of group cohomology could be given and it would be shorter than the one presented
here. However, the author believes that the geometric proof is also interesting in
its own right.

Proof of Theorem 2. We only have to show that the condition (MW) is sufficient.
Suppose thatM → F is a Seifert fibration, whereM is a closed orientable manifold,
and that a class e ∈ H2(M) which satisfies the condition (MW) is given. The proof
will be carried out in several steps.

First, we have the following:

Claim 1. If F is non-orientable, then Thurston norm x is zero on H2(M).

Proof. Suppose the genus of F is g. From the canonical presentation of π1(M)
obtained from the fibration structure (cf. [H]), it can be seen that H1(M) is a free
Abelian group of rank g − 1. In fact, H1(M) = Hom(π1(M),Z) is generated by
the homomorphisms a∗1, . . . , a

∗
g−1 defined by

a∗i (γ) =
{

1 · · · if γ = ai

0 · · · otherwise
on the generators, where a1, . . . , ag−1 are the generators coming from standard
generators for a cross section over F minus singular points. Then the Poincaré
dual of a∗i is represented by a saturated torus in M which intersects ai at exactly
one point. Therefore H2(M) is generated by tori which implies that Thurston
norm x is zero. �

Note that if the Thurston norm is zero, then the condition (MW) implies the
class e ∈ H2(M) is torsion. As noted in Remark 2 in §1, any torsion class is
realizable as the Euler class of a smooth foliated circle bundle. Therefore, from
now on we assume the base surface F is orientable. Thus, suppose π : M → F is a
Seifert fibration whose base surface F is orientable. Note thatM is also assumed to
be orientable. Let S1, . . . , Sq be a non-empty collection of fibres in M , including
all singular fibres. Denote by N(Si) a small saturated tubular neighbourhood
of Si in M (1 ≤ i ≤ q) and set M∗ = M − int(∪qi=1N(Si)) and F ∗ = π(M∗).
Then the bundle π : M∗ → F ∗ admits a cross section s : F ∗ → M∗. Fix an
orientation convention. Then the curve s(F ∗) ∩ ∂N(Si) represents a multiple
of Si in π1(N(Si)), say −βi[Si]. Also, suppose a regular fibre represents αi[Si] in
π1(N(Si)). Then the non-normalized Seifert invariant is the collection of numbers

(g; (α1, β1), . . . , (αq, βq))

which satisfy g ≥ 0, αi ≥ 1, gcd(αi, βi) = 1. Seifert invariant, up to a suitable

equivalence, classifies such a Seifert fibration. Define χ(M → F ) = −
∑
i

βi
αi

. This
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number χ(M → F ) is independent of the choice of the expression of the Seifert
invariant and is called the Euler number of the Seifert fibration M → F . This
Euler number is the characteristic number of Seifert fibrations. For more details,
we refer to [NR] and [EHN].

Claim 2. If χ(M → F ) 6= 0, then x is zero on H2(M).

Proof. By abelianizing the standard presentation of π1(M), we have H1(M) ∼=
Z2g ⊕ Coker(A), where A : Zq+1 → Zq+1 is a homomorphism with the matrix

A =


1 1 · · · 1 0
α1 0 · · · 0 β1

. . . . . .
...

...
. . . 0

...
αq βq

 .

Here missing entries are 0’s and A acts on Zq+1 from the right. Then since

detA = (−1)q−1
q∑
i=1

βiα1 · · · α̂i · · ·αq

= (−1)q−1α1 · · ·αq
q∑
i=1

βi
αi

= (−1)qα1 · · ·αq χ(M → F )
6= 0,

it follows that H1(M) = Hom(H1(M),Z) is isomorphic to Z2g which is generated
by the dual of the standard generators of H1(F ) lifted on the cross section s(F ∗).
As in the proof of Claim 1, it follows H2(M) is generated by tori, which implies
the Thurston norm is zero. �

Now it remains the case χ(M → F ) = 0. In this case, we can construct a
transverse foliation F of M → F whose leaves are all compact (cf. Theorem 3.4
of [EHN]). The compact foliation F is just the fibre structure of an S1 equivariant
fibre bundle M → S1. We denote by e(TF) the Euler class of the tangent bundle
to F . We have the following description of the class e:

Claim 3. There exists a transverse foliation F of M → F whose leaves are all
compact such that the class e is equal to a multiple of the Euler class e(TF) in
H2(M ; Q).

Proof. As is similar to the proof of Claim 1 and 2, it is easily seen that H2(M)
is freely generated by vertical (i.e. saturated) tori and horizontal (i.e. transverse)
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closed surfaces. Since the class e satisfies the condition (MW), Kronecker products
of e with tori vanish. On the other hand, a closed oriented horizontal surface
S determines a transverse foliation F of M → F whose leaves are all compact
and S is a leaf of F . Kronecker products of e(TF) with the vertical tori also
vanish. Therefore, e and e(TF) differ in a constant multiple as linear forms on
H2(M ; Q). �

By the hypothesis of the theorem, we are assuming that H1(M) is torsion-
free. Therefore Claim 3 describes the given class completely. Suppose that F is a
foliation on M as in Claim 3. Let F̃ denote a leaf of the foliation F . We denote the
monodromy diffeomorphism by f : F̃ → F̃ . Then it is clear that f is periodic and
the quotient of F̃ by f -action is F . Also the fibration M → F restricted to F̃ is a
branched covering F̃ → F . Suppose the covering is m-fold. Then we can consider
F as an orbifold with its uniformization F̃ → F . Let (g; (α1, β1), . . . , (αq, βq)) be
the Seifert invariant of M → F . We set

χorb(F ) = χ(F )− q +
q∑
i=1

1
αi
,

and call χorb(F ) the Euler characteristic of the orbifold F . As the m-fold branched
covering F̃ → F is exactly an m-fold orbifold covering, it follows that χ(F̃ ) =
mχorb(F ). We can assume that χ(F̃ ) < 0. Then by the assumption we have∣∣∣〈e, [F̃ ]

〉∣∣∣ ≤ χ (F̃ ) = −χ(F̃ ) = −mχorb(F ). Therefore, we have

−χ(F ) + q −
q∑
i=1

1
αi

= −χorb(F ) ≥ 1
m

∣∣∣〈e, [F̃ ]
〉∣∣∣ . (4)

Denote by πorb1 (F ) the fundamental group of the orbifold F (cf. [Th1]). Note
that a Seifert fibration M1 → F1 can be considered as an orbifold circle bundle
(cf. [Th1]). As is similar to the case of circle bundles, it can be seen that a foliated
Seifert fibration M1 → F1 (that is, a Seifert fibration M1 → F1 with a foliation
transverse to the fibres on M1 ) is determined by the associated homomorphism
πorb1 (F1) → Homeo+(S1) and vice versa (cf. [EHN]). We also call such a ho-
momorphism the total holonomy homomorphism of the foliated Seifert fibration.
We will construct a homomorphism ϕ : πorb1 (F ) → PSL(2,R) such that the Eu-
ler number of the foliated Seifert fibration determined by ϕ is exactly equal to
1
m

∣∣∣〈e, [F̃ ]
〉∣∣∣.

Assume first such a homomorphism ϕ : πorb1 (F ) → PSL(2,R) is constructed.
Let V → F be the foliated Seifert fibration determined by ϕ. Then we pull it back
over F̃ so that we have a foliated circle bundle Ṽ → F̃ . By the naturality, the
Euler number of Ṽ → F̃ is

∣∣∣〈e, [F̃ ]
〉∣∣∣. Moreover, by the construction the action
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by f on F̃ lifts on Ṽ and it preserves the foliation on Ṽ . Let Ṽ ×R→ F̃ ×R be
the product of the foliated circle bundle Ṽ → F̃ with R. Consider the equivalence
relation on F̃ ×R and Ṽ ×R generated by (f(x), t) ∼ (x, t+1). Then the quotient
F̃ ×R/∼ by the equivalence relation is just M and Ṽ ×R/∼ → F̃ ×R/∼ defines
a foliated circle bundle over M . Denote it by ξ = {E → M}. The bundle ξ is
exactly the pull-back of V → F by the projection of the Seifert fibration M → F .
It is now obvious by the construction that the Euler class e(ξ) of ξ is equal to the
given class e. Therefore, ξ is the desired foliated circle bundle.

m
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1

k
2

k
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2

l
2

l
1

l’
1

l’
2

m’
1
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4
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3
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2

k’
1

Figure 1

Finally, we construct the homomorphism ϕ : πorb1 (F )→ PSL(2,R). We mostly
follow the proof of Poincaré’s realization theorem of a Fuchsian group (cf. Theorem
4.3.2 of [K]). We use the unit disk model D of hyperbolic geometry. We can assume
that αi > 1 for i = 1, . . . , q. Let P (t) be a regular hyperbolic polygon with (4g+q)
sides centered at the center of D each of whose vertex is situated at Euclidean
distance t (0 < t < 1) from the center of D. On the last q sides we add q external
isosceles hyperbolic triangles such that the angles between the equal sides of the
triangles are 2π/α1, . . . , 2π/αq. Note that if αi = 2, the corresponding triangle
will degenerate. We denote by Q(t) the union of P (t) with these triangles. Label
these sides λ1, µ

′
1, λ
′
1, µ1, . . . , λg, µ

′
g, λ
′
g, µg, κ1, κ

′
1, . . . , κg, κ

′
g, and orient them as

indicated in Figure 1. If t goes to 0, the hyperbolic area of Q(t) tends to 0.
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It can be seen that if t goes to 1, then the hyperbolic area of Q(t) tends to

2π{(2g − 1) +
q∑
i=1

(1− 1
αi

)}. Hence, by continuity and the inequality (4), there

exists t0 between 0 and 1 such that the hyperbolic area of Q(t0) is exactly equal

to
2π
m

∣∣∣〈e, [F̃ ]
〉∣∣∣. By the construction λi and λ′i have the same hyperbolic length

as do µi and µ′i, and κj and κ′j . Then for each pair of geodesics there exists an
orientation preserving isometry of D which maps one to the other. That is, there
exist Ai, Bi, Cj ∈ PSL(2,R) (i = 1, . . . , g; j = 1, . . . , q) such that

Ai(λ′i) = λi, Bi(µ′i) = µi, Cj(κ′j) = κj .

Suppose πorb1 (F ) is presented as

〈
ai, bi, cj (i = 1, . . . , g; j = 1, . . . , q)

∣∣∣∣∣∣
g∏
i=1

[ai, bi]
q∏
j=1

cj , c
αj
j

〉

Define a homomorphism ϕ : πorb1 (F )→ PSL(2,R) by

ϕ(γ) =


Ai · · · if γ = ai

Bi · · · if γ = bi

Cj · · · if γ = cj .

Then it can be easily seen that ϕ or the conjugacy of ϕ by the reflection of the
circle is the desired homomorphism. �
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[Gh3] E. Ghys, Rigidité différentiable des groupes fuchsiens, Publ. math. I.H.E.S. 78 (1994),
163–185.

[HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part A, Vieweg,
1981.

[H] J. Hempel, 3-manifolds, Ann. of Math. Studies 86, Princeton Univ. Press, 1976.
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