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The zero-norm subspace of bounded cohomology

Teruhiko Soma

Abstract. Let X be a closed, orientable surface of genus > 1. In this paper, non-trivial elements
a of the third bounded cohomology HZ(Z; R) with ||| = 0 are given constructively by using
both a hyperbolic metric and a singular euclidean metric on > X R. Furthermore, it is shown
that the dimension of the subspace N3(X) of H3(Z; R) consisting of zero-norm elements is the
cardinality of the continuum.
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Introduction

Let X be a topological space and C*(X) the k-cochain group of real coefficient.
The R-subspace CF(X) of C*(X) consists of elements ¢ € C*(X) with

el = sup{|c(a)|;0: A¥ — X is a singular k-simplex} < oco.

Consider the restriction §ff = 5k|ck(x): CF(X) — CF'(X) of the coboundary
b

operator 6% : C*(X) — C**1(X). Then, the cochain complex (C} (X), §;) defines
the bounded cohomology

Hy (X5 R) = Z5(X)/ By (X)),

where ZF(X) = Ker(6F), BF(X) = Im(é{ffl). We refer to Gromov [7] for funda-
mental results on bounded cohomology. The pseudonorm ||a|| of @ € HF(X;R) is
defined by

lall = inf{ll}; ¢ € ZE(X) with [ = a}.
We say that N*(X) = {a € HF(X;R); ||l = 0} is the zero-norm subspace of
HF(X;R). For any topological space X, Matsumoto-Morita [9] and Ivanov [8]

proved independently that N*(X) = {0} whenever k& < 2. At that moment, any
examples of non-trivial N k(X ) were not known for k > 3.
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Here, we are mainly concerned with the case where the space X is a closed,
connected, orientable surface 3 of genus > 1. Then, the structure of the second
bounded cohomology HZ(%; R) was studied by Brooks-Series [2], Mitsumatsu [10],
Barge-Ghys [1], Epstein-Fujiwara [4] and that of the third H}(%,R) by Yoshi-
da [18], Soma [11], [12] and so on. We refer to Grigorchuk [6] for other useful
references on bounded cohomology. Furthermore, the author showed in [13] that
N3(X) is non-trivial by invoking Matsumoto-Morita [9, Theorem 2.3]. However,
since the proof of their theorem relies on the Hahn—Banach theorem, we could not
construct any non-trivial elements of N3(X) practically.

In this paper, non-trivial elements of N3(X) are given constructively by using
both a hyperbolic metric and a singular euclidean metric on X x R, where the latter
metric is defined by using a measured foliation associated to a pseudo-Anosov
automorphism of . A combination of these two metrics presents a continuous
family {[c,.c];0 < 7 < 1} of elements of N3(Z x R) which are linearly independent
in Hg(Z xR;R) & Hg(E; R), see Theorems 1 and 2 in §2 for details. In particular,
it is shown that the dimension of the R-vector subspace N3(%) of H(3; R) is the
cardinality of the continuum.

The key fact in our arguments is that the bounded 3-cocycle ¢, . given in §2 is
the coboundary of a certain unbounded 2-cochain. For the proof, it is crucial that
the 3-dimensional euclidean space E3 is the product metric space E2 x EL. This
is the main reason why we use a euclidean metric as well as a hyperbolic metric.

§1. Euclidean and hyperbolic structures on manifolds

Let ¥ be a closed, connected and oriented surface of genus > 1. A measured
foliation F on ¥ is a topological foliation with finitely many prong singular points
of degree > 3 and equipped with the transverse measure. The set of singular points
of F is denoted by Sz. An orientation-preserving homeomorphism f: ¥ — %
is called a pseudo-Anosov automorphism if there exists A = A(f) > 1 and a pair
of mutually transverse, measured foliations F*, F* with Srs = Sru(= S(f)) and
f(Fs) = X"LFs, f(F*) = AF“. We refer to [3], [5] and [16] for the existence and
fundamental properties of such automorphisms and for typical pictures of F s(u)
near p € S(f).

Note that the pair of these measured foliations F*, F* determines an incom-
plete, euclidean structure, a smooth structure on 3° = ¥ — S(f). We will define
a smooth structure on X extending that on X°. For any n € N with n > 3,
the euclidean 2-space R? = C; (x,y) =  + v/—1y is divided into the n sectors
Vi,...,V, such that

2(k —1 2
Vi = {rexp(\/—le) e C;rEO,% <6< %}

for K = 1,...,n. The upper half plane H = {z € C; Im(z) > 0} admits the
euclidean structure induced from that on C = R2. Let xx: Vi — H be the
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homeomorphism defined by

i (rexp(VT6)) = rexp (¢_—1 ("79 k- m)) |

Note that the Jacobian of yj with respect to the standard euclidean coordinates
on V; and H is the constant n/2. Let Fj;, F}; be the measured foliation on H
such that the set of leaves in Fj, (resp. Fj;) consists of straight lines parallel
to (resp. straight rays orthogonal to) the z-axis H and such that the transverse
measures are induced from the euclidean metric on H. Then, the pair {F3, F*}
of measured foliations on R? with the prong singular point (0,0) of degree n is
defined by

Fo= U xitFy),  Fr=U i HFL.
k=1 k=1

For a sufficiently small € > 0, there exist mutually disjoint neighborhoods U,
of p € S(f) in ¥ and homeomorphisms ¢,: U, — D(e) = {z € C;|z| < ¢}
such that gop(]-'s}Up) = fZ}D(E),gop(}"“}Up) = fﬁ}D(E). For Vi(e) = ¢, {(D(e) N
Vi), the composition xj o (pp}Vk(s)—{p}: Vi(e) — {p} — H — {0} is a locally
isometric embedding if Vi(¢) — {p} has the euclidean metric induced from that
on X°. Regarding {(Up, vp);p € S(f)} as a family of coordinate systems for ¥
in U,Up,, one can define the smooth structure on ¥ extending that on 3°. Then,
Y x I admits the product smooth structure, where I is the closed interval [0, 1].
From now on, we identify U,U, x I with Up,D,(¢) x I via ¢, x id;’s, where D, ()
are copies of D(g). Note that the homeomorphism f: ¥ x {0} — ¥ x {1} is
not a diffeomorphism with respect to this smooth structure. So, we need another
smooth structure on X x I. For any ¢ with 0 <t < 1, consider the elliptic half-disk

B = {(z.y) € RAN 202 4 X27202 = 2.y > 0}

in H. Set Wy = Uj—1 x5, ' (Er) C Dy(e), and
X, ={(gt);itel,qge Wy} CDy(e) x I C L xI.

For simplicity, we denote the product homeomorphism xj X idy: Vi x I — H x 1
by X&. The homeomorphism ¢, : X, — Dp(e/X) x I is defined by

Up(g,t) = Xp TNz, Ay, )

if ¢ € Xgl(Et) and xx(¢) = (z,y). By taking {(X,,v,);p € S(f)} as a coordinte
system for ¥ x I instead of {(U, x I, p, xid;);p € S(f)}, we have a new smooth
structure on ¥ x I, and denote this smooth manifold by ¥ x [V, Then, f: 3 x
{0}V — ¥ x {1}™V is a diffeomorphism. In particular, the mapping torus
M=% x 1"V /{(x,0) ~ (f(x),1)} admits the induced smooth structure.
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Let Vol(1)(B) (resp. Vol)(B)) denote the volume of a compact 3-dimensional
submanifold B in X7 = X, — {p} x I (vesp. in Dy(e/\) x I) with respect to the
incomplete euclidean metric on X C %° x I (resp. the standard euclidean metric
on Dy(e/A) x I). Similarly, the areas of subsurfaces I in X and Dy(e/A) x I are
denoted by Area(1)(F) and Areaq)(F'), respectively.

We denote the degree of F° (or F*) at p € S(f) by n(p). Then, the following
lemma holds.

Lemma 1. (i) For any compact 3-dimensional submanifold B of Xy,

Vol (B) = "ol g (s, (B))
(ii) For any compact subsurface F' of X7,

n(p)A
2

Area1)(F) < Areay) (p(F)).

Proof. Since X7 C Dp(e)° x I = {Jp—; Vi(e)° x I, if necessary dividing B and
F into smaller pieces, we may assume that B and F' are contained in V() x I
for some k € {1,...,n(p)}, where V4(€)° = D,(e) N Vi — {p}. Set B’ = Xx(B)
and F' = Xi(F). Recall that 5@|Vk(5)0“: Vi(e)> xI — (H—{0}) xIis a
locally isometric embedding if V};(£)° has the incomplete euclidean metric induced
from that on X°. For the diffeomorphism ¥: H x I — H x I with ¥(z,y,t) =
(Atz, A"ty, 1), we have

Vol(1y(B) = Volgx1(B') = Volgx(¥(B')) and
Area(l)(F) = Areapx1(F') < XAreag 1 (V(F")).

Since xx(¥p(B)) = ¥(B') and {x(¢¥p(F)) = U(F') and since the Jacobian of
Xk: Vi — H is n(p)/2, we have

n(p)

@Volm) (¢¥p(B)) = Vol (¥(B')) and TArea(Q) (Vp(F)) > Areag 1 (¢Y(F")).

This completes the proof. O

Let p: M = ¥ x R — M be the infinite cyclic covering associated to m (3) C
7 (M), and set L = S(f) x R. Note that M° = ¥° x R has the product,
incomplete euclidean metric induced from the euclidean metrics on ¥° and R.
For the euclidean area form nso on X°, 77 = (*(nx0) is a 2-form on M°, where
(: X° x R — X° is the orthogonal projection. The volume form Qp on Me is
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given by QU = 7j A dt. The diffeomorphism f: M — M with f(x, t)=(f(z),t+
1) is the generator of the covering transformation group. Since f }EO: ¥ —
>° is a euclidean-area-preserving diffeomorphism, ﬂ i 18 a volume-preserving
diffeomorphism, that is, f*(Qg) = f*() A f*(dt) = §j A dt = Qp. Thus, there
exists the 3-form Qg in M° = M — L with p*(Qg) = Qp, where L = p(z) is a link
in M. Similarly, there exists a 2-form 7y on M° with p*(nas0) = 77. According to
Thurston [17] (see also Sullivan [14]), the smooth manifold M admits a hyperbolic
structure. For the hyperbolic volume form Qp on M, there exists a positive,
smooth function h: M° — R with Qg = hQ2y. We suppose that M admits the
hyperbolic metric induced from that on M via p.
For the derivative d¢ of the smooth embedding

€= U ¢ U Dyle/N)xI— T x I C M,
peS(f) peS(f)

we set

(€)= mf{udgz(v)uﬁ;x € U Dy(e/NxI,ve TUI< U Dp(e/)\)xl>} >0,

peS(f) peS(f)

where TU(UpES(f) D,(e/N) x I) is the unit tangent bundle over the euclidean
manifold (¢ gy Dp(e/A) x 1. Wenote that the image Y = p( pES(Y) p(e/N)XT)

is a union of solid tori in M, and the complement M —intY of int Y is a compact
manifold.

Lemma 2. Kj =sup{h(s);s € M°} < oc.
Proof. For any compact 3-dimensional submanifold B of Y — L, we have

1(€)3Volg)(B) < Vol (B), where B = p~1(B) N (£ x I"*V). Then, by Lemma 1
(i), we have

n(f)
) <>

where n(f) = max{n(p);p € S(f)}. This completes the proof. O

sup{h(s);s € M°} < max{max{h(s); seM—

Note that, in general, for a sequence {s,,} in M° converging to a point in L,
the limit limy, o0 (8 ) does not exist. Then, we can not extend h to a continuous
map on M.

Let @ be a 2-dimensional subspace of Ts(M°) for s € M°. There exists a
small, hyperbolic disk D centered at zq € H? and an embedding ig: D — M
with ig(z0) = s, ig- (Tr, (D)) = @ and such that ig is an isometry onto the image
ig(D) which is totally geodesic with respect to the hyperbolic metric on M. Let
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¢q@: D° — R be the smooth function with i¢,(name) = ¢q - nuw on D°, where
D° =D — iél(L) and ny is the hyperbolic area form on D. Then, we have

/ Jigme)| < sup{lq () # € D°}Arear (D°), (L1)

where Areap;(D°) (= Areap (D)) denotes the hyperbolic area of D°. Intuitively,
@ (xo) represents the ratio, in the cross section @, of o to the hyperbolic metric
at s € M. It is easily seen that there exists the maximum

g(s) = max{|pg(xo)|; Q is a 2-dimensional subspace of T5(M°)},

and g: M° — R is a continuous, non-negative function. The following lemma is
proved by the argument similar to that in Lemma 2.

Lemma 3. K2 =sup{g(s);s € M°} < 0.

Proof. As in the proof of Lemma 2, for any compact subsurface I of Y — L, the
inequality L(£)2Area(2) (F) < Areays(F) holds, where F' = p~1(F) N (X x I"eW).

If necessary dividing F into smaller pieces, we may assume that, for the inclusion
i: F— ¥° x I, the composition ¢ o is injective. Then, by the definition of 7,

/ﬁ i*(7) = Areag. (C(F)) < Areagyy(F).

By this inequality together with Lemma 1 (ii),

/F|i*F(77Mo)| < Area(l)(ﬁ) < n(f))\AreaM(F),

~ 2u(¢)?
where ip: F' — Y — L C M?° is the inclusion. This shows that
A
sup{g(s);s € M°} < max{max{g(s); s€M—intY}, Z<(J;))2} < 0o
L
This completes the proof. O

By Lemma 2, for any hyperbolically straight 3-simplex o: A3 — M ,
[ @l = [ lpeor@el <k [ ooy ()] = Kivolad)
Ao Ao Ao

where Ag denotes the 3-simplex A3 with the hyperbolic metric induced from that
on M via o and A3° = A3 — ¢71(L). Since the hyperbolic volume Vol(A3°) =
Vol(Ag) is less than the volume v3 of a regular ideal simplex in H3,

/As lo* (Qp)| < Kivs. (1.2)
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Similarly, by Lemma 3 together with the equation (1.1), for any straight 2-simplex
T A2 — M,

[ @l= [ o) (o)l < Katrea(a2),
A2 Ao

where Az denotes the 2-simplex A? with the induced hyperbolic metric and Ago =
A2 — 77Y(L). Since Area(A2°) = Area(A2) < T,

/ IT* ()] < mK. (1.3)
AZ20

=

The inequalities (1.2) and (1.3) will be used in the next section.

§2. Zero-norm elements of bounded cohomology

For a topological space X, the Gromov norm of a singular k-chain z = Z?:l a;of €
Cr(X) with real coefficients a; € R is defined by

n
2l = lail.
=1

Then, for any bounded k-cochain ¢ € CF(X), we have |c(2)| < ||c|| ||2]]-
For any » > 0, € > 0, consider the continuous functions o, .: R — R and
A;.: R — R given by

t
oy (t) = min{e, [t|7"}, Are(t) = / oy e (u)du.
0

Note that lim; oo are(t) = 0 if 7 > 0 and lim; o0 Ay c(t) = oo if r < 1. The
compositions of the projection M =Y xR — R with 0y, Ay e are also denoted
by e M — R and Ape: M — R, that is, oy o (p,t) = ar(t) and A, (p,t) =
Are(t). For a singular n-simplex 7: A" — M, straight(r): A" — M denotes
the straight n-simplex obtained by straightening 7, see [15, Chapter 6] for details.
Let ¢, € Z3(M) be the 3-cycle defined by

cre(o) = straight((f)*(ar,EQE)
Si?raight(a)
for any singular 3-simplex o: A3 — M. Intuitively, ¢, (o) represents the “eu-
clidean” volume with weight a, . of the “hyperbolically” straightened simplex.
Since max{|a,((t)|;t € R} = ¢, by (1.2),

lepe(o)| < e |straight(c)* (Qg)| < eK1vs.
30

straight(o)
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This shows that ¢, . € Z?(ﬁ) and ||e || < eKqvs.
In Theorem 1, we will show that the class [c,..] € HJ(M;R) is independent of
if » > 0. However, Theorem 2 implies that [c; ] strictly depends on rif 0 < r < 1.

Theorem 1. If 0 <r <1, then [c.c] # 0 in HE(M; R). If r > 0, then for any
e,&' >0, [ere] = [erer] in HP(M;R). In particular, if 0 < r < 1, then [c,.] is a
non-trivial element of Hp(M;R) with [|lere]|| = 0.

Proof. We set £, = X x {n} C M for n € Z. For a sufficiently small § > 0, let
Yo be an oriented surface piecewise smoothly embedded in ¥ x [—¢, d] each piece
of which is a totally geodesic triangle with respect to the hyperbolic metric on M

and such that X is isotopic to 3¢ in X x [—4d, §]. Furthermore, we may take Xg
so that it satisfies (2.1).

For any p € X, io meets the line C_l(p) in a single point. (2.1)

Let 29 € Zo (M ) be a 2-cycle representing this hyperbolic triangulation of f]o.
We set in = f"(io) and z, = ff(zo). Since z, — zo is homologous to zero in
M , there exists a 3-chain w,, € 03(1\7 ) consisting of straight 3-simplices and with
Owy, = zp, — 2z0. Note that 77 = (*(ns0) and nso > 0. Thus, we have

/A 77:/ 772°=/A 7,
o 3o D23

where £2 = 5, — £, N ¢1(S(f)) and the second equality is derived from the
property (2.1). We denote the value of these integrals by K3 > 0.

If [¢;] =0 in H,?(Z\/Z; R) for some 0 < r < 1, then there would exist a bounded
2-cochain a € C? (M) with 62(a) = ¢, .. This implies that, for any n € N,

lere(wn)| = la(zn — 20)| < llall(|lznll + lI20l) = 2llall [Iz0]]-

Since A, . is an increasing function, A, .(n—9) < A, . < A, (n+9) in X,, x [0, I]
and A, . < &6 in ¥y x [—4,d]. Consider the 2-form 6,.. = A, . on M°. Since

db, . = a,dt N7 = a, g and since straight(w,) = w,, the Stokes Theorem

shows that
|CT,€(wn)| = /A Ar,sﬁ—//\ A
So Y
> A=) [ fil =5 [
So 5

= (Ay:(n—9) —ed)Ks.
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The condition 0 < r < 1 implies that lim, o Arc(n — d) = oo and hence
limy, o0 |¢rc(wy)] = o0, a contradiction. It follows that [c.] is a non-trivial
element of HJ(M;R) for any 0 < r < 1.
For any ¢, &’ with € > ¢’ > 0, the 2-cochain b € C?(M) is given by
b(T)= straight(7)*(0r.c — Orer)

20
Astlraight(T)

for any singular 2-simplex 7: A2 — M. Then, the coboundary of b is 62(b) =
Cre — Crer. If >0, then

(&)1
Ky = max{|Ay.(t) — Ay (t)]; t € R} = / (e (1) — oo (1))t < .
0

By (1.3), we have

20
Astraight(w—)

|b(T)| = ' straight(7)*((Ar.e — Aro)7)

< Ky [straight(r)" (7)|
g‘;)raight(T)

< m7KyKy.

This shows that b € C’E(M) and hence ¢, — ¢r o € B?(]Tj) for r > 0. By the
definition of the pseudonorm, for any & > 0, H [CT,E]H = H[Cr,e/] < &’Kivs. Thus,
we have ||[¢.]|| = 0 whenever 7 > 0. O

For two sequences {ay}, {b,} with a,,b, >0 (n € N), a,, ~ b, means that

. ..eQ . a
0 < liminf - < limsup — < oco.

n—oo Op n—oo Un

The notation in the proof of Theorem 1 still works to prove Theorem 2.

Theorem 2. For a fized ¢ > 0, the elements [c,] (0 < r < 1) are linearly
independent in Hi (M;R).

Proof. We suppose that

Y1ler el +2lcry el + -+ ymler,, ] =0

for 0 < 1 < rg < -+ < rp < 1. Then, there exists a bounded 2-cochain
a € C3(M) with

Y1Crie T V2Crg,e + -+ YmCr e = 5b2(a)
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For the straight 3-chain w,, € C3 (M ) given as above, we have

|’chrj,6(wn)| + |5l? (a)(wn)].

NgE

|’716T1,6(wn)| <
J

I|
N

The argument similar to that in the proof of Theorem 1 shows that

NE

711 E3(Ary e(n = 6) —26) < Y [ K3(Ar; c(n 4 6) + £6) + 2[|al| [[20],

Il
)

J
and hence

Sy [l (A, 2 (n + 8) + £68) + 2K 5 |l || 20
Ay e(n—0)—ed ’

Il < (2.2)

Since A, -(n—8) ~nl=", A, (n+6) ~nlifr; < 1, and 4, -(n+6) ~ logn
if 7, = 1, the right hand side of (2.2) converges to zero as n — oo. This shows
that y1 = 0. Similarly, we have 7o = --- = 7, = 0. Thus, [¢;¢] (0 < r < 1) are
linearly independent. O

By Theorems 1 and 2, the continuous family {[¢,¢];0 < r < 1} consists of
linearly independent elements in N 3(M ). Since the inclusion i: ¥ = ¥y — M
is a homotopy equivalence, the induced homomorphism i*: (H;} (1\7 R, - —
(H, g (3;R), || ]]) is isometrically isomorphic. Thus, we have the following corollary.

Corollary. For any closed, connected, orientable surface 3 of genus > 1, the
dimension of the zero-norm subspace N3(X) of HE(E; R) is the cardinality of the
continuum. ]
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