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Abstract. Let Σ be a closed, orientable surface of genus > 1. In this paper, non-trivial elements
α of the third bounded cohomology H3

b (Σ; R) with ‖α‖ = 0 are given constructively by using
both a hyperbolic metric and a singular euclidean metric on Σ ×R. Furthermore, it is shown
that the dimension of the subspace N3(Σ) of H3

b (Σ; R) consisting of zero-norm elements is the
cardinality of the continuum.
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Introduction

Let X be a topological space and Ck(X) the k-cochain group of real coefficient.
The R-subspace Ckb (X) of Ck(X) consists of elements c ∈ Ck(X) with

‖c‖ = sup{|c(σ)|;σ : ∆k −→ X is a singular k-simplex} <∞.

Consider the restriction δkb = δk
∣∣
Ck
b

(X) : Ckb (X) −→ Ck+1
b (X) of the coboundary

operator δk : Ck(X) −→ Ck+1(X). Then, the cochain complex (C∗b (X), δ∗b ) defines
the bounded cohomology

H∗b (X ; R) = Z∗b (X)/B∗b (X),

where Zkb (X) = Ker(δkb ), Bkb (X) = Im(δk−1
b ). We refer to Gromov [7] for funda-

mental results on bounded cohomology. The pseudonorm ‖α‖ of α ∈ Hk
b (X ; R) is

defined by
‖α‖ = inf{‖c‖; c ∈ Zkb (X) with [c] = α}.

We say that Nk(X) = {α ∈ Hk
b (X ; R); ‖α‖ = 0} is the zero-norm subspace of

Hk
b (X ; R). For any topological space X , Matsumoto–Morita [9] and Ivanov [8]

proved independently that Nk(X) = {0} whenever k ≤ 2. At that moment, any
examples of non-trivial Nk(X) were not known for k ≥ 3.
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Here, we are mainly concerned with the case where the space X is a closed,
connected, orientable surface Σ of genus > 1. Then, the structure of the second
bounded cohomologyH2

b (Σ; R) was studied by Brooks–Series [2], Mitsumatsu [10],
Barge–Ghys [1], Epstein–Fujiwara [4] and that of the third H3

b (Σ,R) by Yoshi-
da [18], Soma [11], [12] and so on. We refer to Grigorchuk [6] for other useful
references on bounded cohomology. Furthermore, the author showed in [13] that
N3(Σ) is non-trivial by invoking Matsumoto–Morita [9, Theorem 2.3]. However,
since the proof of their theorem relies on the Hahn–Banach theorem, we could not
construct any non-trivial elements of N3(Σ) practically.

In this paper, non-trivial elements of N3(Σ) are given constructively by using
both a hyperbolic metric and a singular euclidean metric on Σ×R, where the latter
metric is defined by using a measured foliation associated to a pseudo-Anosov
automorphism of Σ. A combination of these two metrics presents a continuous
family {[cr,ε]; 0 < r ≤ 1} of elements of N3(Σ×R) which are linearly independent
in H3

b (Σ×R; R) ∼= H3
b (Σ; R), see Theorems 1 and 2 in §2 for details. In particular,

it is shown that the dimension of the R-vector subspace N3(Σ) of H3
b (Σ; R) is the

cardinality of the continuum.
The key fact in our arguments is that the bounded 3-cocycle cr,ε given in §2 is

the coboundary of a certain unbounded 2-cochain. For the proof, it is crucial that
the 3-dimensional euclidean space E3 is the product metric space E2 × E1. This
is the main reason why we use a euclidean metric as well as a hyperbolic metric.

§1. Euclidean and hyperbolic structures on manifolds

Let Σ be a closed, connected and oriented surface of genus > 1. A measured
foliation F on Σ is a topological foliation with finitely many prong singular points
of degree≥ 3 and equipped with the transverse measure. The set of singular points
of F is denoted by SF . An orientation-preserving homeomorphism f : Σ −→ Σ
is called a pseudo-Anosov automorphism if there exists λ = λ(f) > 1 and a pair
of mutually transverse, measured foliations Fs, Fu with SFs = SFu(= S(f)) and
f(Fs) = λ−1Fs, f(Fu) = λFu. We refer to [3], [5] and [16] for the existence and
fundamental properties of such automorphisms and for typical pictures of Fs(u)

near p ∈ S(f).
Note that the pair of these measured foliations Fu, Fs determines an incom-

plete, euclidean structure, a smooth structure on Σ◦ = Σ − S(f). We will define
a smooth structure on Σ extending that on Σ◦. For any n ∈ N with n ≥ 3,
the euclidean 2-space R2 = C; (x, y) = x +

√
−1 y is divided into the n sectors

V1, . . . , Vn such that

Vk =
{
r exp

(√
−1θ

)
∈ C; r ≥ 0,

2(k − 1)π
n

≤ θ ≤ 2kπ
n

}
for k = 1, . . . , n. The upper half plane H = {z ∈ C; Im(z) ≥ 0} admits the
euclidean structure induced from that on C = R2. Let χk : Vk −→ H be the
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homeomorphism defined by

χk
(
r exp

(√
−1θ

))
= r exp

(√
−1
(
nθ

2
− (k − 1)π

))
.

Note that the Jacobian of χk with respect to the standard euclidean coordinates
on Vk and H is the constant n/2. Let FsH , FuH be the measured foliation on H
such that the set of leaves in FsH (resp. FuH) consists of straight lines parallel
to (resp. straight rays orthogonal to) the x-axis ∂H and such that the transverse
measures are induced from the euclidean metric on H. Then, the pair {Fsn,Fun}
of measured foliations on R2 with the prong singular point (0, 0) of degree n is
defined by

Fsn =
n⋃
k=1

χ−1
k (FsH), Fun =

n⋃
k=1

χ−1
k (FuH).

For a sufficiently small ε > 0, there exist mutually disjoint neighborhoods Up
of p ∈ S(f) in Σ and homeomorphisms ϕp : Up −→ D(ε) = {z ∈ C; |z| < ε}
such that ϕp(Fs

∣∣
Up

) = Fsn
∣∣
D(ε), ϕp(F

u
∣∣
Up

) = Fun
∣∣
D(ε). For Vk(ε) = ϕ−1

p (D(ε) ∩
Vk), the composition χk ◦ ϕp

∣∣
Vk(ε)−{p}: Vk(ε) − {p} −→ H − {0} is a locally

isometric embedding if Vk(ε) − {p} has the euclidean metric induced from that
on Σ◦. Regarding {(Up, ϕp); p ∈ S(f)} as a family of coordinate systems for Σ
in ∪pUp, one can define the smooth structure on Σ extending that on Σ◦. Then,
Σ × I admits the product smooth structure, where I is the closed interval [0, 1].
From now on, we identify ∪pUp × I with ∪pDp(ε)× I via ϕp × idI ’s, where Dp(ε)
are copies of D(ε). Note that the homeomorphism f : Σ × {0} −→ Σ × {1} is
not a diffeomorphism with respect to this smooth structure. So, we need another
smooth structure on Σ×I. For any t with 0 ≤ t ≤ 1, consider the elliptic half-disk

Et =
{

(x, y) ∈ R2;λ2+2tx2 + λ2−2ty2 = ε2, y ≥ 0
}

in H. Set Wp,t =
⋃n
k=1 χ

−1
k (Et) ⊂ Dp(ε), and

Xp = {(q, t); t ∈ I, q ∈Wp,t} ⊂ Dp(ε)× I ⊂ Σ× I.

For simplicity, we denote the product homeomorphism χk× idI : Vk× I −→ H × I
by χ̂k. The homeomorphism ψp : Xp −→ Dp(ε/λ)× I is defined by

ψp(q, t) = χ̂−1
k (λtx, λ−ty, t)

if q ∈ χ−1
k (Et) and χk(q) = (x, y). By taking {(Xp, ψp); p ∈ S(f)} as a coordinte

system for Σ× I instead of {(Up × I, ϕp × idI); p ∈ S(f)}, we have a new smooth
structure on Σ× I, and denote this smooth manifold by Σ× Inew. Then, f : Σ×
{0}new −→ Σ × {1}new is a diffeomorphism. In particular, the mapping torus
M = Σ× Inew/{(x, 0) ∼ (f(x), 1)} admits the induced smooth structure.



Vol. 72 (1997) The zero-norm subspace of bounded cohomology 585

Let Vol(1)(B) (resp. Vol(2)(B)) denote the volume of a compact 3-dimensional
submanifold B in X◦p = Xp − {p} × I (resp. in Dp(ε/λ) × I) with respect to the
incomplete euclidean metric on X◦p ⊂ Σ◦ × I (resp. the standard euclidean metric
on Dp(ε/λ)× I). Similarly, the areas of subsurfaces F in X◦p and Dp(ε/λ)× I are
denoted by Area(1)(F ) and Area(2)(F ), respectively.

We denote the degree of Fs (or Fu) at p ∈ S(f) by n(p). Then, the following
lemma holds.

Lemma 1. (i) For any compact 3-dimensional submanifold B of X◦p ,

Vol(1)(B) =
n(p)

2
Vol(2)(ψp(B)).

(ii) For any compact subsurface F of X◦p ,

Area(1)(F ) ≤ n(p)λ
2

Area(2)(ψp(F )).

Proof. Since X◦k ⊂ Dp(ε)◦ × I =
⋃n
k=1 Vk(ε)◦ × I, if necessary dividing B and

F into smaller pieces, we may assume that B and F are contained in Vk(ε)◦ × I
for some k ∈ {1, . . . , n(p)}, where Vk(ε)◦ = Dp(ε) ∩ Vk − {p}. Set B′ = χ̂k(B)
and F ′ = χ̂k(F ). Recall that χ̂k

∣∣
Vk(ε)◦×I : Vk(ε)◦ × I −→ (H − {0}) × I is a

locally isometric embedding if Vk(ε)◦ has the incomplete euclidean metric induced
from that on Σ◦. For the diffeomorphism Ψ: H × I −→ H × I with Ψ(x, y, t) =
(λtx, λ−ty, t), we have

Vol(1)(B) = VolH×I(B′) = VolH×I(Ψ(B′)) and

Area(1)(F ) = AreaH×I(F ′) ≤ λAreaH×I(Ψ(F ′)).

Since χ̂k(ψp(B)) = Ψ(B′) and χ̂k(ψp(F )) = Ψ(F ′) and since the Jacobian of
χk : Vk −→ H is n(p)/2, we have

n(p)
2

Vol(2)(ψp(B)) = VolH×I(Ψ(B′)) and
n(p)

2
Area(2)(ψp(F )) ≥ AreaH×I(ψ(F ′)).

This completes the proof. �

Let ρ : M̃ = Σ×R −→M be the infinite cyclic covering associated to π1(Σ) ⊂
π1(M), and set L̃ = S(f) × R. Note that M̃◦ = Σ◦ × R has the product,
incomplete euclidean metric induced from the euclidean metrics on Σ◦ and R.
For the euclidean area form ηΣ◦ on Σ◦, η̃ = ζ∗(ηΣ◦) is a 2-form on M̃◦, where
ζ : Σ◦ ×R −→ Σ◦ is the orthogonal projection. The volume form Ω̃E on M̃◦ is
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given by Ω̃E = η̃ ∧ dt. The diffeomorphism f̃ : M̃ −→ M̃ with f̃(x, t) = (f(x), t+
1) is the generator of the covering transformation group. Since f

∣∣
Σ◦ : Σ◦ −→

Σ◦ is a euclidean-area-preserving diffeomorphism, f̃
∣∣
M̃◦

is a volume-preserving
diffeomorphism, that is, f̃∗(Ω̃E) = f̃∗(η̃) ∧ f̃∗(dt) = η̃ ∧ dt = Ω̃E . Thus, there
exists the 3-form ΩE in M◦ = M −L with ρ∗(ΩE) = Ω̃E , where L = ρ(L̃) is a link
in M . Similarly, there exists a 2-form ηM◦ on M◦ with ρ∗(ηM◦) = η̃. According to
Thurston [17] (see also Sullivan [14]), the smooth manifold M admits a hyperbolic
structure. For the hyperbolic volume form ΩH on M , there exists a positive,
smooth function h : M◦ −→ R with ΩE = hΩH . We suppose that M̃ admits the
hyperbolic metric induced from that on M via ρ.

For the derivative dξ of the smooth embedding

ξ =
⋃

p∈S(f)
ψ−1
p :

⋃
p∈S(f)

Dp(ε/λ)× I −→ Σ× Inew ⊂ M̃,

we set

ι(ξ) = inf
{
‖dξx(v)‖

M̃
;x ∈

⋃
p∈S(f)

Dp(ε/λ)×I, v ∈ TUx
( ⋃
p∈S(f)

Dp(ε/λ)×I
)}

> 0,

where TU(
⋃
p∈S(f)Dp(ε/λ) × I) is the unit tangent bundle over the euclidean

manifold
⋃
p∈S(f)Dp(ε/λ)×I. We note that the image Y = ρ(

⋃
p∈S(f)Dp(ε/λ)×I)

is a union of solid tori in M , and the complement M − intY of intY is a compact
manifold.

Lemma 2. K1 = sup{h(s); s ∈M◦} <∞.

Proof. For any compact 3-dimensional submanifold B of Y − L, we have
ι(ξ)3Vol(2)(B̃) ≤ VolM(B), where B̃ = ρ−1(B) ∩ (Σ× Inew). Then, by Lemma 1
(i), we have

sup{h(s); s ∈M◦} ≤ max
{

max{h(s); s ∈M − intY }, n(f)
2ι(ξ)3

}
<∞,

where n(f) = max{n(p); p ∈ S(f)}. This completes the proof. �

Note that, in general, for a sequence {sm} in M◦ converging to a point in L,
the limit limm→∞ h(sm) does not exist. Then, we can not extend h to a continuous
map on M .

Let Q be a 2-dimensional subspace of Ts(M◦) for s ∈ M◦. There exists a
small, hyperbolic disk D centered at x0 ∈ H2 and an embedding iQ : D −→ M
with iQ(x0) = s, iQ∗(Tx0(D)) = Q and such that iQ is an isometry onto the image
iQ(D) which is totally geodesic with respect to the hyperbolic metric on M . Let
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ϕQ : D◦ −→ R be the smooth function with i∗Q(ηM◦) = ϕQ · ηH on D◦, where
D◦ = D − i−1

Q (L) and ηH is the hyperbolic area form on D. Then, we have∫
D◦
|i∗Q(ηM◦)| ≤ sup{|ϕQ(x)|;x ∈ D◦}AreaM (D◦), (1.1)

where AreaM(D◦) (= AreaM(D)) denotes the hyperbolic area of D◦. Intuitively,
ϕQ(x0) represents the ratio, in the cross section Q, of ηM◦ to the hyperbolic metric
at s ∈M . It is easily seen that there exists the maximum

g(s) = max{|ϕQ(x0)|;Q is a 2-dimensional subspace of Ts(M◦)},

and g : M◦ −→ R is a continuous, non-negative function. The following lemma is
proved by the argument similar to that in Lemma 2.

Lemma 3. K2 = sup{g(s); s ∈M◦} <∞.

Proof. As in the proof of Lemma 2, for any compact subsurface F of Y − L, the
inequality ι(ξ)2Area(2)(F̃ ) ≤ AreaM(F ) holds, where F̃ = ρ−1(F ) ∩ (Σ × Inew).

If necessary dividing F̃ into smaller pieces, we may assume that, for the inclusion
i : F̃ −→ Σ◦ × I, the composition ζ ◦ i is injective. Then, by the definition of η̃,∫

F̃

|i∗(η̃)| = AreaΣ◦(ζ(F̃ )) ≤ Area(1)(F̃ ).

By this inequality together with Lemma 1 (ii),∫
F

|i∗F (ηM◦)| ≤ Area(1)(F̃ ) ≤ n(f)λ
2ι(ξ)2 AreaM (F ),

where iF : F −→ Y − L ⊂M◦ is the inclusion. This shows that

sup{g(s); s ∈M◦} ≤ max
{

max{g(s); s ∈M − intY }, n(f)λ
2ι(ξ)2

}
<∞.

This completes the proof. �

By Lemma 2, for any hyperbolically straight 3-simplex σ : ∆3 −→ M̃ ,∫
∆3◦
σ

|σ∗(Ω̃E)| =
∫

∆3◦
σ

|(ρ ◦ σ)∗(ΩE)| ≤ K1

∫
∆3◦
σ

|(ρ ◦ σ)∗(ΩH)| = K1Vol(∆3◦
σ ),

where ∆3
σ denotes the 3-simplex ∆3 with the hyperbolic metric induced from that

on M̃ via σ and ∆3◦
σ = ∆3

σ − σ−1(L̃). Since the hyperbolic volume Vol(∆3◦
σ ) =

Vol(∆3
σ) is less than the volume v3 of a regular ideal simplex in H3,∫

∆3◦
σ

|σ∗(Ω̃E)| < K1v3. (1.2)
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Similarly, by Lemma 3 together with the equation (1.1), for any straight 2-simplex
τ : ∆2 −→ M̃ , ∫

∆2◦
τ

|τ∗(η̃)| =
∫

∆2◦
τ

|(ρ ◦ τ)∗(ηM◦)| ≤ K2Area(∆2◦
τ ),

where ∆2
τ denotes the 2-simplex ∆2 with the induced hyperbolic metric and ∆2◦

τ =
∆2
τ − τ−1(L̃). Since Area(∆2◦

τ ) = Area(∆2
τ ) < π,∫

∆2◦
τ

|τ∗(η̃)| < πK2. (1.3)

The inequalities (1.2) and (1.3) will be used in the next section.

§2. Zero-norm elements of bounded cohomology

For a topological spaceX , the Gromov norm of a singular k-chain z =
∑n
i=1 aiσ

k
i ∈

Ck(X) with real coefficients ai ∈ R is defined by

‖z‖ =
n∑
i=1

|ai|.

Then, for any bounded k-cochain c ∈ Ckb (X), we have |c(z)| ≤ ‖c‖ ‖z‖.
For any r ≥ 0, ε > 0, consider the continuous functions αr,ε : R −→ R and

Ar,ε : R −→ R given by

αr,ε(t) = min{ε, |t|−r}, Ar,ε(t) =
∫ t

0
αr,ε(u)du.

Note that limt→∞ αr,ε(t) = 0 if r > 0 and limt→∞Ar,ε(t) = ∞ if r ≤ 1. The
compositions of the projection M̃ = Σ×R −→ R with αr,ε, Ar,ε are also denoted
by αr,ε : M̃ −→ R and Ar,ε : M̃ −→ R, that is, αr,ε(p, t) = αr,ε(t) and Ar,ε(p, t) =
Ar,ε(t). For a singular n-simplex τ : ∆n −→ M̃ , straight(τ) : ∆n −→ M̃ denotes
the straight n-simplex obtained by straightening τ , see [15, Chapter 6] for details.
Let cr,ε ∈ Z3(M̃) be the 3-cycle defined by

cr,ε(σ) =
∫

∆3◦
straight(σ)

straight(σ)∗(αr,εΩ̃E)

for any singular 3-simplex σ : ∆3 −→ M̃ . Intuitively, cr,ε(σ) represents the “eu-
clidean” volume with weight αr,ε of the “hyperbolically” straightened simplex.
Since max{|αr,ε(t)|; t ∈ R} = ε, by (1.2),

|cr,ε(σ)| ≤ ε
∫

∆3◦
straight(σ)

|straight(σ)∗(Ω̃E)| < εK1v3.
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This shows that cr,ε ∈ Z3
b (M̃) and ‖cr,ε‖ ≤ εK1v3.

In Theorem 1, we will show that the class [cr,ε] ∈ H3
b (M̃ ; R) is independent of ε

if r > 0. However, Theorem 2 implies that [cr,ε] strictly depends on r if 0 ≤ r ≤ 1.

Theorem 1. If 0 ≤ r ≤ 1, then [cr,ε] 6= 0 in H3
b (M̃ ; R). If r > 0, then for any

ε, ε′ > 0, [cr,ε] = [cr,ε′ ] in H3
b (M̃ ; R). In particular, if 0 < r ≤ 1, then [cr,ε] is a

non-trivial element of H3
b (M̃ ; R) with

∥∥[cr,ε]
∥∥ = 0.

Proof. We set Σn = Σ × {n} ⊂ M̃ for n ∈ Z. For a sufficiently small δ > 0, let
Σ̂0 be an oriented surface piecewise smoothly embedded in Σ× [−δ, δ] each piece
of which is a totally geodesic triangle with respect to the hyperbolic metric on M̃
and such that Σ̂0 is isotopic to Σ0 in Σ × [−δ, δ]. Furthermore, we may take Σ̂0
so that it satisfies (2.1).

For any p ∈ Σ, Σ̂0 meets the line ζ−1(p) in a single point. (2.1)

Let z0 ∈ Z2(M̃) be a 2-cycle representing this hyperbolic triangulation of Σ̂0.
We set Σ̂n = f̃n(Σ̂0) and zn = f̃n∗ (z0). Since zn − z0 is homologous to zero in
M̃ , there exists a 3-chain wn ∈ C3(M̃) consisting of straight 3-simplices and with
∂wn = zn − z0. Note that η̃ = ζ∗(ηΣ◦) and ηΣ◦ > 0. Thus, we have∫

Σ̂◦n
η̃ =

∫
Σ◦
ηΣ◦ =

∫
Σ̂◦n
|η̃|,

where Σ̂◦n = Σ̂n − Σ̂n ∩ ζ−1(S(f)) and the second equality is derived from the
property (2.1). We denote the value of these integrals by K3 > 0.

If [cr,ε] = 0 in H3
b (M̃ ; R) for some 0 ≤ r ≤ 1, then there would exist a bounded

2-cochain a ∈ C2
b (M̃) with δ2

b (a) = cr,ε. This implies that, for any n ∈ N,

|cr,ε(wn)| = |a(zn − z0)| ≤ ‖a‖
(
‖zn‖+ ‖z0‖

)
= 2‖a‖ ‖z0‖.

Since Ar,ε is an increasing function, Ar,ε(n−δ) ≤ Ar,ε ≤ Ar,ε(n+δ) in Σn× [−δ, δ]
and Ar,ε ≤ εδ in Σ0 × [−δ, δ]. Consider the 2-form θr,ε = Ar,εη̃ on M̃◦. Since
dθr,ε = αr,εdt ∧ η̃ = αr,εΩ̃E and since straight(wn) = wn, the Stokes Theorem
shows that

|cr,ε(wn)| =
∣∣∣∣∣
∫

Σ̂◦n
Ar,εη̃ −

∫
Σ̂◦0
Ar,εη̃

∣∣∣∣∣
≥ Ar,ε(n− δ)

∫
Σ̂◦n
|η̃| − εδ

∫
Σ̂◦0
|η̃|

= (Ar,ε(n− δ)− εδ)K3.
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The condition 0 ≤ r ≤ 1 implies that limn→∞Ar,ε(n − δ) = ∞ and hence
limn→∞ |cr,ε(wn)| = ∞, a contradiction. It follows that [cr,ε] is a non-trivial
element of H3

b (M̃ ; R) for any 0 ≤ r ≤ 1.
For any ε, ε′ with ε > ε′ > 0, the 2-cochain b ∈ C2(M̃) is given by

b(τ)=

∫
∆2◦

straight(τ)

straight(τ)∗(θr,ε − θr,ε′)

for any singular 2-simplex τ : ∆2 −→ M̃ . Then, the coboundary of b is δ2(b) =
cr,ε − cr,ε′ . If r > 0, then

K4 = max{|Ar,ε(t)−Ar,ε′(t)|; t ∈ R} =
∫ (ε′)−1/r

0
(αr,ε(u)− αr,ε′(u))du <∞.

By (1.3), we have

|b(τ)| =
∣∣∣∣∣
∫

∆2◦
straight(τ)

straight(τ)∗((Ar,ε −Ar,ε′)η̃)

∣∣∣∣∣
≤ K4

∫
∆2◦

straight(τ)

|straight(τ)∗(η̃)|

≤ πK2K4.

This shows that b ∈ C2
b (M̃) and hence cr,ε − cr,ε′ ∈ B3

b (M̃) for r > 0. By the
definition of the pseudonorm, for any ε′ > 0,

∥∥[cr,ε]
∥∥ =

∥∥[cr,ε′ ]
∥∥ ≤ ε′K1v3. Thus,

we have
∥∥[cr,ε]

∥∥ = 0 whenever r > 0. �

For two sequences {an}, {bn} with an, bn > 0 (n ∈ N), an ∼ bn means that

0 < lim inf
n→∞

an
bn
≤ lim sup

n→∞

an
bn

<∞.

The notation in the proof of Theorem 1 still works to prove Theorem 2.

Theorem 2. For a fixed ε > 0, the elements [cr,ε] (0 ≤ r ≤ 1) are linearly
independent in H3

b (M̃ ; R).

Proof. We suppose that

γ1[cr1,ε] + γ2[cr2,ε] + · · ·+ γm[crm,ε] = 0

for 0 ≤ r1 < r2 < · · · < rm ≤ 1. Then, there exists a bounded 2-cochain
a ∈ C2

b (M̃) with

γ1cr1,ε + γ2cr2,ε + · · ·+ γmcr1,ε = δ2
b (a).
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For the straight 3-chain wn ∈ C3(M̃) given as above, we have

|γ1cr1,ε(wn)| ≤
m∑
j=2

|γjcrj ,ε(wn)|+ |δ2
b (a)(wn)|.

The argument similar to that in the proof of Theorem 1 shows that

|γ1|K3(Ar1,ε(n− δ)− εδ) ≤
m∑
j=2

|γj |K3(Arj ,ε(n+ δ) + εδ) + 2‖a‖ ‖z0‖,

and hence

|γ1| ≤
∑m
j=2 |γj |(Arj ,ε(n+ δ) + εδ) + 2K−1

3 ‖a‖ ‖z0‖
Ar1,ε(n− δ)− εδ

. (2.2)

Since Ar1,ε(n−δ) ∼ n1−r1 , Arj ,ε(n+δ) ∼ n1−rj if rj < 1, and Arm,ε(n+δ) ∼ logn
if rm = 1, the right hand side of (2.2) converges to zero as n → ∞. This shows
that γ1 = 0. Similarly, we have γ2 = · · · = γm = 0. Thus, [cr,ε] (0 ≤ r ≤ 1) are
linearly independent. �

By Theorems 1 and 2, the continuous family {[cr,ε]; 0 < r ≤ 1} consists of
linearly independent elements in N3(M̃). Since the inclusion i : Σ = Σ0 −→ M̃

is a homotopy equivalence, the induced homomorphism i∗ : (H3
b (M̃ ; R), ‖ · ‖) −→

(H3
b (Σ; R), ‖·‖) is isometrically isomorphic. Thus, we have the following corollary.

Corollary. For any closed, connected, orientable surface Σ of genus > 1, the
dimension of the zero-norm subspace N3(Σ) of H3

b (Σ; R) is the cardinality of the
continuum. �
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