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Moduli of quadrilaterals and extremal quasiconformal
extensions of quasisymmetric functions

Shengjian Wu*

Abstract. We establish a relationship between Strebel boundary dilatation of a quasisymmetric
function of the unit circle and indicated by the change in the module of the quadrilaterals with
vertices on the circle. By using general theory of universal Teichmiiller space, we show that there
are many quasisymmetric functions of the circle have the property that the smallest dilatation
for a quasiconformal extension of a quasisymmetric function of the unit circle is larger than
indicated by the change in the module of quadrilaterals with vertices on the circle.
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§1. Introduction

In this paper, the following notation will be used. C = the finite complex plane;
A ={z€ ;2| < 1}; T = 0A (boundary of A); A = AUT; A, = {z;7 < |z| < 1},
where 0 < r < 1; H = the upper half plane; R = the real line in C.

Let f:T' — I be a sense-preserving homeomorphism. We say f is quasisym-
metric if there exists a quasiconformal mapping f : A — A such that f r = f.
Let 21, 29, z3 and z4 be four points on I' following each other in the positive (anti-
clockwise) direction. Then they determine an unique topological quadrilateral with
domain A and vertices z1, 22, 23 and z4 which we denote by Q = Q(z1, 22, 23, 24).
We will denote the conformal module of @ by M(Q). The function f maps Q

to a quadrilateral f(Q) = Q(f(z1), f(22), f(23), f(24)). Now assume f is qua-
sisymmetric.It follows from the theory of quasiconformal mappings that for any

*This work was partially supported by grants from the NSF of China and Géran Gustafsson
Fundation.
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quasiconformal extension f and any quadrilateral Q whose domain is A

1 M(f(Q))
K(f) = M(Q)

< K(f).

Thus the following number

M(f(Q))

;@ is a quadrilateral with domain A
M(Q) I

Ko = Ko(f) = sup{
Q

is finite.

We distinguish two cases for Ko(f). If there exists a non-degenerated quadri-
lateral @ such that Ko(f) = %(g))), we will use K§(f) instead of Ko(f). We
will use K¢(f) instead of Ko(f), if there is no non-degenerated quadrilateral such
that Ko(f) = LU

M(Q)
We define
K1(f) = inf{K; f has a K-quasiconformal extension to a selfmap of A},

where the infinum is taken for all quasiconformal extensions f of f to A.
The following notations of boundary dilatation and local dilatation were intro-
duced by Strebel (cf. [10] and [11]):

H(f) =inf{K; f has a K-quasiconformal extension f, to A},

where the infimum is taken for all quasiconformal extensions fr of f to A, and for
all (0 <r < 1).
For a point £ on T’

He(f) = inf{K; f has a K-quasiconformal extension f. to Ug(e)},

where the infimum is taken for all quasiconformal extensions f. of f to a neigh-
borhood of Ug(e) and all neighborhoods Ug(¢) of €.
Obviously we have

Ko(f) < K1(f)

and

H(f) < K1(f).

Fehlmann proved the following important result (cf. [4]):

H(f) = maaHe ().
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In this paper we shall first establish a relationship between Kq(f) and H(f).
To be precise, we shall prove the following result.

Theorem 1. Let f: T' — T be a quasisymmetric function. Then either Ko(f) =
K§(f) or K§(f) < H(f).

We note that in [12] it was conjectured that Ko(f) = K1 (f) for all quasisym-
metric functions f. Anderson and Hinkkanen disproved this conjecture by giving
concrete examples of a family of affine stretch mappings of some parallelograms
(cf. [1]). We shall use the results in this paper to give a simpler proof of the result
in [1].

We shall use Theorem 1 and the theory of universal Teichmiiller space to show
many quasisymmetric functions f have the property that Ko(f) < K1(f).

Let us recall some notations in Teichmiiller theory. Let QS(T') be the full
set of quasisymmetric functions of I' and let M6b(I') be the group of Mobius
transformations mapping I' to itself. Then the right coset space QS(I")/ M&b(T")
is the universal Teichmiiller space 7. For any f € QS(T'), let [f] € T be the
Teichmiiller class containing f.

Note that if f € QS(I') and g € M&b(T'), then the quantities of Ko(g o f),
Ki(go f) and H(go f) are the same as Ko(f), K1(f) and H(f), respectively. In
other words, they are determined by the Teichmiiller class [f]. Therefore we can
define Ko([f]) = Ko(f). Similarly we can define K1([f]) and H([f]) (but not
He((/]).

In a recent paper, Earle and Li studied the geometry of infinite dimensional
Teichmiiller spaces (cf.[3]). Following them we call a point [f] € 7 is a Strebel
point if H([f]) < Ki([f]). Let 7s be the set of all Strebel points in 7 and
In =T\Ts.

The case K{j(f) = K1(f) in Theorem 1 is easy to describe and there are not
"many” points in 7 such that the case holds.

Theorem 2. Let U = {[f] € T; Ki(f) = K1(f)}. Then U depends on two real
parameters and U C Tg.

If Ko([f]) = Ki([f]) and [f] ¢ U, then Ko([f]) = H([f]). Consequently
Ki([f]) = H([f]), that is, [f] is a non-Strebel point. Theorem 2 tells us that if

Ko([f]) = K1([f]), then KG([f]) = K1([f]) and K§([f]) = K1([f]) cannot hold
simultaneously. Thus we have the following result.

Theorem 3. For every point [f] € Ts\U, [f] has the property that Ko([f]) <
K1 ([f])-

Recall that for any two points [f;] € 7,(j = 1,2), the Teichmiiller distance
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between them is defined by

AL 1) = logKa(fr o f5).

From the definition of Strebel point, it is easy to see that, in the topology induced
by the Teichmiiller metric, 7g is an open set in 7. Since U depends only on
two real parameters and 7 is infinite dimensional, Theorem 3 tells us that many
quasisymmetric functions f have the property that Ko(f) < K1(f).

To give a concrete example, let us denote 7y C 7 to be the set of all [f] € T
such that H([f]) = 1. Then 7j is also an infinite dimensional complex Banach
manifold (cf. [6] and [7]). We can prove the following result.

Theorem 4. Every [f] € To\{[id]} has the property that Ko([f]) < K1([f])-

Problem. Is it true that every non-Strebel point [f] has the property that Ko([f])
= Ki([f])?

We shall prove the results above in the next subsections and in the final section
we will discuss affine stretch mappings and give a simpler proof of the main result
in [1].

This work was partially done when the author was visiting the Department
of Mathematics, Royal Institute of Technology at Stockholm. He wishes to thank
Prof. M. Benedicks for his invitation, Géran Gustafsson Fundation for the financial
support and the Department of Mathematics for its hospitality. He also wishes to
thank Prof. J. Anderson for drawing his attention to the paper [1] and Prof. L.
Carleson for useful discussions.

§2. Proof of Theorem 1

In this section, we will prove the main result Theorem 1. Let f € QS(T') and
KJ(f) = Ko(f). We shall prove that K§(f) < H(f).
Assume that {Q,} is a sequence of qudrilaterals with domain A such that

- M(f(Qn)) _ _
752{}OW = K§(f) = Ko(f).

By passing to subsequences, if necessary, we may assume that the vertices z; (1 <
Jj <4) of @, tend to limit points z; € T for 1 < j <4 as n — oo and that at least

two of the points z; coincide. Otherwise we will have K{(f) = Ko(f)-
As in [1], there are the following four possibilities, up to permutations.

(1) z1 = z9 while z1, z3 and z4 are distinct;
(2) 21 = 22 # 23 = 245
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(3) 21 = 22 = 23 # 243
(4) 21 = 29 = 23 = z4.

In the proof it will be clear that if

M(f(Qn)) !

lim =

n—oe M(Q) Ko(f)’

we also have K¢(f) < H(f).
We shall treat each case seperately.

Case (1). Two points degeneracy

Set
(Z - Z3,n)(24m - ZQ,n)

(2 = 22,n) (24,0 — 23.n)

¢n(Z) =

Then ¢, map A conformally onto H taking 21 ,, 225, 23 n, 24, O0t0 @y, 00,0,1
respectively. We have 1 < a,, < oo and a,, — o0 as n — oo. Similarly we set
wjn = f(zjn) for 1 <j <4 and

~ B (’U} - wg,n)(w4,n - w2,n)
(bn(w) = (w _ w2,n)(w4,n — wg’n)

Then én map A conformally onto H taking wi ,,, w2, w3 n, w4, onto by, 00, 0,
respectively. We also have 1 < b,, < oo and b,, — 00 as n — oo. Let H(a,00,0,1
be the quadrilateral with vertices a,c0,0,1 and domain H. If we set (m(a))~!
M(H(a,00,0,1), then we have

~ =

and
K(/1-1)
m(a) - K(ﬁ) )
where

1 dx
i) = /0 VA2 - 22

(cf. [8, pp. 59-60] and [1]).
As K(0) = & and

1 1
K(t) ~ §l091—t

as t—1—,
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we have

1
m(a) ~ —loga, as a— 0.
T
Therefore, when n is sufficiently large, we have

Ch

an = |ap| ~ ———,
|Zl,n - 22,n|

and

Cy

b = b ~N — —
n | ’I’L| |w17n _ w2,n| bl

where C1 and Cy are positive constants.

Recall that the local dilatation H, (f) (which can be defined similarily as the
unit circle case) of f is the infimum of the dilatations of possible extensions fof
f to the neighborhoods of z1. We shall prove that Kg(f) < H, (f).

Let € > 0 be arbitrarily given. Then there is a quasiconformal extension fg
of f in a neighborhood U. = {z;|z — 21| < ¢} of 21 with maximal dilatation
K(f:) < H;,(f)+e. From the basic properties of quasiconformal mappings, f is
Holder continuous with Holder index ﬁ and a coefficient depending on U, and
fe. We deduce that for all sufficiently large n

1 loglwy, 1 — wp 2] ,
< : — < H, (f)+¢,
Hzl(f)+5/ ZOg|Zn,1 _Zn,2| 1( )

where ¢/ — 0 as ¢ — 0. This implies

L M@
Hzl (f) + e’ = M(Qn)

< H. (f)+€",

for all sufficiently large n, where ¢’ — 0 as € — 0.
Letting n — oo and ¢ — 0 and noting that H,, (f) < H(f), we get the desired
result in case (1).

Case (2). A pair of two points degeneracy

In this case we use similar transformations to obtain

. = (Zl,n - Z3,n)(z4,n - ZQ,n) -~ Cl
" (Zl,n - ZQ,n)(Z4,n - Z3,n) (Zl,n - ZQ,")(Z‘LTL - Z3,“)7
_ (wl,n - w3,n)(w4,n - w2,n) N CZ

(wl,n - w2,n)(w4,n - w3,n) (wl,n - w2,n)(w4,n - w3,n) ’

where C1 and Cy are positive constants.
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Therefore we have

™
o~ logan ~ —log|z1n — 22,n] — log|zan — 23,1,
and
™
MGG "~ logb, ~ —log|wi ,, — w2 | — log|ws , — w3 4.

Now we perform the same procedure as in Case (1) to the neighborhoods of
z1 = z2 and z3 = z4 respectively. We deduce that

K§(f) < max{H.,(f), Hz,(f)} < H(f)

as required.
Case (3). Three points degeneracy

In this case, we set

Pn(2) = e'n - Zl,n7
zZ—24n

where 6,, is chosen so that ¢, maps A to H. Similarly let

7 _ i, W f(zl,n)
¢n (w) - w — f(z4,n)

such that én maps A to H. Thus, without loss of generality, We can use the
upper half plane H instead of A and assume that lim z;, =21 € R,(j =1,2,3),

24, = 00 and that lim f(z;n) = f(21) € R, (j = 1,2,3), f(24,n) = 00.

For any given ¢ > 0 we choose a quasiconformal extension f. in U, = {z; |z —
21| < e} of f such that the maximal dilatation of f. in U. is at most H.,, (f) +
e. From the theory of quasiconformal mappings it is possible to extend fs to a
quasiconformal mapping of the whole plane, which is still denoted by f;, with
bounded dilatation (e.g., using Beurling-Ahlfors extensions (cf., [2])).

Let A,, be the extremal length of the family of curves in H which join the
intervals [21 ,,,22.,] to [23,,,00]. Let A, be the extremal length of the family of
curves in H which join the interval [f(21,,), f(22,n)] to [f(23,n),00]. Then we have

M(f(Qn)_&_) d or

Grotzsch’s length-area argument (cf. [5]) shows that

ks

=

" < / / K (fo(2))|é(2)|dady,
C
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where
C(Zl,na 22.m5 Z3,n)
(z = 21,0)(2 — 22,) (2 — 23,0)

¢(2) =

and where the constant C'(21 y,,22,,, 23,,) can be chosen to satisfy

/ 16(2)|drdy = 1.

C

Therefore C(21,n, 22,n,23.0,) — 0 as zj, — 21 (n — 00,75 =1,2,3).

As C(z1,n,22,n,23,n) — 0, the complement of U. has arbitrarily small mass
with respect to the measure of |¢(z)|dzdy. Note that K (f.) is uniformly bounded,
we must have

ks

- < H., (f)+2

n

=

for all sufficiently large n.
_ Letting n — o0 and € — 0, the proof of Case (3) is completed provided that
Aﬂ = 7M1\/(1J222Q3) But the proof still works if %—ﬂ = 7M]\(/[f((§”)))

change the curve families. This completes the proof of Case (3).

, we only need to

=

Case (4). Four points degeneracy

We can treat this case similarly as we did in Case (3). We work on H and, without
loss of generality, assume that all points involved are finite.

Let A,, be the extremal length of the family of curves in D which join the
intervals [21 ,,, 22 ] tO [23.1,, 24.5,]. Let A,, be the extremal length of the family of
curves in H which join the interval [f(z1.4,), f(22,n)] to [f(23.,), f(24,n)]. Then we
have

MU@n) _An | peacyy (o L)

M(Qn) A K§(f)

Use the same proof of Case (3) and note that the extremal holomorphic functions
will be changed to

C(Zl,n7 22.m5 Z3,n» Z4,n)
(2 = 21,0)(2 — 22,0) (2 — 23,0) (2 — 24,0)

¢(2) =

where, again, the constant C(21,,22.n,23n,24n) — 0 as zj, — 21 (n — 00,
j=1,2,3,4). Thus we can prove this case similarly as we did in Case (3).
The proof of Theorem 1 is completed.
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§3. Proof of Theorem 2

Assume that f1, fo € QS(T") and there exist quadrilaterals Q1, Q2 with properties
that

M(Q1) = M(Q2)

and
K§(f1) = Ki(f1) = Ki(f2) = K{§(f2),
where
Ki(fi) = 7Mgéé§f§))
and
Ka(f) = 2,

We will show that f o fy* € Moh(T), that is, [f1] = [fa].

To prove the fact above, we denote the rectangle with vertices 0, K, K + 14,7 by
R(K), where K > 1.

Now let ¢1 and ¢9 be the conformal mappings from Q1 and Q2 to the rectangle
R(M(Q1)) = R(M(Q2)) respectively, and let #1 and ¢o be the conformal map-
pings from f(Q1) and £(Qs) to the rectangle R(M(f1(Q1))) = R(M(f>(Q2)))
respectively.

The only quasiconformal mapping from R(M(Q1)) to R(M(f1(Q1))) with di-
latation K = Ko(f1) = % is fx(x +iy) = Kx + iy (cf. [8]). Therefore f1
and fo have extremal quasiconformal extensions

fi=d1 o fxogr and fo=dy" o fxody
respectively. Thus we have
fiofyt=dilofrodrogy o fi oo,

By computing the Beltrami coefficient of f; o f~2’1, we see that %(fl o f~2’1) =0.
So fi o fgl is a conformal mapping from A — A, i.e., f1 o fgl € Mob(T).
The argument above shows that every [f] € U can be determined by the module
of a quadrilateral and the dilatation of the extremal quasiconformal extension.
On the other hand, suppose that for j = 1,2, f; € QS(I') satisfy

M(f5(Q;))
Kif)=K D) — J\%J ,
O(f]) 1(f]) M(Qg)
where Q); are quadrilaterals. If M(Q1) # M(Q2) or K1(f1) # Ki(f2), then
fio f2*1 ¢ PSL(2, R). This implies the first part of the theorem.



602 Shengjian Wu CMH

We next show that every [f] € U is a Strebel point (this might be a known
result, we include the simple proof here for the completeness of the paper).

From the argument above, for every [f] there exist a quadrilateral @ with
domain A and a constant K > 1 such that f has a quasiconformal extension
F=(6) Lo fic o, where ¢ : Q — R(M(Q) and 6 : £(Q) — R(M(f(Q))) are
conformal mappings and fx = Kz +iy : R(M(Q)) — R(M(f(Q))) is the affine
stretch mapping. As the (local) dilatation of a quasiconformal mapping does not
change if it composes a conformal mapping. So we can estimate the local dilatation
(which can be defined similarly as the unit circle case ) of fx(z) : OR(M(Q)) —
OR(M(F(Q))

Let £ € OR(M(Q)). Suppose first that £ is not a vertex of OR(M(Q)). Since
the boundary correspondence in a neighborhood of ¢ is smooth, He(fx) = 1 (cf.
[11]). We next suppose that & is one of the four vertices of OR(M(Q)). Note
that the local dilatations of fx at the four vertices are the same (cf. [10]). Thus
we may suppose & = 0. Since in [10] it was proved that fx is not an extremal
quasiconformal mapping from {z;0 < argz < 5} — {2;0 < argz < 5}, this
implies He(fx) < K = K1(f). The proof of the theorem is completed.

§4. Proof of Theorem 4

Since H(f) = 1 for every f € [f] € 7o, we must have Ko(f) = K{(f) for f ¢
MGob(T). To prove the theorem, we only need to prove that every f € [f] € U\{[id]}
has the property that K{(f) # K1(f).

Now assume, for the contrary, f € [f] € U\{id}. Then KJ(f) = K1(f). Denote
K = Ki(f). We shall prove the following fact that there is a point zg € I' at which
the local quasisymmetric constant of f is K 2.

In the following we use the upper plane again. Suppose that z1, 22, 23,24 € R
follow each other in the positive (anticlockwise) direction on R. We still denote

the quadrilateral with domain H and vertices z1, 29, 23, 24 by @ = Q(z1, 22, 23, 24).
Now assume that f(Q) = Q(f(21), f(22), f(23), f (24)) such that Kg(f) = 2HS)
= K1(f) B

_ Let ¢ and ¢ be the conformal mappings such that ¢(Q) = R(M(Q)) and
o(f(Q)) = R(IM(f(Q)). As before the unique extremal quasiconformal mapping
from R(M(Q)) to R(M(f(Q))) is fx(z + iy) = Kx + iy. Now suppose that

¢(z1) =0 and ¢(f(z1)) = 0. From the classical elliptic integral theory, we have
1
#(2) = (z — 21)2{ag + a1(z — z1) + az(z — 21)® + ...}

:ao(z—zl)%—l—O((z—zl)%) (z€e R and z— z1),

and

3(f(z1)) = do(w — f(21))2 + O((w — f(z1))?) (weR and w— f(z1)).
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Since f = ¢ L o fx o ¢, we have locally

_ CK%*(z—21) +o(z —21) 2>z,
f(z)—{ C(z—z1)+o(z— 21) z < 21,

where z € R and C # 0 is a constant. This implies

lim flz1+1) = f(=1)

_ 2
ey ey

On the other hand it was proved in [6] (also cf. [11]) that if f € [f] € 7o,
the local quasisymmetric constant above must be equal to 1. This contradiction
proves Theorem 4.

§5. Affine stretch mappings
In [1], the following result is proved.

Theorem A. For each K > 1, there exists a sense-preserving quasisymmetric
homeomorphism f of I' such that

Ko(f) < K1(f) = K.

To prove the theorem, the authors constructed concrete quasiconformal map-
pings as follows. Let V be the closed parallelogram with vertices £ = 0, {&o = 1
&3=a+1+41ip,& = a+if, where a > 0 and 8 > 0. Let fx(V) be the image of
V under the horizontal affine stretch fx that takes x4 iy onto Kx +1iy so that the
vertices of fx (V') are §=0,6=K,& = K(a+1)+i0, &4 = Ka+if. Let ¢ and
¢ be the conformal mappings from V and Jx (V) to A, respectively. Since fr is
uniquely extremal for its boundary values, the mapping fx = ¢o frop~ ! of A onto
A is uniquely extremal for its boundary values. Under this construction, we see
easily that any internal angle with vertex at one of §; and &; (j=1,2,3,4) cannot be
equal to 5. It was proved in [1] that fx has the property that Ko(fx) < K1(fx)-

Now we, by using our results, give a simpler proof of Theorem A.

Proof of Theorem A

In fact we can prove that [fx] ¢ U and [fx] € Ts. Therefore Theorem A follows
from Theorem 3.

The proof of [fx] ¢ U is simple and we omit it (cf. [1]).

Now we show H(fx) < K = K1([fx]) (this is the main part of [1]). From
Fehlmann’s result (cf. [4] and [11]) and He(fx) =1for all { € OV and £ # &;(j =
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1,2,3,4), we see that H(fK) = H¢,(fx) for some j = 1,2,3,4. So we need to show
He, (fx) < K for j =1,2,3,4. Since at each vertex {;, fx is the restriction of the
same affine stretch on an angular domain whose vertex is £; and whose boundary
is the extension of two sides of the parallelogram, it is known that fx is not ex-
tremal for its boundary values (cf. [9] and [10]). (This is a known result if the
vertex of an angular domain is the origin. Note that for the case of affine stretch
mappings, the extremal problem for the boundary values of an angular domain
depends only on the the family of holomorphic functions defined on the domain
(cf. [9]), it is easy to see that the affine stretch mappings cannot be extremal for
the boundary values of an angular domain whether or not the vertex of it is the
origin.) Therefore there is a quasiconformal mapping F' of dilatation < K with
the same boundary value of fx on the two sides of the parellelogram. This implies
He (fx) < K (j =1,2,3,4.). This completes the proof of Theorem A.
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