Comment. Math. Helv. 72 (1997) 605–617 0010-2571/97/040605-13 \$ 1.50+0.20/0

c 1997 Birkh¨auser Verlag, Basel

Commentarii Mathematici Helvetici

Cohen–Macaulay coordinate rings of blowup schemes

S. Dale Cutkosky and Jürgen Herzog^{*}

Abstract. Suppose that Y is a projective k-scheme with Cohen–Macaulay coordinate ring S. Let $I \subset S$ be a homogeneous ideal of S. I can be blown up to produce a projective k-scheme X which birationally dominates Y. Let I_c be the degree c part of I. Then $k[I_c]$ is a coordinate ring of a projective embedding of X for all c sufficiently large. This paper considers the question of when there exists a constant f such that $k[(I^e)_c]$ is Cohen–Macaulay for $c \geq ef$. A very general result is proved, giving a simple criterion for a linear bound of this type. As a consequence, local complete intersections have this property, as well as many other ideals.

Mathematics Subject Classification (1991). 14M05, 13H10.

Keywords. Cohen–Macaulay, coordinate ring.

Introduction

Suppose that Y is a projective k -scheme with Cohen–Macaulay coordinate ring S. Let $I \subset S$ be a homogeneous ideal of S. Then I can be blown up to produce a projective k-scheme X which birationally dominates Y. Let I_c be the degree c part of I. Then $k[I_c]$ is a coordinate ring of a projective embedding of X for all c sufficiently large. In general, $k[I_c]$ is not Cohen–Macaulay even when X is Cohen– Macaulay (a simple example is given in Section 1). Recently, [3], [5], [6], [13] have given criteria for $k[I_c]$ to be Cohen–Macaulay in many important situations.

Powers I^e of I blow up to the same scheme X, and the rings $k[(I^e)_c]$ for $c \gg e > 0$ are coordinate rings of projective embeddings of X.

In Theorem 4.6 [3] an explicit necessary and sufficient linear bound in c and e is given for $k[(I^e)_c]$ to be Cohen–Macaulay, when S is a polynomial ring of dimension n and I is a complete intersection in S . Suppose that the complete intersection ideal I is minimally generated by forms of degree d_1, \ldots, d_r . Assume that $c \geq ed+1$, $d = \max\{d_j | j = 1, \ldots, r\}$. Then $k[(I^e)_c]$ is a Cohen–Macaulay ring if and only if $c > \sum_{j=1}^r d_j + (e-1)d - n$.

This leads to the question of when there exists a constant f such that $k[(I^e)_c]$

[∗] First author partially supported by NSF.

is Cohen–Macaulay for $c \geq ef$. In other words, when is there a linear bound on c and e ensuring that $k[(I^e)_c]$ is Cohen–Macaulay?

For instance, it is natural to expect that ideals I that are local complete intersections (that is, IS_p is a complete intersection if p is not the irrelevant ideal of S) will have this property. The Kodaira Vanishing Theorem suggests that there should be a linear bound ensuring that $k[(I^e)_c]$ is Cohen–Macaulay, at least when a regular ideal is blown up in a nonsingular projective variety of characteristic zero.

In this paper, we prove a very general result (Theorem 4.1) giving a simple criterion for a linear bound of this type. As a consequence, we show (Corollary 4.2) that local complete intersections have this property, as well as many other ideals (Corollaries 4.3 and 4.4).

1. Coordinate rings of a blowup

Throughout this paper we will have the following assumptions. Let k be a field, S a noetherian graded k-algebra which is generated in degree 1 with graded maximal ideal M. Then S has a presentation $S = k[x_0, x_1, \ldots, x_n]/K$, where each x_i is homogeneous of degree 1. Let $\beta = \dim(S)$, $\overline{n} = \beta - 1$, $I \subset S$ be a homogeneous ideal, and let \tilde{I} be the sheaf associated to I in $Y = \text{Proj}(S)$. Let $X = \text{Proj}(\bigoplus \tilde{I}^n)$ be the blowup of \tilde{I} , with natural map $\pi: X \to Y$. I_c will denote the c-graded part of I.

Lemma 1.1. Suppose that I is generated in degree $\leq d$. Then

- (1) $(I_c) \cdot \mathcal{O}_X = I(c) \cdot \mathcal{O}_X$ for $c \geq d$.
- (2) I_c is a very ample subspace of $\Gamma(X, \tilde{I}(c) \cdot \mathcal{O}_X)$ for $c \geq d+1$.

Proof. Let I be generated by G_1, \ldots, G_m where the G_i are homogeneous of degree $d_i \leq d$. Let

$$
R_{ij} = \left(k\left[\frac{x_0}{x_i},\ldots,\frac{x_n}{x_i}\right] / K_i\right) \left[\frac{G_1 x_i^{d_j - d_1}}{G_j},\ldots,\frac{G_m x_i^{d_j - d_m}}{G_j}\right],
$$

 $U_{ij} = \text{Spec} (R_{ij}).$ $\{U_{ij} : 0 \le i \le n, 1 \le j \le m\}$ is an affine cover of X. $\Gamma(U_{ij}, \tilde{I}(c))$. \mathcal{O}_X) = $G_j x_i^{c-d_j} R_{ij}$.

Since $I_c \subset \Gamma(X, \tilde{I}(c) \cdot \mathcal{O}_X)$ and $G_j x_i^{c-d_j} \in I_c$ for $1 \leq j \leq m$ whenever $c \geq d$, we have (1) .

To establish (2) we will use the criteria of Proposition II.7.2 [7]. Suppose that $c \geq d+1$. By (1), I_c gives a morphism of X. I_c is generated over k by $\{G_j x_0^{l_0} x_1^{l_1} \cdots x_n^{l_n} : d_j + l_0 + l_1 + \cdots + l_n = c\}$. Suppose that $s = G_j x_0^{l_0} x_1^{l_1} \cdots x_n^{l_n}$ is one of these generators. Then some $l_i > 0$, and $X_s \subset U_{ij}$.

$$
s = G_j x_0^{l_0} x_1^{l_1} \cdots x_n^{l_n} = G_j x_i^{c - d_j} \left(\frac{x_0}{x_i}\right)^{l_0} \cdots \left(\frac{x_n}{x_i}\right)^{l_n},
$$

so that $X_s = \text{Spec}(A)$ where

$$
A = R_{ij} \left[\left(\frac{x_i}{x_0} \right)^{l_0} \cdots \left(\frac{x_i}{x_n} \right)^{l_n} \right].
$$

We have

$$
\frac{G_j x_i^{c-d_j}}{G_j x_0^{l_0} \cdots x_n^{l_n}} = \left(\frac{x_i}{x_0}\right)^{l_0} \cdots \left(\frac{x_i}{x_n}\right)^{l_n}
$$
\n
$$
\frac{G_j x_0^{l_0} \cdots x_i^{l_t+1} \cdots x_i^{l_1-1} \cdots x_n^{l_n}}{G_j x_0^{l_0} \cdots x_n^{l_n}} = \frac{x_t}{x_i}
$$
\n
$$
\frac{G_t x_i^{c-d_t}}{G_j x_0^{l_0} \cdots x_n^{l_n}} \cdot \left(\frac{G_j x_0^{l_0+1} \cdots x_i^{l_1-1} \cdots x_n^{l_n}}{G_j x_0^{l_0} \cdots x_n^{l_n}}\right)^{l_0} \cdots \left(\frac{G_j x_0^{l_0} \cdots x_i^{l_i-1} \cdots x_n^{l_n+1}}{G_j x_0^{l_0} \cdots x_n^{l_n}}\right)^{l_n} = \frac{G_t x_i^{d_j - d_t}}{G_j}
$$

generate A as a k-algebra. \square

Let $\mathcal{L} = \tilde{I} \cdot \mathcal{O}_X$, $\mathcal{M} = \pi^* \mathcal{O}_Y(1)$, so that $(I^e)_c \cdot \mathcal{O}_X = \mathcal{L}^e \otimes \mathcal{M}^c$ for $e > 0$ and $c \geq de$, and $X \cong \text{Proj}(k[(I^e)_c])$ for $c \geq de + 1$. In Lemma 1.2 we state the usual exact sequences relating local cohomology and global cohomology (cf. A4.1 [4]).

Lemma 1.2. Suppose that I is generated in degree $\leq d$, $e > 0$ and $c \geq de + 1$. Let $A = k[(I^e)_c]$, with graded maximal ideal m. There are exact sequences

$$
0 \to H_m^0(A) \to A \to \bigoplus_{s \in \mathbf{Z}} \Gamma(X, \mathcal{L}^{se} \otimes \mathcal{M}^{sc}) \to H_m^1(A) \to 0
$$

and isomorphisms

$$
H_m^{i+1}(A) \cong \bigoplus_{s \in \mathbf{Z}} H^i(X, \mathcal{L}^{se} \otimes \mathcal{M}^{sc})
$$

for $i \geq 1$.

Let I^* denote the intersection of the primary components which are not Mprimary of an irredundant primary decomposition of I.

Lemma 1.3. There exists a positive integer f such that $(I^a)_b = (I^a)^*_{b}$ for all a, b with $b \geq fa$.

Proof. This is immediate from the Main Theorem of Swanson [14] (cf. also Theorem 1.5 [10]), which states that there exists an integer f such that I^a has an irredundant primary decomposition $I^a = q_1 \cap \cdots \cap q_s$ with $(\sqrt{q_i})^{af} \subset q_i$ for all $i.\Box$

Lemma 1.4. Suppose that no associated prime of S contains I, depth $_M(S) \geq 2$ and $\pi_*(I^e \cdot \mathcal{O}_X) = I^e$ for all $e \geq 0$. Then there exists a positive integer f such that, with the notation of Lemma 1.2, $H_m^0(A) = 0$ and $H_m^1(A) = 0$ whenever $e > 0$ and $c \geq ef$.

Proof. Suppose I is generated in degree $\leq d$. By Lemma 1.3 there exists an integer f' such that $(I^t)_s = (I^t)^{\star}_s$ for $s \ge f't$. Set $f = \max(f', d + 1)$.

By consideration of the natural inclusion $A \subset S[It]$, we have $H_M^0(A) = 0$ since $H_I^0(S) = 0$. $H^0(Y, \mathcal{O}_Y(s)) = H_M^1(S)$, $s = 0$ for all $s < 0$ since $\text{depth}_M(S) \geq 2$. From the inclusions

$$
\Gamma(X,\mathcal{L}^{se}\otimes \mathcal{M}^{sc})\hookrightarrow \Gamma(X,\mathcal{M}^{sc})=\Gamma(Y,(\pi_*\mathcal{O}_X)\otimes \mathcal{O}_Y(se))=\Gamma(Y,\mathcal{O}_Y(se))
$$

where the first equality is by the projection formula (cf. Exercise II.5.1 $[7]$), we get $\Gamma(X, \mathcal{L}^{se} \otimes \mathcal{M}^{sc}) = 0$ for $s < 0$.

Let Δ be the (c, e) diagonal of \mathbb{Z}^2 ([3]). For $c \geq ed$, we have $k[(I^e)_c] = S[It]_{\Delta}$, as in Lemma 1.2 of [3].

$$
\bigoplus_{s\geq 0} H^0(X, \mathcal{L}^{se} \otimes \mathcal{M}^{sc}) = \bigoplus_{s\geq 0} H^0(Y, \pi_*(\mathcal{L}^{se}) \otimes \mathcal{O}_Y(sc))
$$

$$
= \bigoplus_{s\in \mathbf{Z}} H^0(Y, \tilde{I}^{se}(sc))
$$

$$
= (\Gamma(\operatorname{Spec}(S) - M, \tilde{I}))_{\Delta}
$$

$$
= \left(\bigoplus_{t\geq 0} (I^t)^{\star}\right)_{\Delta} = S[It]_{\Delta}.
$$

Now Lemma 1.2 implies $H_m^1(A) = 0$.

The condition of the existence of a Cohen–Macaulay coordinate ring is somewhat delicate, as shown by the following simple example of a Cohen–Macaulay scheme obtained by blowing up an ideal sheaf on a scheme with a Cohen–Macaulay coordinate ring, which does not have a Cohen–Macaulay coordinate ring. Let T be a nonsingular "irregular" projective surface $(H^1(T, \mathcal{O}_T) \neq 0)$. Let $\pi: T \to U$ be a birational projection onto a hypersurface in \mathbf{P}^3 . π is the blowup of an ideal sheaf on U . The coordinate ring of U is Cohen–Macaulay, and certainly T is Cohen–Macaulay, but no coordinate ring of T can be Cohen–Macaulay since T is irregular.

However, we can give a simple proof of the existence of a linear bound ensuring that $k[(I^e)_c]$ is Cohen–Macaulay when k has characteristic zero, S is Cohen– Macaulay, Y is nonsingular, I is equidimensional and $\text{Proj}(S/I)$ is nonsingular. The proof has three ingredients:

(1) The Kodaira Vanishing Theorem.

- (2) In this situation (everything nonsingular) $R^i \pi_* \mathcal{O}_X = 0$ for $i > 0$ and $\pi_* \mathcal{O}_X = \mathcal{O}_Y$ (cf. Proposition 10.2 [11]).
- (3) Lemma 1.4.

If $\mathcal N$ is an ample invertible sheaf on a smooth projective variety Z of characteristic zero and dimension t, with dualizing sheaf ω_Z , then Kodaira Vanishing states that $H^{i}(Z, \mathcal{N} \otimes \omega_Z) = 0$ for $i > 0$. The Serre-dual form of Kodaira Vanishing is $H^{i}(Z, \mathcal{N}^{-1}) = 0$ for $i < t$.

Proposition 1.5. Suppose that k has characteristic zero, S is Cohen–Macaulay, Y is nonsingular, I is equidimensional and $\text{Proj}(S/I)$ is nonsingular. Then there exists a positive integer f such that

$$
H^i(X, \mathcal{L}^{se} \otimes \mathcal{M}^{sc}) = 0
$$

for all $s \in \mathbf{Z}$ if $0 < i < \overline{n}$, $c > ef$, $e > 0$.

Proof. Suppose that I has height r, and is generated in degree $\lt d$. By Lemma 1.1, $\mathcal{L}^a \otimes \mathcal{M}^b$ is very ample if $b > ad$. We immediately get $H^i(X, \mathcal{L}^{se} \otimes \mathcal{M}^{sc}) = 0$ if $c > ed$, $s < 0$ and $i < \overline{n}$, since $\mathcal{L}^e \otimes \mathcal{M}^c$ is then ample.

 $H^{i}(X,\mathcal{O}_{X})=0$ for $0 < i$, by the Leray spectral sequence, since $R^{i}\pi_{*}\mathcal{O}_{X}=0$ for $i > 0$, $\pi_* \mathcal{O}_X = \mathcal{O}_Y$ and $H^j(Y, \mathcal{O}_Y) = 0$ for $0 < j$ (since S is Cohen–Macaulay). Let ω_Y be a dualizing sheaf on Y. $\omega_Y^{-1}(g)$ is ample on Y for some $g > 0$.

 $\omega_X = \mathcal{L}^{1-r} \otimes \omega_Y$ is a dualizing sheaf on X.

$$
\mathcal{L}^e \otimes \mathcal{M}^c \cong \mathcal{L}^{e+r-1} \otimes \mathcal{M}^c \otimes \omega_Y^{-1} \otimes \omega_X.
$$

 $\mathcal{L}^{e+r-1}\otimes \mathcal{M}^c\otimes \omega_Y^{-1}$ is ample if $c>g+(e+r-1)d$, and then $H^i(X,\mathcal{L}^{se}\otimes \mathcal{M}^{sc})=0$ for $s > 0$ and $i > 0$.

Theorem 1.6. Suppose that k has characteristic zero, S is Cohen–Macaulay, Y is nonsingular, I is equidimensional and $\text{Proj}(S/I)$ is nonsingular. Then there exists a positive integer f such that $k[(I^e)_c]$ is Cohen–Macaulay whenever $e > 0$ and $c \geq ef$.

Proof. The assumptions of Lemma 1.4 are satisfied by Proposition 10.2 [11] (or Example 2.3) and Proposition III.8.5 [7]. By Lemmas 1.2, 1.4 and Proposition 1.5 there exists a positive integer f such that $k[(I^e)_c]$ has depth $\overline{n}+1$ at m whenever $e > 0$ and $c \geq ef$.

Unfortunately, Kodaira Vanishing fails in positive characteristic or if anything is not (almost) nonsingular. However, we obtain a very general result which is sufficient for this global part of the argument in Section 3. The second ingredient is local. We give a very simple argument to generalize this part in Section 2.

2. Local conditions

Lemma 2.1. Suppose that R is a local ring, essentially of finite type over a field k and $J \subset R$ is an ideal. Let $W = \text{Spec}(R)$, $V = \text{Proj}(\bigoplus_{n \geq 0} J^n)$, $E =$ $\text{Proj}\,(\bigoplus_{n\geq 0} J^n/J^{n+1}),\ \mathcal{L}=\tilde{J}\cdot\mathcal{O}_V.$ Suppose that

$$
\Gamma(E, \mathcal{O}_E(m)) = J^m / J^{m+1} \quad \text{for} \quad m \ge 0
$$

and

$$
H^i(E, \mathcal{O}_E(m)) = 0 \quad \text{for} \quad i > 0 \quad \text{and} \quad m \ge 0.
$$

Then $\Gamma(V,\mathcal{L}^m) = J^m$ if $m \geq 0$ and $H^q(V,\mathcal{L}^m) = 0$ for $q > 0$ and $m \geq 0$.

Proof. Note that $\mathcal{L} = \mathcal{O}_V(1)$ on V.

We have exact sequences:

$$
0 \to \mathcal{O}_V(m+1) \to \mathcal{O}_V(m) \to \mathcal{O}_E(m) \to 0
$$

for all integers m . Thus we have surjections

$$
H^i(V, \mathcal{O}_V(m+1)) \to H^i(V, \mathcal{O}_V(m))
$$

for $i > 0$ and $m \ge 0$. Since $\mathcal{O}_V(m)$ is ample, we have $H^i(V, \mathcal{O}_V(m)) = 0$ for all $m \gg 0$, and $i > 0$, so we have all of the desired vanishing. We also have exact sequences:

$$
0 \to \Gamma(V, \mathcal{O}_V(m+1)) \to \Gamma(V, \mathcal{O}_V(m)) \to J^m/J^{m+1} \to 0
$$
 (1)

for $m \geq 0$. Since R is a localization of a finitely generated k-algebra, $\Gamma(V, \mathcal{O}_V(m)) =$ J^m for $m \gg 0$ (cf. Exercise II.5.9 of [7]). Thus it follows from (1) that $\Gamma(V, \mathcal{O}_V(m)) = J^m$ for all $m \geq 0$.

Lemma 2.2. Let notation be as in Lemma 2.1. Suppose that V is Cohen-Macaulay. Let ω_V be a dualizing sheaf on V and ω_E be a dualizing sheaf on E. Suppose that $H^i(E, \omega_E(m)) = 0$ for $i > 0$ and $m \geq 2$. Then $H^q(V, \omega_V \otimes \mathcal{L}^m) = 0$ for $q > 0$ and $m \ge 1$.

Proof. The ideal sheaf of E is $I \cdot \mathcal{O}_V \cong \mathcal{O}_V(1)$. By "adjunction" (cf. Proposition 2.4 $[1]$ or Theorem III 7.11 $[7]$ we have

$$
\omega_E \cong \omega_V \otimes \mathcal{O}_E(-1).
$$

Since ω_V is Cohen–Macaulay, we deduce from the exact sequence

$$
0 \to \mathcal{O}_V(1) \to \mathcal{O}_V \to \mathcal{O}_E \to 0
$$

exact sequences:

$$
0 \to \omega_V(m+1) \to \omega_V(m) \to \omega_E(m+1) \to 0
$$

for all integers m.

Thus we have surjections

$$
H^i(V, \omega_V(m+1)) \to H^i(V, \omega_V(m))
$$

for $i > 0$ and $m \ge 1$. Since $\mathcal{O}_V(m)$ is ample, we have $H^i(V, \omega_V(m)) = 0$ for all $m \gg 0$ and $i > 0$, so we have all of the desired vanishing.

Example 2.3. Suppose that R is a Cohen–Macaulay local ring, essentially of finite type over a field k and $J \subset R$ is an ideal generated by a regular sequence. Then the conclusions of Lemmas 2.1 and 2.2 hold.

Proof. Let f_1, \ldots, f_r be a minimal set of generators of I. V is Cohen–Macaulay, $E = \text{Proj}(\widehat{\bigoplus}_{n\geq 0} J^n/J^{n+1}) \cong \mathbf{P}_{R/J}^{r-1}, \omega_E \cong (\omega_W/J\omega_W) \otimes_k \mathcal{O}_E(-r).$ Now the assumptions of Lemmas 2.1 and 2.2 follow from the cohomology of projective space and the isomorphisms

$$
H^i(X, \mathcal{O}_E(m)) \cong R/J \otimes_k H^i(\mathbf{P}_k^{r-1}, \mathcal{O}(m)),
$$

$$
H^i(E, (\omega_W/J\omega_W) \otimes_k \mathcal{O}_E(m)) \cong (\omega_W/J\omega_W) \otimes_k H^i(\mathbf{P}_k^{r-1}, \mathcal{O}(m))
$$

by the Künneth formula (cf. p. 77 of [12]). \Box

Let

$$
T = \bigoplus_{n \ge 0} J^n / J^{n+1}
$$

be the associated graded ring of J , and let N be the ideal of positive degree elements of T . Suppose that T is Cohen–Macaulay. Then there is a canonical module W_T of T such that the sheaf associated to W_T is a dualizing sheaf ω_E on E. The vanishing hypotheses of Lemmas 2.1 and 2.2 hold whenever

$$
H_N^i(T)_c = 0
$$

for $i \geq 0$ and $c \geq 0$ and

$$
H_N^i(W_T)_c = 0
$$

for $i \geq 2$ and $c \geq 2$.

An ideal J in a ring R is called strongly Cohen–Macaulay if the Koszul homology modules of I with respect to a generating set are Cohen–Macaulay. Let $\mu(J)$ denote the minimal number of generators of an ideal J.

Example 2.4. Suppose that R is a Gorenstein local ring, essentially of finite type over a field k and $J \subset R$ is a strongly Cohen–Macaulay ideal, with $\mu(J_P) \leq$

Proof. Suppose J is of height g generated by n elements. Let $S = R[X_1, \ldots, X_n]$ be a polynomial ring over R. Let $H(J)$ denote the Koszul homology $H(f_1, \ldots, f_n, R)$ where f_1, \ldots, f_n are generators of J. $W_{R/J} = \text{Ext}^g(R/J, R) \cong H_{n-g}(J)$ is the last non-vanishing $H_i(J)$. The approximation complex M is

$$
0 \to H_{n-g}(J) \otimes S(-n+g) \to \cdots \to H_1(J) \otimes S(-1) \to H_0(J) \otimes S \to 0.
$$

In [8], it is shown that $H^0(\mathcal{M}) = \bigoplus J^n / J^{n+1}$. By Theorems 2.5 and 2.6 [8] M is acyclic and $\oplus J^n/J^{n+1}$, $\oplus J^n$ are Cohen–Macaulay.

Let $\overline{S} = R/J[X_1, \ldots, X_n]$, with canonical module

$$
W_{\overline{S}} = W_{R/J} \otimes S(-n) = H_{n-g}(J) \otimes S(-n).
$$

 $H^i_N(T)$ is dual to $\text{Ext}^{n-i}_{\overline{S}}(T,W_{\overline{S}})$ (cf. Theorem 3.6.19 [2]). We have $\text{Ext}^i_{\overline{S}}(T,W_{\overline{S}})$ = 0 for $i \neq n-g$ since T is a Cohen–Macaulay module of dimension $\dim(R)$, and $\dim(\overline{S}) - \dim(T) = n - g$. By (c) of Theorem 2.6 [8] we can realize W_T as the cokernel of

$$
H_1(J) \otimes S(-g-1) \to H_0(J) \otimes S(-g)
$$

so that $W_T \cong T(-q)$.

From this we see that W_T is supported in degree g, so that $H_N^g(T)_j = 0$ for $j > -g$ and $H_N^g(W_T)_j = 0$ for $j > 0$.

By a Theorem of Huneke (Theorem 1.14 [9]), all ideals in the linkage class of a complete intersection in a Gorenstein local ring are strongly Cohen–Macaulay. For instance, codimension 2 perfect and Gorenstein codimension 3 ideals are strongly Cohen–Macaulay.

Remark 2.5. The conclusions of Example 2.4 are true when R is not Gorenstein but only Cohen–Macaulay.

In this case \mathcal{M}^* is acyclic with zeroth homology W_T , and we can use $\mathcal M$ and \mathcal{M}^* to compute the desired vanishing.

3. Global conditions

We return to the notation and hypotheses of Section 1.

Proposition 3.1. Suppose that

$$
R^j \pi_* (\tilde{I}^a \cdot \mathcal{O}_X) = 0 \quad \text{for} \quad 1 \le a \le \overline{n} + 1, \quad j > 0.
$$

Then there exists a positive integer f such that

$$
H^j(X, \mathcal{L}^a \otimes \mathcal{M}^b) = 0 \quad \text{for} \quad j > 0, \ a > 0 \ \text{and} \ b \geq fa.
$$

Proof. After possibly tensoring with an extension field of k , we may suppose that k is an infinite field. Suppose that I is generated in degree $\leq d$. Set $d' = d + 1$. Let $D_1, \ldots, D_{\overline{n}}$ be general members of $\Gamma(X, \mathcal{L} \otimes \mathcal{M}^{d'})$. Let

$$
L_i = D_1 \cap \dots \cap D_i
$$

be the (scheme theoretic) intersection. L_i has dimension $\overline{n} - i$. Set $L_0 = X$. We have short exact sequences

$$
0 \to (\mathcal{L}^a \otimes \mathcal{M}^b) \otimes \mathcal{O}_{L_i} \to (\mathcal{L}^{a+1} \otimes \mathcal{M}^{b+d'}) \otimes \mathcal{O}_{L_i}
$$

$$
\to (\mathcal{L}^{a+1} \otimes \mathcal{M}^{b+d'}) \otimes \mathcal{O}_{L_{i+1}} \to 0
$$
 (2)

for all integers a and b and $0\leq i\leq \overline{n}-1.$

$$
R^j \pi_*({\mathcal L}^a \otimes {\mathcal M}^b) = R^j \pi_*({\tilde I}^a \cdot {\mathcal O}_X) \otimes {\mathcal O}_Y(b) = 0
$$

for $j > 0$ and $1 \le a \le \overline{n} + 1$. From the Leray spectral sequence

$$
H^i(Y, R^j \pi_*({\mathcal L}^a\otimes {\mathcal M}^b))\Rightarrow H^{i+j}(X, {\mathcal L}^a\otimes {\mathcal M}^b)
$$

we have

$$
H^{j}(X, \mathcal{L}^{a} \otimes \mathcal{M}^{b}) = H^{j}(Y, \pi_{*}(\tilde{I}^{a} \cdot \mathcal{O}_{X}) \otimes \mathcal{O}_{Y}(b)).
$$

There thus exists an integer $f \ge d'$ such that

$$
H^{j}(X, \mathcal{L}^{a} \otimes \mathcal{M}^{b}) = 0 \quad \text{for} \quad j > 0, \ 1 \le a \le \overline{n} + 1 \text{ and } b \ge f \tag{3}
$$

since $\pi_*(\tilde{I}^a \cdot \mathcal{O}_X)$ is coherent and $\mathcal{O}_Y(1)$ is ample on Y.

By (3) and induction applied to the long exact cohomology sequences associated to (2) we have

$$
H^{j}(X, \mathcal{L}^{a} \otimes \mathcal{M}^{b} \otimes \mathcal{O}_{L_{i}}) = 0 \text{ for } j > 0, \ i + 1 \leq a \leq \overline{n} + 1 \text{ and } b \geq f + id'. \quad (4)
$$

The following inductive statement $(5) \implies (6)$ can be established by induction using the exact sequences (2) , (4) and the equality

$$
(a,b) = (a - i - 1)(1, d') + (i + 1, b - (a - i - 1)d').
$$

Note that if $a \geq i+1$ and $b \geq f + (a-1)d'$ then $b - (a-i-1)d' \geq f + id'$.

Suppose that

$$
H^j(X, \mathcal{L}^a \otimes \mathcal{M}^b \otimes \mathcal{O}_{L_{i+1}}) = 0 \text{ for } j > 0, \ i+2 \le a \text{ and } b \ge f + (a-1)d'. \tag{5}
$$

Then

$$
H^j(X, \mathcal{L}^a \otimes \mathcal{M}^b \otimes \mathcal{O}_{L_i}) = 0 \text{ for } j > 0, \ i+1 \le a \text{ and } b \ge f + (a-1)d'. \tag{6}
$$

 $L_{\overline{n}}$ has dimension 0, so that (6) is immediate for $i = \overline{n}$. Thus the proposition follows from descending induction on i using the above statement (5) \Longrightarrow (6). \Box

Proposition 3.2. Suppose that X is a Cohen–Macaulay scheme and

$$
R^j \pi_*(\omega_X \otimes \mathcal{L}^t) = 0 \quad \text{for} \ \ 1 \le t \le \overline{n} + 1, \ j > 0.
$$

Then there exists a positive integer f such that

$$
H^j(X, \mathcal{L}^{-a} \otimes \mathcal{M}^{-b}) = 0 \quad \text{for} \quad j < \overline{n}, \ a > 0 \ \text{and} \ b \geq fa.
$$

Proof. After possibly tensoring with an extension field of k , we may suppose that k is an infinite field. Suppose that I is generated in degree $\leq d$. Set $d' = d + 1$. Let $D_1, \ldots, D_{\overline{n}}$ be general members of $\Gamma(X, \mathcal{L} \otimes \mathcal{M}^{d'})$. Let

$$
L_i = D_1 \cap \dots \cap D_i
$$

be the (scheme theoretic) intersection. L_i has dimension $\overline{n} - i$. Set $L_0 = X$. We have short exact sequences

$$
0 \to (\mathcal{L}^{-a-1} \otimes \mathcal{M}^{-b-d'}) \otimes \mathcal{O}_{L_i} \to (\mathcal{L}^{-a} \otimes \mathcal{M}^{-b}) \otimes \mathcal{O}_{L_i} \to (\mathcal{L}^{-a} \otimes \mathcal{M}^{-b}) \otimes \mathcal{O}_{L_{i+1}} \to 0
$$
\n
$$
(7)
$$

for all integers a and b and $0 \le i \le \overline{n} - 1$.

By Serre-duality,

$$
H^j(X, \mathcal{L}^{-a} \otimes \mathcal{M}^{-b}) = H^{\overline{n}-j}(X, \omega_X \otimes \mathcal{L}^a \otimes \mathcal{M}^b).
$$

$$
R^j \pi_*(\omega_X \otimes \mathcal{L}^a \otimes \mathcal{M}^b) = R^j \pi_*(\omega_X \otimes \mathcal{L}^a) \otimes \mathcal{O}_Y(b) = 0
$$

for $j > 0$ and $1 \le a \le \overline{n} + 1$. From the Leray spectral sequence, we hav

$$
H^{\overline{n}-j}(X,\omega_X \otimes \mathcal{L}^a \otimes \mathcal{M}^b) = H^{\overline{n}-j}(Y,\pi_*(\omega_X \otimes \mathcal{L}^a) \otimes \mathcal{O}_y(b)).
$$

Hence there exists an integer $f \geq d'$ such that

$$
H^{j}(X, \mathcal{L}^{-a} \otimes \mathcal{M}^{-b}) = 0 \quad \text{for} \quad j < \overline{n}, \ 1 \le a \le \overline{n} + 1 \text{ and } b \ge f \tag{8}
$$

since $\pi_*(\omega_X \otimes \mathcal{L}^a)$ is coherent and $\mathcal{O}_Y(1)$ is ample on Y.

By (8) and induction applied to the long exact cohomology sequences associated to (7) we have

$$
H^{j}(X, \mathcal{L}^{-a} \otimes \mathcal{M}^{-b} \otimes \mathcal{O}_{L_{i}}) = 0 \text{ for } j < \overline{n} - i, 1 \le a \le \overline{n} + 1 - i \text{ and } b \ge f. (9)
$$

The following inductive statement $(10) \implies (11)$ can be established by induction using the exact sequences (7) , (9) and the equality

$$
(a,b) = (a-1)(1,d') + (1,b - (a-1)d').
$$

Note that if $a \ge 1$ and $b \ge f + (a-1)d'$ then $b - (a-1)d' \ge f$. Suppose that

$$
H^j(X, \mathcal{L}^{-a} \otimes \mathcal{M}^{-b} \otimes \mathcal{O}_{L_{i+1}}) = 0 \text{ for } j < \overline{n-1}, 1 \le a \text{ and } b \ge f + (a-1)d'. \tag{10}
$$

Then

$$
H^{j}(X, \mathcal{L}^{-a} \otimes \mathcal{M}^{-b} \otimes \mathcal{O}_{L_{i}}) = 0 \text{ for } j < \overline{n} - i, 1 \le a \text{ and } b \ge f + (a - 1)d'. \tag{11}
$$

(11) is immediate for $i = \overline{n}$. Thus the proposition follows from descending induction on i using the above statement $(10) \implies (11)$.

4. Linear bounds for Cohen–Macaulay coordinate rings

Let k be a field, S a noetherian graded k-algebra which is generated in degree 1, with graded maximal ideal M. Let $I \subset S$ be a homogeneous ideal, and let I be the sheaf associated to I in $Y = \text{Proj}(S)$. Let $X = \text{Proj}(\bigoplus \tilde{I}^n)$ be the blowup of \tilde{I} , with natural map $\pi \colon X \to Y$, and $\mathcal{O}_X(1) = \tilde{I} \cdot \mathcal{O}_X$. Let β be the dimension of $S, \overline{n} = \beta - 1$ be the dimension of Y.

Theorem 4.1. Suppose that I is an ideal of height > 0 , S is Cohen–Macaulay and X is a Cohen–Macaulay scheme. Let

$$
E = \operatorname{Proj} \left(\bigoplus_{n \geq 0} \tilde{I}^n / \tilde{I}^{n+1} \right)
$$

with dualizing sheaf ω_E . Suppose that

$$
\pi_* \mathcal{O}_E(m) = \tilde{I}^m / \tilde{I}^{m+1} \text{ for } m \ge 0,
$$

\n
$$
R^i \pi_* \mathcal{O}_E(m) = 0 \text{ for } i > 0 \text{ and } m \ge 0 \text{ and}
$$

\n
$$
R^i \pi_* \omega_E(m) = 0 \text{ for } i > 0 \text{ and } m \ge 2.
$$

Then there exists a positive integer f such that $k[(I^e)_c]$ is Cohen–Macaulay whenever $e > 0$ and $c \geq ef$.

Proof. $R^i \pi_* \mathcal{O}_X = 0$ for $i > 0$ and $\pi_* \mathcal{O}_X = \mathcal{O}_Y$ by Lemma 2.1 (and Proposition III.8.5 [7]). S is Cohen-Macaulay so that $H^i_M(S) = 0$ for $i < \beta$ and $H^i(Y, \mathcal{O}_Y) =$ 0 for $0 < i < \overline{n}$. Now by the Leray spectral sequence, $H^{i}(Y, R^{j}\pi_{*}\mathcal{O}_{X}) \Rightarrow$ $H^{i+j}(X,\mathcal{O}_X)$, we get $H^i(X,\mathcal{O}_X) = 0$ for $0 < i < \overline{n}$.

By Lemma 2.1 and Proposition 3.1 we have an f such that $H^{j}(X,\mathcal{L}^{a}\otimes\mathcal{M}^{b})=0$ for $j > 0$, $a > 0$, $b \geq fa$. By Lemma 2.2 and Proposition 3.2 there exists f such that $H^j(X, \mathcal{L}^{-a} \otimes \overline{\mathcal{M}}^{-b}) = 0$ for $j < \overline{n}, a > 0, b \ge fa$.

Now the Theorem follows from Lemmas 1.4 and 1.2.

Corollary 4.2. Suppose that S is Cohen–Macaulay, I is an ideal of height > 0 and \tilde{I} is locally a complete intersection in Y = Proj(S). Then there exists a positive integer f such that $k[(I^e)_c]$ is Cohen–Macaulay whenever $e > 0$ and $c > ef$.

Proof. This is immediate from Example 2.3.

The following Corollary is now immediate from the comments following Example 2.3. By a canonical module W_T we mean a canonical module whose associated sheaf is a dualizing sheaf of Proj(T). $I_{(P)}^n$ denoted the degree 0 elements of the localization I_P^n .

Corollary 4.3. Suppose that

- (1) S is Cohen–Macaulay.
- (2) *I* is an ideal of height > 0 .
- (3) $\bigoplus_{n\geq 0} I_{(P)}^n$ and $T(P) = \bigoplus_{n\geq 0} (I^n/I^{n+1})_{(P)}$ are Cohen-Macaulay for all $P \in \mathrm{Proj}(S)$.
- (4) $H^i_{\overline{P}}(T(P))_c = 0$ for $i \geq 0$ and $c \geq 0$ and $H^i_{\overline{P}}(W_{T(P)})_c = 0$ for $i \geq 2$ and $c \geq 2$ for all $P \in \text{Proj}(S)$, where $W_{T(P)}$ is the canonical module of $T(P)$, \overline{P} is the maximal ideal of $S_{(P)}$.

Then there exists a positive integer f such that $k[(I^e)_c]$ is Cohen–Macaulay whenever $e > 0$ and $c \geq ef$.

Corollary 4.4. Suppose that S is Cohen–Macaulay, I is an ideal of height > 0 and $I_{(P)}$ is strongly Cohen–Macaulay with $\mu(I_{(P)}) \leq height(P)$ for all primes $P \in Y$ containing I. Then there exists a positive integer f such that $k[(I^e)_c]$ is Cohen–Macaulay whenever $e > 0$ and $c \geq ef$.

Proof. The assumptions of Theorem 4.1 are satisfied by Example 2.4 and Remark 2.5.

References

- [1] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math. **146**, Springer Verlag, 1970.
- [2] W. Bruns and J. Herzog, Cohen–Macaulay rings, Cambridge Univ., 1993.
- [3] A. Conca, J. Herzog, N. V. Trung and G. Valla, Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces, Amer. J. Math. **119** (1997), 859–901.
- [4] D. Eisenbud, Commutative Algebra with a view toward algebraic geometry, Springer Verlag, 1995.
- [5] A. Geramita, A. Gimigliano and B. Harbourne, Projectively normal but superabundant embeddings of rational surfaces in projective spaces, J. Algebra **169** (1994), 791–213.
- [6] A. Geramita, A. Gimigliano and Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Annalen **301** (1995), 363–380.
- [7] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977.
- [8] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowing-up rings, J. Alg. **74** (1982), 466–493.
- [9] C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. **104** (1982), 1043–1062.
- [10] D. Katz and S. McAdam, Two asymptotic functions, Comm. in Alg. **17** (1989), 1069–1091.
- [11] H. Matsumura, Geometric structure of the cohomology rings in abstract algebraic geometry, Mem. Coll. Sci. Univ. Kyoto (A) **32** (1959), 33–84.
- [12] D. Mumford, Annals of Math. Studies 59, Lectures on Curves on an algebraic surface, Princeton U. Press, 1966.
- [13] A. Simis, N. V. Trung, and G. Valla, The diagonal subalgebra of a blow-up algebra. Preprint.
- [14] I. Swanson, Powers of ideals: Primary decompositions, Artin–Rees Lemma and Regularity. Math. Annalen **307** (1997), 299–313.

Jürgen Herzog FB 6 Mathematik und Informatik Universität-GHS-Essen Postfach 103764 D–45117 Essen Germany e-mail: mat300@uni-essen.de

S. Dale Cutkosky Department of Mathematics University of Missouri Columbia, MO 65211 USA e-mail: dale@cutkosky.math.missouri.edu

(Received: January 5, 1997)