On Macdonald's formula for the volume of a compact Lie group

Yoshitake Hashimoto

Abstract. We give a simple proof of Macdonald's formula for the volume of a compact Lie group.

Mathematics Subject Classification (1991). 22E15.

Keywords. Compact Lie group, Todd class.

It is well-known that a compact Lie group G of rank r is rational homotopy equivalent to a product of spheres

$$S = S^{2m_1+1} \times \cdots \times S^{2m_r+1}$$

where (m_1, \ldots, m_r) is called the exponent of G. In [3] I. G. Macdonald calculated the volume of G with respect to the Haar measure μ induced from a Lebesgue measure λ on the Lie algebra \mathfrak{g} of G. The result is as follows:

$$\mu(G) = \lambda(\mathfrak{g}/\mathfrak{g}_{\mathbb{Z}})\sigma(S)$$

where $\mathfrak{g}_{\mathbb{Z}}$ is the Chevalley lattice and σ is the product of the superficial measure of the unit spheres S^{2m_i+1} in \mathbb{R}^{2m_i+2} , that is

$$\sigma(S^{2m+1}) = \frac{2\pi^{m+1}}{m!}.$$

In this note we shall give a simpler proof of this formula.

Let T be a maximal subgroup of G, \mathfrak{t} its Lie algebra and $\mathfrak{t}_{\mathbb{Z}}$ a lattice in \mathfrak{t} such that the kernel of the exponential map from \mathfrak{t} to T is $2\pi\mathfrak{t}_{\mathbb{Z}}$. We fix a positive definite inner product on \mathfrak{g} which is invariant under the adjoint action of G such that the induced volume form coincides with λ . This inner product induces Lebesgue measures on \mathfrak{t} and $\mathfrak{g}/\mathfrak{t}$ (also denoted by λ), which determine a Haar measure on T and a G-invariant measure on the flag manifold G/T (also denoted by μ). Then clearly

$$\mu(T) = (2\pi)^r \lambda(\mathfrak{t}/\mathfrak{t}_{\mathbb{Z}}), \quad \mu(G) = \mu(T)\mu(G/T).$$

The main problem is to compute the volume of the flag manifold. We compute at a point of the flag manifold the ratio of the volume form μ and another Ginvariant top form, the top term of the Todd class, whose integral value is known to be 1 [1]. The adjoint action of G on \mathfrak{q} induces trivialization of the direct sum of the tangent bundle of G/T and a trivial \mathfrak{t} bundle. Hence the rational Pontrjagin classes of G/T all vanish and the Todd class equals $\exp \frac{1}{2}c_1(G/T)$. The top term is $\frac{1}{n!}(\frac{1}{2}c_1)^n$ where n is the complex dimension of G/T. Let $X_{\alpha} \in \mathfrak{g} \otimes \mathbb{C}$ be an eigenvector for a root α such that $\frac{1}{2}[X_{\alpha}, X_{-\alpha}] = \alpha^{\vee}$, the coroot for α , then

$$\frac{1}{2}c_1(X_{\alpha}, X_{\beta}) = \begin{cases} \frac{\langle \rho | \alpha^{\vee} \rangle}{\pi}, & \beta = -\alpha, \\ 0, & \beta \neq -\alpha. \end{cases}$$

where

$$\rho = \frac{1}{2} \sum_{\alpha > 0} \alpha,$$

on the other hand

$$\langle X_{\alpha}, X_{-\alpha} \rangle = |\alpha^{\vee}|^2.$$

Evaluating the volume form and $\frac{1}{n!}(\frac{1}{2}c_1)^n$ for 2n vectors $(X_\alpha, X_{-\alpha}; \alpha > 0)$, we obtain

$$\prod_{\alpha>0} |\alpha^\vee|^2, \quad \prod_{\alpha>0} \frac{\langle \rho |\alpha^\vee\rangle}{\pi}$$

respectively. Since α^{\vee} is the sum of $\langle \rho | \alpha^{\vee} \rangle$ simple coroots [2], it holds that

$$\prod_{\alpha>0} \langle \rho | \alpha^{\vee} \rangle = \prod_{i=1}^{r} (m_i!).$$

Hence

$$\mu(G/T) = \frac{\sigma(S)}{(2\pi)^r} \prod_{\alpha > 0} |\alpha^{\vee}|^2.$$

The final result follows from

$$\lambda(\mathfrak{g}/\mathfrak{g}_{\mathbb{Z}}) = \lambda(\mathfrak{t}/\mathfrak{t}_{\mathbb{Z}}) \prod_{\alpha > 0} |\alpha^{\vee}|^2.$$

The author would like to thank K. Abe, A. Hattori and K. Ono for useful comments and encouragement.

662 Y. Hashimoto CMH

References

 A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces II, Amer. J. Math. 81 (1959), 315–382.

- [2] N. Bourbaki, Groupes et algèbres de Lie, chapitres 4, 5 et 6, Hermann, Paris 1968.
- [3] I. G. Macdonald, The volume of a compact Lie group, Invent. math. 56 (1980), 93–95.

Yoshitake Hashimoto Department of Mathematics Osaka City University Osaka, Japan

(Received: May 10, 1997)