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1. Introduction and main results

Let A be a finite dimensional associative K-algebra with an identity over an alge-
braically closed field K of arbitrary characteristic. If a1 = 1, . . . , an is a basis of
A over K, we have the constant structures aijk defined by aiaj =

∑
aijkak. The

affine variety modA(d) of d-dimensional unital left A-modules consists of n-tuples
m = (m1, . . . ,mn) of d × d-matrices with coefficients in K such that m1 is the
identity matrix and mimj =

∑
aijkmk holds for all indices i and j. The general

linear group Gld(K) acts on modA(d) by conjugation, and the orbits correspond
to the isomorphism classes of d-dimensional modules (see [11]). We shall agree to
identify a d-dimensional A-module M with the point of modA(d) corresponding to
it. We denote by O(M) the Gld(K)-orbit of a module M in modA(d). Then one
says that a module N in modA(d) is a degeneration of a module M in modA(d)
if N belongs to the Zariski closure O(M) of O(M) in modA(d), and we denote
this fact by M ≤deg N . Thus ≤deg is a partial order on the set of isomorphism
classes of A-modules of a given dimension. It is not clear how to characterize ≤deg
in terms of representation theory.

There has been a work by S. Abeasis and A. del Fra [1], K. Bongartz [7],
[10], [9], Ch. Riedtmann [13], and A. Skowroński and the author [15], [16], [17]
connecting ≤deg with other partial orders ≤ext and ≤ on the isomorphism classes
in modA(d). They are defined in terms of representation theory as follows:
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• M ≤ext N : ⇔ there are modules Mi, Ui, Vi and short exact sequences
0 → Ui → Mi → Vi → 0 in modA such that M = M1, Mi+1 = Ui ⊕ Vi,
1 ≤ i ≤ s, and N = Ms+1 for some natural number s.
• M ≤ N : ⇔ [X,M ] ≤ [X,N ] holds for all modules X .

Here and later on we abbreviate dimKHomA(X,Y ) by [X,Y ], and furthermore
dimKExtiA(X,Y ) by [X,Y ]i. Then for modulesM andN in modA(d) the following
implications hold:

M ≤ext N =⇒M ≤deg N =⇒M ≤ N

(see [10], [13]). Unfortunately the reverse implications are not true in general, and
it would be interesting to find out when they are. K. Bongartz proved in [10] (see
also [8]) that it is the case for all representations of Dynkin quivers and the double
arrow. Recently, the author proved in [17] that ≤ and ≤ext are also equivalent for
all modules over representation-finite blocks of group algebras. Moreover, in [9]
K. Bongartz proved that ≤deg and ≤ coincide for all representations of extended
Dynkin quivers, and conjectured that possibly ≤ext and ≤deg also coincide. The
main aim of this paper is to prove the following theorem.

Theorem. The partial orders ≤ and ≤ext coincide for modules over all tame
concealed algebras.

In particular we get the positive answer to the above question.

Corollary. The partial orders ≤, ≤deg and ≤ext are equivalent for all represen-
tations of extended Dynkin quivers.

We mention that K. Bongartz described in [8, Theorem 4] the set-theoretic
structure of minimal degenerations of modules provided the partial orders ≤ext
and ≤ coincide. In a forthcoming paper we shall describe the minimal singularities
for representations of extended Dynkin quivers.

The paper is organized as follows. In Section 2 we fix the notation, recall
the relevant definitions and facts, and prove some preliminary results on modules
which we apply in our investigations. In Section 3 we recall several known facts
on tame concealed algebras. In particular we describe some properties of the
additive categories of standard stable tubes. Section 4 is devoted to the proof of
the Theorem.

For basic background on the topics considered here we refer to [5], [10], [9],
[11] and [14]. The results presented in this paper form a part of the author’s
doctoral dissertation written under supervision of professor A. Skowroński. The
author gratefully acknowledges support from the Polish Scientific Grant KBN No.
2 PO3A 020 08.
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2. Preliminary results

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-
algebra with an identity over an algebraically closed field K. We denote by modA
the category of finite dimensional left A-modules, by indA the full subcategory
of modA formed by indecomposable modules, and by rad(modA) the Jacobson
radical of modA. By an A-module is meant an object from modA. Further, we
denote by ΓA the Auslander-Reiten quiver of A and by τ = τA and τ− = τ−A
the Auslander-Reiten translations DTr and TrD, respectively. We shall agree to
identify the vertices of ΓA with the corresponding indecomposable modules. For
a module M we denote by [M ] the image of M in the Grothendieck group K0(A)
of A. Thus [M ] = [N ] if and only if M and N have the same simple composition
factors including the multiplicities. Finally, for a family F of A-modules, we
denote by add(F) the additive category given by F , that is, the full subcategory
of modA formed by all modules isomorphic to the direct summands of direct sums
of modules from F .
2.2. Following [13], for M , N from modA, we set M ≤ N if and only if
[X,M ] ≤ [X,N ] for all A-modules X . The fact that ≤ is a partial order on
the isomorphism classes of A-modules follows from a result by M. Auslander [3]
(see also [7]). Observe that, if M and N have the same dimension and M ≤ N ,
then [M ] = [N ]. Moreover, M. Auslander and I. Reiten have shown in [4] that, if
M and N are A-modules with [M ] = [N ], then for all nonprojective indecompos-
able A-modules X and all noninjective indecomposable modules Y the following
formulas hold (see [12]):

[X,M ]− [M, τX ] = [X,N ]− [N, τX ]
[M,Y ]− [τ−Y,M ] = [N,Y ]− [τ−Y,N ]

Hence, if [M ] = [N ], then M ≤ N if and only if [M,X ] ≤ [N,X ] for all A-modu-
les X .
2.3. Let M and N be A-modules with [M ] = [N ] and

Σ : 0→ D→ E → F → 0

an exact sequence in modA. Following [13] we define the additive functions δM,N ,
δ′M,N and δΣ on A-modules X as follows

δM,N(X) = [N,X ]− [M,X ]
δ′M,N(X) = [X,N ]− [X,M ]
δΣ(X) = δE,D⊕F (X) = [D ⊕ F,X ]− [E,X ].

From the Auslander-Reiten formulas (2.2) we get the following very useful equal-
ities

δM,N(X) = δ′M,N (τ−X), δM,N (τX) = δ′M,N(X)
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for all A-modules X . Observe also that δM,N(I) = 0 for any injective A-module
I, and δ′M,N (P ) = 0 for any projective A-module P . In particular, the following
conditions are equivalent:

(1) M ≤ N ,
(2) δM,N (X) ≥ 0 for all X ∈ ΓA,
(3) δ′M,N (X) ≥ 0 for all X ∈ ΓA.

2.4. For an A-module M and an indecomposable A-module Z, we denote by
µ(M,Z) the multiplicity of Z as a direct summand of M . For a nonprojective
indecomposable A-module U , we denote by Σ(U) an Auslander-Reiten sequence

Σ(U) : 0→ τU → E(U)→ U → 0,

and, for an injective indecomposable A-module I, we set E(I) = I/soc(I), τ−I =
0.

We shall need the following lemma.

Lemma 2.5. Let M , N be A-modules with [M ] = [N ] and U an indecomposable
A-module. Then

µ(N,U)− µ(M,U) = δM,N (U)− δM,N (E(U)) + δM,N (τU).

Proof. If U is nonprojective, then the Auslander-Reiten sequence Σ(U) induces an
exact sequence

0→ HomA(M, τU)→ HomA(M,E(U))→ rad(M,U)→ 0,

and hence we get

[M, τU ⊕ U ]− [M,E(U)] = [M,U ]− dimKrad(M,U) = µ(M,U).

Similarly, we have
[N, τU ⊕ U ]− [N,E(U)] = µ(N,U).

Then we obtain the equalities

µ(N,U)− µ(M,U) = ([N, τU ⊕ U ]− [M, τU ⊕ U ])− (N, [E(U)]− [M,E(U)])
= δM,N(τU) + δM,N(U)− δM,N (E(U)).

Assume now that U is projective. Then HomA(M, radU) ' rad(M,U), and so

[M,U ]− [M, radU ] = µ(M,U).
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Similarly, we have
[N,U ]− [N, radU ] = µ(N,U).

Therefore, we get

µ(N,U)− µ(M,U) = ([N,U ]− [M,U ])− ([N, radU ]− [M, radU ])
= δM,N (U)− δM,N(radU)
= δM,N (U)− δM,N(E(U)) + δM,N(τU).

2.6. A component Γ of ΓA, without oriented cycles and such that any τ -orbit
contains a projective module is called preprojective. Also any module X ∈ add(Γ)
is called preprojective. There is a partial order � on the set of vertices of a
preprojective component Γ with U � V if there exists a path in Γ leading from U
to V . Preinjective components and preinjective modules are defined dually.
2.7. Let M and N be A-modules with M < N . A short nonsplittable exact
sequence

Σ : 0→ L1 →M ′ → L2 → 0

is said to be admissible for (M,N) if M = M ′ ⊕ V for some A-module V and
[L1 ⊕ L2 ⊕ V,X ] ≤ [N,X ] for any A-module X (equivalently, δΣ ≤ δM,N or
δ′Σ ≤ δ′M,N).

We shall need the following fact.

Proposition. Let M and N be A-modules with [M ] = [N ], and assume that
M is preprojective and M < N holds. Then there exists an admissible sequence
0→ L1 →M → L2 → 0 for (M,N).

Proof. We can repeat the proof of Theorem 4.1 in [10], since Bongartz has used
the fact that N is preprojective only to prove that M is preprojective.

3. Some properties of modules over tame concealed algebras

Here and later on A denotes a fixed tame concealed algebra [14].
3.1. We recall those aspects of the representation theory of tame concealed alge-
bras that we will need later (see [14], [10]). We have a decomposition of ΓA into
the preprojective part P , the preinjective part I and the regular one R, where R
is a sum of stable tubes Tµ of ranks rµ ≥ 1, for µ ∈ P1(K) = K ∪ {∞}. For any
A-module X we can write X = XP ⊕XR⊕XI , where XP ∈ add(P), XI ∈ add(I)
and XR =

⊕
µ∈P1(K)Xµ with Xµ ∈ add(Tµ). All connected components of ΓA are

standard (see [14] for definition). A tube of rank 1 is called homogeneous and Tµ is
not homogeneous for at most three µ ∈ P1(K). For any X,Y ∈ ΓA, if [X,Y ] > 0
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and X and Y do not belong to the same connected component of ΓA, then X
is preprojective or Y is preinjective. The abelian category add(Tµ) is serial and
closed under extensions, so we may speak about simple regular modules, composi-
tion series in add(Tµ), and so on. A tube Tµ has rµ simple regular modules, which
are conjugate under τ . If a tube Tµ is homogeneous (rµ = 1), then we denote a
unique simple regular module in Tµ by Eµ. For any simple regular module E in
Tµ we denote by

· · · → ϕ3E → ϕ2E → ϕE → ϕ0E = E

a unique infinite sectional path in Tµ of epimorphisms and by

E = ψ0E → ψE → ψ2E → ψ3E → · · ·

a unique infinite sectional path in Tµ of monomorphisms. Then every indecompos-
able module in Tµ is of the form ϕjE and ψjE′ for some j ≥ 0 and simple regular
modules E, E′ in Tµ. In an obvious way we define functions

ϕk, ψk : Tµ → Tµ ∪ {0}

for any integer k, such that for any simple regular module E in Tµ and l ≥ 0 we
have:

• ϕk(ϕlE) = ϕk+lE if k + l ≥ 0, and ϕk(ϕlE) = 0 otherwise;
• ψk(ψlE) = ψk+lE if k + l ≥ 0, and ψk(ψlE) = 0 otherwise.

Observe that for any integer k and X ∈ Tµ we have τX = ψ−ϕX , τ−X = ϕ−ψX
and ϕkrX = ψkrX , where r = rµ.

There is a positive, sincere vector h in K0(A), such that

[ϕkrµ−1E] = [ψkrµ−1E] = k · h

for any simple regular module E in Tµ and k ≥ 1.
3.2 The global dimension of A is at most 2. All preprojective and regular mod-
ules have projective dimension at most 1, and dually all preinjective and regular
modules have injective dimension at most 1. The bilinear form on K0(A) = Zn
which extends the equality

< [M ], [N ] >= [M,N ]− [M,N ]1 + [M,N ]2

and the associated quadratic form χ : K0(A) → Z, χ(y) =< y, y >, will play an
important role. If M has no non-zero preinjective direct summand or N has no
non-zero preprojective direct summand, then

< [M ], [N ] >= [M,N ]− [M,N ]1.
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The quadratic form χ is positive semidefinite and controls the category modA (see
[14]). This means that the following conditions are satisfied:

(1) For any X ∈ ΓA, χ([X ]) ∈ {0, 1}.
(2) For any connected, positive vector y with χ(y) = 1, there is precisely one

X ∈ ΓA with [X ] = y.
(3) For any connected, positive vector y with χ(y) = 0, there is an infinite

family of pairwise nonisomorphic modules X ∈ ΓA with [X ] = y.

Moreover, χ(h) = 0 and < h, y >= − < y, h > for any y ∈ K0(A). Finally, we
define a linear function ∂ : K0(A)→ Z, called the defect, as follows

∂y =< h, y >= − < y, h > .

The main property of ∂ is that the value ∂[X ] is negative for any X ∈ P , positive
for any X ∈ I, and zero for any X ∈ R.

Lemma 3.3. If M ≤ N , then ∂[MP ]− ∂[NP ] = ∂[NI ]− ∂[MI ] ≥ 0.

Proof. Since [M ] = [N ], then

∂[MP ] + ∂[MR] + ∂[MI ] = ∂[NP ] + ∂[NR] + ∂[NI ].

The equalities ∂[MR] = ∂[NR] = 0 imply ∂[MP ] − ∂[NP ] = ∂[NI ]− ∂[MI ]. Take
a homogeneous tube Tµ with (M ⊕N)µ = 0. Then

0 ≤[N,Eµ]− [M,Eµ] = [NP , Eµ]− [MP , Eµ]
= < [NP ], [Eµ] > − < [MP ], [Eµ] >=< [NP ], h > − < [MP ], h >
=∂[MP ]− ∂[NP ].

3.4. Fix a tube Tµ, µ ∈ P1(K), and a module X ∈ add(Tµ). Let H(X) ≥ 0 be
the minimal number such that for any indecomposable direct summand ϕjE of
X , where E is a simple regular module in Tµ, we have j < H(X) (so H(X) is the
maximal quasi-length of an indecomposable direct summand of X). For any simple
regular module E in Tµ we denote by `E(X) the multiplicity of E as a composition
factor of a composition series of X in the category add(Tµ). If E1, . . . , Er (r = rµ)
denote all simple regular modules in Tµ, then

[X ] = `E1(X)[E1] + `E2(X)[E2] + · · ·+ `Er(X)[Er].

Moreover, the following lemma holds (see Lemma 5.1 in [15]).

Lemma 3.5. Let X be a module in add(Tµ) and E be any simple regular module
in Tµ. Then for any k ≥ H(X)− 1 we have

[X,ψkE] = `E(X) = [ϕkE,X ].
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As a consequence of the above lemma we obtain

Lemma 3.6. Let i, j be integers with j ≥ 0 and E be any simple regular module
in Tµ. Then

(i) [ϕsψtE,ψr−1E] = 1 for all s ≥ 0, 0 ≤ t < r, and [X,ψr−1E] = 0 for the
remaining indecomposable modules X ∈ Tµ.

(ii) [ϕsψtE,ψr−1ϕjE] − [ϕsψtE,ψ−ϕjE] = 1 for all s ≥ j, 0 ≤ t < r, and
[X,ψr−1ϕjE]− [X,ψ−ϕjE] = 0 for the remaining indecomposable modules
X ∈ Tµ.

(iii) If j ≥ r, then [ψjE,ψjE] > 1.
(iv) [E,ψjE] = 1 and [E′, ψjE] = 0 for all simple regular modules E′ 6= E in

Tµ.

Applying Lemmas 4.3 and 4.6 in [15], we obtain the following result (see also
Corollary 2.2 in [2]).

Lemma 3.7. Let X ∈ Tµ, s, t ≥ 0 be integers, and M , N be A-modules with
[M ] = [N ]. Then

(i) There exists a nonsplittable exact sequence

Σ : 0→ ϕsX → ϕsψt+1X ⊕ ϕ−X → ϕ−ψt+1X → 0.

Moreover, if s < r or t < r, then δΣ(ϕiψjX) = 1 for all 0 ≤ i ≤ s,
0 ≤ j ≤ t, and δΣ(Y ) = 0 for the remaining indecomposable A-modules.

(ii) ∑
0≤i≤s

∑
0≤j≤t

µ(N,ϕ−iψjX)− µ(M,ϕ−iψjX)

= δM,N (ψ−ϕs+1X)− δM,N (ψ−X)− δM,N (ϕs+1ψtX) + δM,N (ψtX).

Lemma 3.8. Let M , N be A-modules with M ≤ N and ∂[MP ] = ∂[NP ]. Then

(i) [MP ] ≥ [NP ].
(ii) For any indecomposable simple regular module E in a tube Tµ we have

`E(Mµ) ≤ `E(Nµ).

(iii) For any tube Tµ, [Mµ] ≤ [Nµ] holds.

Proof. (i) Let I be any indecomposable injective A-module. We shall show that
[MP , I] ≥ [NP , I]. For all but finitely many k > 0, the vector k · h− [I] is positive
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and connected. Moreover,

χ(k · h− [I]) =< k · h− [I], k · h− [I] >=< [I], [I] >= χ([I]) = 1.

Thus for all but finitely many k > 0 there is an indecomposable A-module Xk

with [Xk] = k · h− [I]. Of course

∂[Xk] =< h, k · h− [I] >= − < h, [I] >= −∂[I] < 0,

which implies that Xk is preprojective. Take k > 0 such that there exists a
preprojective A-module Xk with [Xk] = kh− [I] and [MP ⊕NP , Xk]1 = 0. Then

[MP , I] =< [MP ], [I] >= −k∂[MP ]− < [MP ], [Xk] >= −k∂[MP ]− [MP , Xk]
≥ −k∂[NP ]− [NP , Xk] = −k∂[NP ]− < [NP ], [Xk] >=< [NP ], [I] >
= [NP , I].

Hence, [MP ] ≥ [NP ].
(ii) Let r = rµ and s be a natural number such that sr ≥ H(Mµ ⊕Nµ). Then

0 ≤[N,ψsr−1E]− [M,ψsr−1E] = [NP , ψsr−1E]− [MP , ψ
sr−1E] + [Nµ, ψsr−1E]

− [Mµ, ψ
sr−1E] =< [NP ], s · h > − < [MP ], s · h > +`E(Nµ)− `E(Mµ)

=− s(∂[NP ]− ∂[MP ]) + `E(Nµ)− `E(Mµ) = `E(Nµ)− `E(Mµ),

by Lemma 3.5.
(iii) follows from (ii), since for any X ∈ add(Tµ) we have

[X ] = `E1(X)[E1] + . . .+ `Er(X)[Er],

where r = rµ and E1, . . . , Er denote all simple regular modules in Tµ.

Lemma 3.9. Let Γ′ be a disjoint union of some tubes in ΓA and Γ′′ = ΓA \ Γ′.
Then for any X ∈ add(Γ′′) and R1, R2 ∈ add(Γ′) with [R1] = [R2] we have

[X,R1] = [X,R2] and [R1, X ] = [R2, X ].

Proof. By duality, it is enough to prove the first equality. We may assume that
X is indecomposable and preprojective, because [X,R1] = [X,R2] = 0 for any
regular or preinjective A-module X ∈ add(Γ′′). Hence, we get

[X,R1]− [X,R1]1 =< [X ], [R1] >=< [X ], [R2] >= [X,R2]− [X,R2]1.

Since [X,R1]1 = [X,R2]1 = 0 for any preprojective A-module X , we obtain the
required equality [X,R1] = [X,R2].
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4. Proof of the Theorem

We shall divide our proof of the Theorem into several steps. We use the nota-
tions introduced in Sections 2 and 3.

Proposition 4.1. Let M and N = N0 ⊕N1 be A-modules without any common
indecomposable direct summands. Assume that M < N and N0 is a preprojec-
tive indecomposable A-module with [N0, N ] = [N0,M ]. If there is no admissible
sequence of the form 0 → N0 → M → C → 0 for (M,N), then there exist a
homogeneous tube Tν in ΓA, for which (M ⊕ N)ν = 0, and a nonsplittable exact
sequence

0→ L→M → Eν → 0,

such that [L⊕Eν , X ] ≤ [N,X ] for any indecomposable A-module X 6∈ Tν .

Proof. By Theorem 2.4 in [10]N0 embeds intoM and the closureQ of the quotients
of M by N0 contains N1. Let t = dimKM + 1 and Γ′ ∪ Tµ1 ∪ · · · ∪ Tµt be the
disjoin union of all homogeneous tubes which do not contain any indecomposable
direct summand of M ⊕ N . We set Γ′′ = ΓA \ Γ′. Then Γ′′ is the disjoint
union of finitely many connected components of ΓA, and for any natural number
d, there is only a finite number of isomorphism classes of d-dimensional modules
from add(Γ′′). We decompose the set Q into a finite union of pairwise disjoint
subsets D1, D2, . . . ,Dr such that two modules U1 ⊕ U2 and V1 ⊕ V2 from Q with
U1, V1 ∈ add(Γ′′), U2, V2 ∈ add(Γ′), belong to the same Di, 1 ≤ i ≤ r, if and only
if U1 ' V1. Since Q = D1 ∪D2 ∪ · · · ∪ Dr, the module N1 belongs to Di for some
1 ≤ i ≤ r. Take any V ⊕ R ∈ Di with V ∈ add(Γ′′) and R ∈ add(Γ′). Then any
module from Di is, up to isomorphism, of the form V ⊕R′ for some R′ ∈ add(Γ′)
with [R′] = [R]. Consequently, for any indecomposable module X ∈ add(Γ′′)
we have [R′, X ] = [R,X ], by Lemma 3.9. Applying upper semicontinuity of the
function (Z → dimKHomA(Z,X)), we conclude that the set

SX = {Z ∈ Di; [Z,X ] ≥ [V ⊕R,X ] = [V ⊕R′, X ]}

is closed (see [11],[13]), for any X ∈ add(Γ′′). Since Di is a subset of SX , we obtain
that [N1, X ] ≥ [V ⊕ R,X ] for any X ∈ add(Γ′′). Take a tube Tµc ⊂ Γ′′, for some
1 ≤ c ≤ t, such that any direct summand of V ⊕N1 does not belong to Tµc . It is
possible, because dimKV < t.

Assume that R = 0. Then by Lemma 3.9, for any Tλ ⊂ Γ′ and j ≥ 0, we have

[N1, ϕ
jEλ] = [N1, ϕ

jEµc ] ≥ [V, ϕjEµc ] = [V, ϕjEλ].

This leads to a contradiction, since the sequence 0 → N0 → M → V → 0 is
admissible for (M,N). So, there is a tube Tν ⊂ Γ′ such that V ⊕R = I⊕ϕjEν for
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some A-module I and j ≥ 0. Then, for an epimorphism p : ϕjEν → Eν we obtain
the following commutative diagram with exact rows and columns

0
↓

0 I ⊕ ϕj−1Eν
↓ ↓

0→ N0 −→ M −→ I ⊕ ϕjEν → 0
↓ || ↓ (0,p)

0→ L −→ M −→ Eν → 0
↓ ↓

I ⊕ ϕj−1Eν 0
↓
0

Hence, for any Tλ ⊂ (Γ′ \ Tν) and k ≥ 0, applying Lemma 3.9, we get

[N,ϕkEλ] = [N,ϕkEµc ] ≥ [N0 ⊕ V ⊕R,ϕkEµc ]
= [N0 ⊕ I ⊕ ϕjEν , ϕkEµc ]
= [N0 ⊕ I ⊕ ϕj−1Eν ⊕Eν , ϕkEµc ]
≥ [L⊕Eν , ϕkEµc ] = [L⊕Eν , ϕkEλ].

This leads to [L⊕Eν , X ] ≤ [N,X ] for any X ∈ ΓA \ Tν .

Proposition 4.2. Let M and N be A-modules without any common indecompos-
able direct summand and such that M < N and MP ⊕NP is nonzero. Let r = rµ
and E be any simple regular module in Tµ for some µ ∈ P1(K). If there is no
admissible sequence for (M,N), then

(i) ∂[MP ] = ∂[NP ].
(ii) δ′M,N (ϕsψtE) = 0 holds for some s ≥ 0 and 0 ≤ t < r.

(iii) For any j ≥ 1 such that ψ−ϕjE is a direct summand of M , the equality
δ′M,N (ϕsψtE) = 0 holds for some s ≥ j and 0 ≤ t < r.

(iv) There are infinitely many modules X in Tµ with δ′M,N(X) = 0.
(v) There are infinitely many modules X in Tµ with δM,N(X) = 0.

Proof. (i) If δM,N (X) = 0 for all indecomposable preprojective A-modules, then,
by Lemma 2.5, µ(MP , X) = µ(NP , X) for any indecomposable preprojective A-
module, and consequently MP = NP = 0, which gives a contradiction. Let N0
be a minimal, with respect to �, indecomposable preprojective A-module with
δM,N (N0) > 0. Then by Lemma 2.5 we get

µ(N,N0)− µ(M,N0) = δM,N(N0) > 0,
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because X ≺ N0 for any indecomposable direct summand X of E(N0) ⊕ τN0.
This implies that N = N0 ⊕N1 for some A-module N1. Of course, δ′M,N(N0) =
δM,N (τN0) = 0 and consequently [N0, N ] = [N0,M ]. By Proposition 4.1, there is
a nonsplittable exact sequence

0→ L→M → Eν → 0

such that Tν is a homogeneous tube for which (M ⊕N)ν = 0 and [L⊕ Eν , X ] ≤
[N,X ] for any indecomposable A-module X 6∈ Tν . Observe that LR ⊕ LI =
MR ⊕MI . Then we get a nonsplittable exact sequence

Σ : 0→ LP →MP → Eν → 0

such that δΣ(X) ≤ δM,N (X) for any indecomposable A-module X 6∈ Tν . Thus
there is t ≥ 0 such that δΣ(ϕtEν) > δM,N (ϕtEν), because Σ is not admissible for
(M,N). We set F = Eν . Since τ−ϕtF = ϕtF , we get

δΣ(ϕtF ) = δ′Σ(ϕtF ) = [ϕtF,LP ⊕ F ]− [ϕtF,MP ] = [ϕtF, F ] = 1

and

δM,N (ϕtF ) =[N,ϕtF ]− [M,ϕtF ] = [NP , ϕtF ]− [MP , ϕ
tF ] =< [NP ], [ϕtF ] >

− < [MP ], [ϕtF ] >=< [NP ], (t+ 1) · h > − < [MP ], (t+ 1) · h >
=(t+ 1)(∂[MP ]− ∂[NP ]).

This leads to ∂[MP ]− ∂[NP ] < 1 and, by Lemma 3.3, we have ∂[MP ] = ∂[NP ].
(ii) SinceMP ≤ext LP⊕Eν , then MP ≤ LP⊕Eν . Let X be any indecomposable

A-module. If X 6∈ P ∪ Tµ, then [X,MP ] = [X,LP ⊕ ψr−1E] = 0. If X ∈ Tµ, then
0 = [X,MP ] ≤ [X,LP ⊕ ψr−1E]. Since [Eν ] = h = [ψr−1E], applying Lemma 3.9
for any preprojective module X , we obtain

0 ≤[X,LP ⊕ ψr−1E]− [X,MP ] = [X,LP ⊕Eν ]− [X,MP ]
=[X,L⊕Eν ]− [X,M ] ≤ [X,N ]− [X,M ].

Thus MP ≤ LP ⊕ ψr−1E and

[X,LP ⊕ ψr−1E]− [X,MP ] ≤ [X,N ]− [X,M ]

for any indecomposable A-module X 6∈ Tµ. By Proposition 2.7, there is an admis-
sible sequence

Σ0 : 0→ L1 →MP → L2 → 0

for (MP , LP ⊕ ψr−1E). Hence, [X,L1 ⊕ L2] ≤ [X,LP ⊕ ψr−1E] = 0 for any
indecomposable module X 6∈ P ∪ Tµ. This implies that L1 ⊕ L2 ∈ add(P ∪ Tµ).
Since the sequence Σ0 is not admissible for (M,N), we get

[X,ψr−1E] = [X,LP ⊕ ψr−1E]− [X,MP ] > [X,N ]− [X,M ]
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for some indecomposable module X ∈ Tµ. By Lemma 3.6(i), [ϕsψtE,ψr−1E] = 1
for all s ≥ 0, 0 ≤ t < r and [X,ψr−1E] = 0 for the remaining modules X ∈ Tµ.
Hence, δ′M,N(X) = [X,N ]− [X,M ] = 0 for some X = ϕsψtE, s ≥ 0 and 0 ≤ t < r.

(iii) Assume that ψ−ϕjE is a direct summand of M for some j ≥ 1. Take the
admissible sequence

Σ0 : 0→ L1 →MP → L2 → 0

for (MP , LP ⊕ ψr−1E), considered in (ii). We can write L2 = L′2 ⊕ Y such that
L1⊕L′2 is preprojective and Y ∈ add(Tµ). If Y = 0, then [X,L1⊕L2]−[X,MP ] = 0
for any X ∈ Tµ, and moreover Σ0 is an admissible sequence for (M,N). Hence
Y 6= 0, and consequently

[X,Y ] = [X,L1 ⊕ L′2 ⊕ Y ]− [X,MP ] ≤ [X,LP ⊕ ψr−1E]− [X,MP ] = [X,ψr−1E]

for any X in Tµ. Applying Lemma 3.6(iv) we get [E, Y ] ≤ [E,ψr−1E] = 1 and
[E′, Y ] ≤ [E′, ψr−1E] = 0, for all simple regular modules E′ 6= E in Tµ, and
consequently Y is indecomposable and Y = ψkE for some k ≥ 0. Since [Y, Y ] ≤
[Y, ψr−1E] ≤ 1, we obtain k < r, by Lemma 3.6. Let

e : L′2 ⊕ ϕjψkE → L′2 ⊕ ψkE = L2

be a natural epimorphism. Then the pull back of Σ0 under e is a sequence of the
form

Σj : 0→ L1 →MP ⊕ ψ−ϕjE → L′2 ⊕ ϕjψkE → 0,

because ker e is isomorphic to ψ−ϕjE and Ext1(MP , ψ
−ϕjE) = 0. Observe that

MP ⊕ ψ−ϕjE is a direct summand of M and δ′Σj ≤ δ′Σ0
. This implies that

δ′Σj (X) ≤ δ′M,N(X) for any indecomposable A-module X 6∈ Tµ. Since the sequence
Σj is not admissible for (M,N), we get δ′Σj (X) > δ′M,N (X) for some X ∈ Tµ. Then

δ′Σj (X) = [X,ϕjψkE]− [X,ψ−ϕjE] ≤ [X,ϕjψr−1E]− [X,ψ−ϕjE],

because ϕjψkE may be treated as a submodule of ϕjψr−1E. Applying Lemma
3.6(ii) we get that [ϕsψtE,ϕjψr−1E]−[ϕsψtE,ψ−ϕjE] = 1 for all s ≥ j, 0 ≤ t < r,
and [Y, ϕjψr−1E] − [Y, ψ−ϕjE] = 0 for the remaining indecomposable modules
Y ∈ Tµ. Thus, X = ϕsψtE and δ′M,N(X) = 0 for some s ≥ j and 0 ≤ t < r.

(iv) Suppose that the required claim is not true. Take a maximal s ≥ 0 and
a simple regular module E′ in Tµ such that δ′M,N(ϕsE′) = 0. Applying (ii) for
the simple regular module τ−E′, we infer that there are numbers s′ ≥ 0 and
0 ≤ t′ < r with δ′M,N (ϕs

′
ψt
′
τ−E′) = δ′M,N(ϕs

′−1ψt
′+1E′) = 0. Take a pair

(s′, t′) with maximal number s′. Since δ′M,N (ϕs
′
ψt
′
τ−E′) = ϕs

′+t′(τ−t
′−1E′),

then s′ ≤ s′ + t′ ≤ s, by maximality of s. Thus, δ′M,N (ϕkψlτ−E′) > 0 for all
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k > s′ and 0 ≤ l < r. Applying Lemma 3.7(ii), we get∑
s′≤i≤s

∑
0≤j≤t′

µ(N,ϕiψjE′)− µ(M,ϕiψjE′) = δM,N(ψ−ϕs+1E′)

− δM,N (ψ−ϕs
′
E′)− δM,N(ϕs+1ψt

′
E′) + δM,N (ϕs

′
ψt
′
E′)

≤δ′M,N(ϕsE′)− δ′M,N(ϕs+1ψt
′
τ−E′) + δ′M,N(ϕs

′−1ψt
′+1E′)

=− δ′M,N (ϕs+1ψt
′
τ−E′) < 0,

because s + 1 > s′ and 0 ≤ t′ < r. Thus ϕiψjE′ is a direct summand of M for
some s′ ≤ i ≤ s and 0 ≤ j < r. Let E = τ−j−1E′. Then ψ−ϕi+j+1E is a direct
summand of M , and applying (iii), we get numbers p ≥ i + j + 1 and 0 ≤ q < r
with δ′M,N(ϕpψqE) = 0. Observe that ϕpψqE = ϕp−jψq+jτ−E′ and 0 ≤ q + j <

2r. If q + j < r, then δ′M,N (ϕp−jψq+jτ−E′) = 0, because p − j ≥ i + 1 > s′.
This leads to q + j ≥ r, and ϕp−jψq+jτ−E′ = ϕp−j+rψq+j−rτ−E′. But then
δ′M,N (ϕp−j+rψq+j−rτ−E′) = 0, because p − j + r > s′ and 0 ≤ q + j − r < r,
which is a contradiction.

(v) follows from (iv) and the formula δM,N (X) = δ′M,N(τ−X).

Proposition 4.3. Let M and N be A-modules with M < N . Assume that there
is a tube Tµ in ΓA such that δM,N(ψjE) = 0 and δM,N (ψj−1E) > 0 for some
simple regular module E in Tµ and j ≥ H(Mµ ⊕ Nµ) + r, where r = rµ. Then
there exists an admissible sequence for (M,N).

Proof. Applying Lemma 3.5 we get

δM,N(ψjE) =[N,ψjE]− [M,ψjE] = [NP ⊕Nµ, ψjE]− [MP ⊕Mµ, ψ
jE]

= < [NP ], [ψjE] > − < [MP ], [ψjE] > +`E(Nµ)− `E(Mµ),

and similarly

δM,N(ψj−rE) = < [NP ], [ψj−rE] > − < [MP ], [ψj−rE] >
+ `E(Nµ)− `E(Mµ).

This leads to

δM,N(ψj−rE) = < [NP ], [ψj−rE]− [ψjE] > − < [MP ], [ψj−rE]− [ψjE] >
= < [NP ],−h > − < [MP ],−h >= ∂[NP ]− ∂[MP ] = 0.

Take a maximal number k such that j − r ≤ k ≤ j − 2 and δM,N(ψkE) = 0.
Then we have δM,N (ψtE) > 0 for any k < t < j. If δM,N(ϕcψdE) > 0 for all
−k − 1 ≤ c ≤ 0 and k < d < j, then we set Y = 0, p = −k − 2 and q = k + 1.
Assume now that this is not the case. Take a maximal number c and a number d
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such that −k − 1 ≤ c ≤ 0, k < d < j and δM,N (ϕcψdE) = 0. Of course, c < 0.
Applying Lemma 3.7(ii), we get∑

c≤p<0

∑
k<q≤d

µ(N,ϕcψdE)− µ(M,ϕcψdE) = δM,N(ψkE) + δM,N (ϕcψdE)

− δM,N(ψdE)− δM,N (ϕcψkE) ≤ −δM,N(ψdE) < 0,

because k < d < j. Hence, Y = ϕpψqE is a direct summand of M for some
c ≤ p < 0 and k < q ≤ d.

We set V = ψqE and W = ϕpψjE. Applying Lemma 3.7(i) for X = ϕp+1ψqE,
s = −p− 1, t = j − q − 1, we get a short exact sequence

Ω : 0→ V

(
ı
f

)
−−−−−−−→ ψjE ⊕ Y

(f1,f2)
−−−−−−−→W → 0,

where ı : V → ψjE is a monomorphism. Further, δΩ(X) = 1 for any X ∈ Y =
{ϕvψwE; p < v ≤ 0, q ≤ w < j} and δΩ(X) = 0 for the remaining indecomposable
A-modules X , because t < r. Thus, δΩ ≤ δM,N , and so M⊕V ⊕W ≤ N⊕Y ⊕ψjE.
Moreover,

0 ≤ [N ⊕ Y ⊕ ψjE,ψjE]− [M ⊕ V ⊕W,ψjE)] ≤ [N,ψjE]− [M,ψjE] = 0

and M ⊕V ⊕W ≤deg N ⊕Y ⊕ψjE, by Proposition 3 in [9]. Observe that the set
of isomorphism classes of kernels of epimorphisms M ⊕ (V ⊕W )→ ψjE is finite.
Therefore, there is a nonsplittable short exact sequence

Θ : 0→ L→M ⊕ V ⊕W g−→ψjE → 0

such that L ≤deg N ⊕ Y , by Theorem 2.4 in [10]. Of course, M = M ′ ⊕ Y for
some A-module M ′. We may consider the module V as a submodule of ψjE.

We claim that for any g′ ∈ HomA(Y ⊕V ⊕W,ψjE) we have im g′ ⊆ V . Indeed,
since

E ⊂ ψE ⊂ · · · ⊂ V = ψqE ⊂ · · · ⊂ ψjE

is the unique composition series of ψjE in add(Tµ), we get im g′ = ψj
′
E for some

0 ≤ j′ ≤ j. On the other hand, the equality im g′ = ψj
′
E implies that there is an

indecomposable direct summand ϕkψj
′
E of (Y ⊕ V ⊕W ), for some k ≥ 0. This

leads to j′ ≤ q, which proves our claim.
Then the epimorphism g is of the form

g = (g1, ıg2) : M ′ ⊕ (Y ⊕ V ⊕W )→ ψjE,

for some g1 : M ′ → ψjE and g2 : Y ⊕ V ⊕W → V .
Consider the pull back of the sequence



86 G. Zwara CMH

0→ L→M ′ ⊕ (Y ⊕ V ⊕W )⊕ Y

(
g1 ıg2 0
0 0 1Y

)
−−−−−−−−−−−→ ψjE ⊕ Y → 0

under the monomorphism
(
ı
f

)
: V → ψjE ⊕ Y . Then we obtain the following

commutative diagram with exact rows and columns

0 0
↓ ↓

0→ L −→ Z −→ V → 0
|| ↓ ↓

0→ L −→M ′ ⊕ (Y ⊕ V ⊕W )⊕ Y−→ ψjE ⊕ Y → 0
↓ ↓ (f1,f2)

W = W
↓ ↓
0 0

Hence we get an exact sequence

0→ Z →M ′ ⊕ (Y ⊕ V ⊕W )⊕ Y
(f1g1,f1ıg2,f2)
−−−−−−−−→W → 0.

We may consider the module Z as a submodule of M ′ ⊕ (Y ⊕ V ⊕W )⊕ Y . Since
f1ıg2 = −f2fg2, we obtain a submodule Z ′ = {(0,m, fg2(m)); m ∈ Y ⊕ V ⊕W}
of Z. It is easy to see that Z ′ ' Y ⊕ V ⊕W , Z = Z ′ ⊕Z1 for some A-module Z1,
and there exists an exact sequence of the form

Ψ : 0→ Z1 →M ′ ⊕ Y = M →W → 0.

Observe that, for any A-module X , we have

δΨ(X) =[Z1 ⊕W,X ]− [M,X ] = [Z1 ⊕W ⊕ Y ⊕ V,X ]− [M ⊕ Y ⊕ V,X ]
=[Z,X ]− [M ⊕ Y ⊕ V,X ] ≤ [L⊕ V,X ]− [M ⊕ Y ⊕ V,X ]
=[L,X ]− [M ⊕ Y,X ] ≤ [N ⊕ Y,X ]− [M ⊕ Y,X ] = δM,N (X),

because Z ≤ext L⊕ V and L ≤deg N ⊕ Y . Thus the sequence Ψ is admissible for
(M,N), and this finishes the proof.

4.4. Proof of Theorem. Let M and N be two A-modules such that M < N . We
shall show that M <ext N . By Lemma 1.2 in [10], we may assume that the relation
M < N is minimal.

We claim that there is an admissible exact sequence for (M,N). Suppose that
this is not the case. We may assume that M and N have no common indecompos-
able direct summand. If MP = NP = MI = NI = 0, then by Theorem 1 in [15], or
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Section 3 in [9], M = MR <ext NR = N . Then by definition of the relation ≤ext,
there is an admissible sequence for (M,N), and we get a contradiction. Hence, up
to duality, we may assume that MP ⊕NP is nonzero. Then by Proposition 4.2(i),
∂[MP ] = ∂[NP ] and applying Lemma 3.8(i) and its dual we obtain

[MP ] ≥ [NP ] and [MI ] ≥ [NI ].

Assume that [MP ] = [NP ] and let V be any indecomposable A-module. If V is
preprojective, then

δMP ,NP (V ) = [NP , V ]− [MP , V ] = [N,V ]− [M,V ] ≥ 0,

otherwise

δMP ,NP (V ) = δ′MP ,NP (τ−V ) = [τ−V,NP ]− [τ−V,MP ] = 0− 0 = 0.

This implies that MP < NP and by Corollary 4.2 in [10], MP <ext NP . Then, by
definition of the relation ≤ext, there is an admissible sequence for (MP , NP ). Since
δMP ,NP ≤ δM,N , this sequence is admissible for (M,N), again a contradiction.

Hence, [MP ] > [NP ], and consequently
∑

[Mµ] <
∑

[Nµ], where the summation
runs through all µ ∈ P1(K). Applying Lemma 3.8(iii), we conclude that there is
µ ∈ P1(K) such that [Mµ] < [Nµ]. We set r = rµ and let E1, . . . , Er be all simple
regular modules in Tµ. Then by Lemma 3.8(ii) there is a simple regular module
E in Tµ with `E(Mµ) < `E(Nµ), because [X ] = `E1(X)[E1] + · · ·+ `Er(X)[Er] for
any X ∈ add(Tµ). Applying Lemma 3.5, we get

δM,N(ψsr−1E) =[N,ψsr−1E]− [M,ψsr−1E] = [NP , ψsr−1E]

− [MP , ψ
sr−1E] + [Nµ, ψsr−1E]− [Mµ, ψ

sr−1E]

= < [NP ], [ψsr−1E] > − < [MP ], [ψsr−1E] > +`E(Nµ)− `E(Mµ)
> < [NP ], s · h > − < [MP ], s · h >= −s∂[NP ] + s∂[MP ] = 0,

for any integer s satisfying sr ≥ H(Mµ ⊕Nµ). Hence δM,N (X) > 0 for infinitely
many X in Tµ.

Applying Proposition 4.2(v), we infer that there are a simple regular module
F in Tµ and a number j > H(Mµ ⊕ Nµ) + r such that δM,N (ψjF ) = 0 and
either δM,N (ψj−1F ) > 0 or δM,N (ϕ−ψjF ) > 0. Let F ′ = τ−j−1F . Then either
δM,N (ψjF ) = 0 < δM,N (ψj−1F ) or δ′M,N(ϕjF ′) = 0 < δ′M,N (ϕj−1F ′). Then by
Proposition 4.3 or its dual there exists an admissible exact sequence for (M,N).
This proves our claim.

Take an admissible sequence 0→ L1 →M ′ → L2 → 0 for (M,N). This implies
that M = M ′⊕V for some A-module V and we obtain M <ext L1⊕L2⊕V ≤ N .
Since the relation M < N is minimal, then N = L1 ⊕ L2 ⊕ V . This leads to
M <ext N , and completes the proof.
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