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1. Introduction and main results

Let A be a finite dimensional associative K-algebra with an identity over an alge-
braically closed field K of arbitrary characteristic. If a1 = 1,... ,a, is a basis of
A over K, we have the constant structures a;;i defined by a;a; = > a;jrar. The
affine variety mod 4(d) of d-dimensional unital left A-modules consists of n-tuples
m = (mq,...,my) of d X d-matrices with coefficients in K such that mq is the
identity matrix and m;m; = > a;jxmy holds for all indices ¢ and j. The general
linear group Gl;(K) acts on mod 4(d) by conjugation, and the orbits correspond
to the isomorphism classes of d-dimensional modules (see [11]). We shall agree to
identify a d-dimensional A-module M with the point of mod 4(d) corresponding to
it. We denote by O(M) the Gli(K)-orbit of a module M in mod 4(d). Then one
says that a module N in mod 4(d) is a degeneration of a module M in mod 4(d)
if N belongs to the Zariski closure O(M) of O(M) in mod 4(d), and we denote
this fact by M <geg N. Thus <geg is a partial order on the set of isomorphism
classes of A-modules of a given dimension. It is not clear how to characterize <geg
in terms of representation theory.

There has been a work by S. Abeasis and A. del Fra [1], K. Bongartz [7],
[10], [9], Ch. Riedtmann [13], and A. Skowronski and the author [15], [16], [17]
connecting <geg with other partial orders <ext and < on the isomorphism classes
in mod 4(d). They are defined in terms of representation theory as follows:
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o M <ext N: & there are modules M;, U;, V; and short exact sequences
0—U;, —- M, — V;, — 0 in mod A such that M = My, M;41 = U, &V},
1<i<s,and N = M,41 for some natural number s.

e M < N: & [X,M] <[X,N] holds for all modules X.

Here and later on we abbreviate dimxHom 4 (X,Y) by [X, Y], and furthermore
dim g Exty (X,Y) by [X, Y]¢. Then for modules M and N in mod 4(d) the following
implications hold:

M <ext N= M <gog N= M <N

(see [10], [13]). Unfortunately the reverse implications are not true in general, and
it would be interesting to find out when they are. K. Bongartz proved in [10] (see
also [8]) that it is the case for all representations of Dynkin quivers and the double
arrow. Recently, the author proved in [17] that < and <ex; are also equivalent for
all modules over representation-finite blocks of group algebras. Moreover, in [9]
K. Bongartz proved that <4e, and < coincide for all representations of extended
Dynkin quivers, and conjectured that possibly <ext and <geg also coincide. The
main aim of this paper is to prove the following theorem.

Theorem. The partial orders < and <ext coincide for modules over all tame
concealed algebras.

In particular we get the positive answer to the above question.

Corollary. The partial orders <, <geq and <ext are equivalent for all represen-
tations of extended Dynkin quivers.

We mention that K. Bongartz described in [8, Theorem 4] the set-theoretic
structure of minimal degenerations of modules provided the partial orders <ext
and < coincide. In a forthcoming paper we shall describe the minimal singularities
for representations of extended Dynkin quivers.

The paper is organized as follows. In Section 2 we fix the notation, recall
the relevant definitions and facts, and prove some preliminary results on modules
which we apply in our investigations. In Section 3 we recall several known facts
on tame concealed algebras. In particular we describe some properties of the
additive categories of standard stable tubes. Section 4 is devoted to the proof of
the Theorem.

For basic background on the topics considered here we refer to [5], [10], [9],
[11] and [14]. The results presented in this paper form a part of the author’s
doctoral dissertation written under supervision of professor A. Skowronski. The
author gratefully acknowledges support from the Polish Scientific Grant KBN No.
2 PO3A 020 08.
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2. Preliminary results

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-
algebra with an identity over an algebraically closed field K. We denote by mod A
the category of finite dimensional left A-modules, by ind A the full subcategory
of mod A formed by indecomposable modules, and by rad(mod A) the Jacobson
radical of mod A. By an A-module is meant an object from mod A. Further, we
denote by I'y the Auslander-Reiten quiver of A and by 7 = 74 and 77 = 7
the Auslander-Reiten translations DTr and Tr D, respectively. We shall agree to
identify the vertices of I'4 with the corresponding indecomposable modules. For
a module M we denote by [M] the image of M in the Grothendieck group Ko(A)
of A. Thus [M] = [N] if and only if M and N have the same simple composition
factors including the multiplicities. Finally, for a family F of A-modules, we
denote by add(F) the additive category given by F, that is, the full subcategory
of mod A formed by all modules isomorphic to the direct summands of direct sums
of modules from F.

2.2. Following [13], for M, N from mod A, we set M < N if and only if
[X,M] < [X,N] for all A-modules X. The fact that < is a partial order on
the isomorphism classes of A-modules follows from a result by M. Auslander [3]
(see also [7]). Observe that, if M and N have the same dimension and M < N,
then [M] = [N]. Moreover, M. Auslander and I. Reiten have shown in [4] that, if
M and N are A-modules with [M] = [N], then for all nonprojective indecompos-
able A-modules X and all noninjective indecomposable modules Y the following
formulas hold (see [12]):

[X,M] - [M,7X] = [X,N]— [N, 7X]
[M,Y] = [77Y,M] = [N,Y] = [77Y, N]
Hence, if [M] = [N], then M < N if and only if [M, X] < [N, X] for all A-modu-

les X.
2.3. Let M and N be A-modules with [M] = [N] and

Y: 0-D—-F—>F—>0

an exact sequence in mod A. Following [13] we define the additive functions das v,
Oy, v and dy; on A-modules X as follows

om,n(X) = [N, X] — [M, X]
5§\4,N(X) = [X7N] - [XaM]
52(X) = 6E,D€BF(X) = [D D F,X] — [E,X]
From the Auslander-Reiten formulas (2.2) we get the following very useful equal-
ities
ou,N(X) =0y n(T7X), O n(TX) =)y n(X)
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for all A-modules X. Observe also that dyr,n(I) = 0 for any injective A-module
I, and 534’ ~(P) = 0 for any projective A-module P. In particular, the following
conditions are equivalent:

(1) M <N,
(2) omN(X)>0forall X ey,
(3) oy n(X) >0 forall X €Ta.

2.4. For an A-module M and an indecomposable A-module Z, we denote by
w(M, Z) the multiplicity of Z as a direct summand of M. For a nonprojective
indecomposable A-module U, we denote by 3(U) an Auslander-Reiten sequence

(U): 0—71U - E(U) - U — 0,
and, for an injective indecomposable A-module I, we set E(I) = I/soc(I), 771 =
0.

We shall need the following lemma.

Lemma 2.5. Let M, N be A-modules with [M] = [N] and U an indecomposable
A-module. Then

p(N,U) = (M, U) = p,n (U) = 0, v (E(U)) + das,n (TU).
Proof. If U is nonprojective, then the Auslander-Reiten sequence X(U) induces an
exact sequence
0 — Homa (M, 7U) — Homu (M, E(U)) — rad(M,U) — 0,
and hence we get
(M, 7U @ U] — [M, E(U)] = [M,U] — dimgrad(M,U) = u(M,U).

Similarly, we have

Then we obtain the equalities

W(N,U) = p(M,U) = (IN,7U & U] — [M, U & U]) - (N, [E(U)] - [M, E(U))
= (5M,N(TU) + 5M,N(U) - 5M,N(E(U))

Assume now that U is projective. Then Homa(M,radU) ~ rad(M, U), and so

[M,U] — [M,rad U] = u(M,U).
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Similarly, we have
[Nv U] - [N,radU] = :L"(Na U)

Therefore, we get

u(N,U) = p(M,U) = ([N,U] = [M,U]) — ([N, rad U] — [M,rad U])
= 5M,N(U) — 5M7N(radU)
=0mu,NU) = 0p,N(EU)) + dp,n(TU).

2.6. A component I" of "4, without oriented cycles and such that any 7-orbit
contains a projective module is called preprojective. Also any module X € add(T")
is called preprojective. There is a partial order =< on the set of vertices of a
preprojective component I' with U < V if there exists a path in I" leading from U
to V. Preinjective components and preinjective modules are defined dually.

2.7. Let M and N be A-modules with M < N. A short nonsplittable exact
sequence

Y:0—-Li —-M —Ly—0

is said to be admissible for (M,N) if M = M’ @V for some A-module V and
[L1 & Lo ® V,X] < [N,X] for any A-module X (equivalently, dy < dup,n or
85, < Oy n)-

We shall need the following fact.

Proposition. Let M and N be A-modules with [M] = [N], and assume that
M s preprojective and M < N holds. Then there exists an admissible sequence
0—Li - M— Ly — 0 for (M,N).

Proof. We can repeat the proof of Theorem 4.1 in [10], since Bongartz has used
the fact that N is preprojective only to prove that M is preprojective.

3. Some properties of modules over tame concealed algebras

Here and later on A denotes a fixed tame concealed algebra [14].

3.1. We recall those aspects of the representation theory of tame concealed alge-
bras that we will need later (see [14], [10]). We have a decomposition of "4 into
the preprojective part P, the preinjective part Z and the regular one R, where R
is a sum of stable tubes 7}, of ranks 7, > 1, for 4 € P}(K) = K U {oo}. For any
A-module X we can write X = Xp® Xg® X7, where Xp € add(P), X; € add(Z)
and Xp = Gaueﬂ“(K) X, with X,, € add(7,). All connected components of I" 4 are
standard (see [14] for definition). A tube of rank 1 is called homogeneous and 7, is
not homogeneous for at most three p € P(K). For any X,Y € T4, if [X,Y] >0
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and X and Y do not belong to the same connected component of I'4, then X
is preprojective or Y is preinjective. The abelian category add(7,,) is serial and
closed under extensions, so we may speak about simple regular modules, composi-
tion series in add(7,), and so on. A tube 7, has r, simple regular modules, which
are conjugate under 7. If a tube 7, is homogeneous (r, = 1), then we denote a
unique simple regular module in 7, by E,. For any simple regular module F in
7,, we denote by
-~—>303E—><p2E—><pE—><pOE:E

a unique infinite sectional path in 7,, of epimorphisms and by
E=y"E > yE - *FE — 3E — ...

a unique infinite sectional path in 7,, of monomorphisms. Then every indecompos-
able module in 7, is of the form ¢/ E and ¢’ E’ for some j > 0 and simple regular
modules E, E’ in 7,,. In an obvious way we define functions

",k T, — T, U{0}

for any integer k, such that for any simple regular module E in 7, and [ > 0 we
have:

o OF(Q'E) = T E if k+1> 0, and ¢*(p'E) = 0 otherwise;
o YF(YLE) = Y*HE if k+1 > 0, and ¢v* (' E) = 0 otherwise.

Observe that for any integer k and X € 7, we have 7X = ¢ X, 77X = o9 X
and " X = ¥ X where r = r,,.
There is a positive, sincere vector h in Kg(A), such that

[pr e B = [Y* 1B = k- h

for any simple regular module E in 7, and k > 1.

3.2 The global dimension of A is at most 2. All preprojective and regular mod-
ules have projective dimension at most 1, and dually all preinjective and regular
modules have injective dimension at most 1. The bilinear form on Kg(A) = Z"
which extends the equality

< [M]7[N] >= [M7N] - [MvN]l + [M7N]2
and the associated quadratic form x : Ko(A4) — Z, x(y) =< y,y >, will play an
important role. If M has no non-zero preinjective direct summand or N has no

non-zero preprojective direct summand, then

< [M],[N] >= [M, N] — [M, N]*.
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The quadratic form y is positive semidefinite and controls the category mod A (see
[14]). This means that the following conditions are satisfied:

(1) For any X € T4, x([X]) € {0,1}.

(2) For any connected, positive vector y with x(y) = 1, there is precisely one
X €T 4 with [X] =y. B B

(3) For any connected, positive vector y with x(y) = 0, there is an infinite
family of pairwise nonisomorphic modules X € I'4 with [X] = Y-

Moreover, x(h) = 0 and < h,y >= — < y,h > for any y € Ko(A). Finally, we
define a linear function 0 : Ko(A) — Z, called the defect, as follows
Oy =<hy>=—-<yh>.

The main property of d is that the value 9[X] is negative for any X € P, positive
for any X € Z, and zero for any X € R.

Lemma 3.3. If M < N, then 0[Mp] — O[Np] = 9[N;] — [M;] > 0.

Proof. Since [M] = [N], then
O[Mp] + O[Mg] + 0[M;] = O[Np| + O[Ng] + O[Ny].

The equalities I[Mpr] = O[Ng] = 0 imply d[Mp] — O[Np] = O[N;] — O[M;]. Take
a homogeneous tube 7,, with (M & N), = 0. Then
0 <[N,E,] = [M,E,] = [Np, E,] — [Mp, E},]
= < [Np|,[Eu] > = < [Mp], [E,] >=< [Np|,h > — < [Mp],h >
=0[Mp| — O[Np).

3.4. Fix a tube 7,,, p € P}(K), and a module X € add(7,). Let H(X) > 0 be
the minimal number such that for any indecomposable direct summand ¢/ E of
X, where E is a simple regular module in 7,,, we have j < H(X) (so H(X) is the
maximal quasi-length of an indecomposable direct summand of X). For any simple
regular module E in 7, we denote by ¢g(X) the multiplicity of E as a composition
factor of a composition series of X in the category add(7,). If Eq,... ,E, (r =1,)
denote all simple regular modules in 7,,, then

[X] =l (X) 1] + £, (X)[Eo] + - - + £, (X)[Er].

Moreover, the following lemma holds (see Lemma 5.1 in [15]).

Lemma 3.5. Let X be a module in add(7,) and E be any simple regular module
in T,,. Then for any k > H(X) — 1 we have

[XvwkE] = EE(X) = [(pkE,X].
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As a consequence of the above lemma we obtain

Lemma 3.6. Let i,j be integers with j > 0 and E be any simple reqular module
in T,. Then

(i) [PV E, " YE] =1 for all s > 0,0 <t < r, and [X," " 1E] = 0 for the
remaining indecomposable modules X € 7T,,.

(ii) [P E, " Yo E] — [p*Y'E, = @'E] = 1 for all s > j, 0 < t < r, and
(X, "YW E] — [X,~ ¢! E] = 0 for the remaining indecomposable modules
XeT,.

(iii) If j > r, then W/ E, ¢/ E] > 1.

(iv) [E,2vE] = 1 and [E',%7E] = 0 for all simple regular modules E' # E in
T,.

Applying Lemmas 4.3 and 4.6 in [15], we obtain the following result (see also
Corollary 2.2 in [2]).

Lemma 3.7. Let X € 7,, s,t > 0 be integers, and M, N be A-modules with
[M] = [N]. Then

1) There exists a nonsplittable exact sequence
(i) 74 q
Y:0—- X - oYX s X — ot X — 0.

Moreover, if s < r ort < r, then és(¢"/X) = 1 for all 0 < i < s,
0<j<t, and éx(Y) =0 for the remaining indecomposable A-modules.

(iz)
DD uNe T X) — (M, P X)

0<i<s 0<j<t
=N e X) = N (7 X) = Sar v (" T HIX) + Sar v (VX))

Lemma 3.8. Let M, N be A-modules with M < N and 8[Mp] = O[Np|. Then

(i) [Mp] = [Np].
(it) For any indecomposable simple reqular module E in a tube T, we have

gE(Mu) < EE(NIJ«)'

(iii) For any tube T, [M,] < [N,] holds.

Proof. (i) Let I be any indecomposable injective A-module. We shall show that
[Mp,I] > [Np,I]. For all but finitely many & > 0, the vector k- h — [I] is positive
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and connected. Moreover,

X(k-h—[I])=<k-h—[]k-h—[I] >=<[I],[I] >=x([I]) = 1.

Thus for all but finitely many & > 0 there is an indecomposable A-module X},
with [Xi] = k- h — [I]. Of course

O Xyl =< h,k-h—[I] >=— < h,[I] >=-0[I] <0,

which implies that X} is preprojective. Take k£ > 0 such that there exists a
preprojective A-module X} with [X;] = kh — [I] and [Mp @ Np, X;]' = 0. Then

[Mp,I] =< [Mp], [I] >= —kO[Mp]— < [Mp], [X}] >= —kO[Mp] — [Mp, Xi]
> —kO[Np] — [Np, Xi] = —kO[Np]— < [Np], [X}] >=< [Np], [I] >
— [Np, 1.

Hence, [Mp] > [Np].
(ii) Let r = 7, and s be a natural number such that sr > H(M, & N,,). Then

0 <[N, 4" LE] — [M, """ E] = [Np,*" " E] — [Mp,*" " E] + [N, v*" "' E]
_ [Mu,wsr—lE] =< [Np|,s-h>— < [Mp],s-h > +lg(N,) — Lp(M,)
=—s(0[Np] — 0[Mp]) + lr(Ny) —Le(M,) =Lg(N,) — lp(M,),

by Lemma 3.5.
(iii) follows from (ii), since for any X € add(7,,) we have

(X] =tlg,(X)[E1]+ ...+ {5 (X)[E"],
where r =7, and E1,..., E, denote all simple regular modules in 7,,.

Lemma 3.9. Let IV be a disjoint union of some tubes in T'y and TV =T 4\ T".
Then for any X € add(I') and Ry, Ry € add(I') with [R;] = [Ra2] we have

[X, R1] = [X, Ro] and [R1,X] =[R2, X].
Proof. By duality, it is enough to prove the first equality. We may assume that
X is indecomposable and preprojective, because [X, R1] = [X, Rg] = 0 for any
regular or preinjective A-module X € add(T"”). Hence, we get
(X, Ry] — [X, R1]' =< [X],[R1] >=< [X],[Rg] >= [X, Ro] — [X, Ry]".

Since [X, R1]' = [X, Ra)' = 0 for any preprojective A-module X, we obtain the
required equality [X, R1] = [X, Ra].
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4. Proof of the Theorem

We shall divide our proof of the Theorem into several steps. We use the nota-
tions introduced in Sections 2 and 3.

Proposition 4.1. Let M and N = Ng & N1 be A-modules without any common
indecomposable direct summands. Assume that M < N and Ny is a preprojec-
tive indecomposable A-module with [Ny, N] = [Ng, M]. If there is no admissible
sequence of the form 0 — Ng — M — C — 0 for (M,N), then there exist a
homogeneous tube T, in T 4, for which (M & N), = 0, and a nonsplittable exact
sequence

0—L—-M-—EFE,—Q,

such that [L & E,, X] < [N, X] for any indecomposable A-module X ¢ T,,.

Proof. By Theorem 2.4 in [10] Ny embeds into M and the closure Q of the quotients
of M by Ny contains Nyi. Let t = dimgM + 1 and IV U7, U---U T, be the
disjoin union of all homogeneous tubes which do not contain any indecomposable
direct summand of M & N. We set I'" = T'y \ I'. Then I'” is the disjoint
union of finitely many connected components of I" 4, and for any natural number
d, there is only a finite number of isomorphism classes of d-dimensional modules
from add(I"). We decompose the set Q into a finite union of pairwise disjoint
subsets D1, Ds, ... ,D, such that two modules Uy & Us and Vi & Vo from Q with
Ui, V1 € add(I), Us, Vo € add(I”), belong to the same D;, 1 < i < r, if and only
if U1 ~ V4. Since @ = D; UD3 U -- - U D, the module N; belongs to D; for some
1<i<r. Takeany V@ R € D; with V € add(I'”") and R € add(I"”). Then any
module from D; is, up to isomorphism, of the form V @ R’ for some R’ € add(I"”)
with [R'] = [R]. Consequently, for any indecomposable module X € add(I")
we have [R', X] = [R, X], by Lemma 3.9. Applying upper semicontinuity of the
function (Z — dimxHom4(Z, X)), we conclude that the set

Sx={ZeD;; [Z,X]>[Va&RX|=[VaeR, X]}

is closed (see [11],[13]), for any X € add(I"”). Since D; is a subset of Sx, we obtain
that [N1, X] > [V @ R, X] for any X € add(I'”"). Take a tube 7, C I'”, for some
1 < ¢ < ¢, such that any direct summand of V' @ Ny does not belong to 7,,.. It is
possible, because dimgV < t.

Assume that R = 0. Then by Lemma 3.9, for any 7, C IV and j > 0, we have

(N1, Ey] = [N1, @ E,] > [V, E,.] = [V,  Ey.

This leads to a contradiction, since the sequence 0 — Ng — M — V — 0 is
admissible for (M, N). So, there is a tube 7,, C I” such that V@& R = [ & ¢’ E,, for
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some A-module I and j > 0. Then, for an epimorphism p : ¢/ E, — E,, we obtain
the following commutative diagram with exact rows and columns

0
l
0 Iop1E,
! L
00— Ng — M — I®¢’E, —0
»L || J,(O,p)
00— L — M — E, — 0
! !
I 1E, 0
!
0

Hence, for any 7, C (I" \ 7)) and k > 0, applying Lemma 3.9, we get

[V, ‘PkEA] N, ¢ Eu |>[No®V @R, @kEuc]

No®I® ¢ E,, o"E, ]
Noley 'E,0E, ¢E,]
LOE, EMC]:[L@E,, EA].

[
=
=
2|

This leads to [L & E,, X] < [N, X] for any X € T4 \ 7,.

Proposition 4.2. Let M and N be A-modules without any common indecompos-
able direct summand and such that M < N and Mp ® Np is nonzero. Let r =1,
and E be any simple regular module in 7T, for some p € PY(K). If there is no
admissible sequence for (M, N), then

(i) O[Mp] = O[Np].
(i) Oy (W' E) = 0 holds for some s >0 and 0 <t <r.
(iii) For any j > 1 such that =@ E is a direct summand of M, the equality
5M7N(gasth) =0 holds for some s > j and 0 <t <r.
() There are infinitely many modules X in T, with 0} n(X) = 0.
(v) There are infinitely many modules X in 7T, with 6y n(X) = 0.

Proof. (i) If 6ps,n(X) = 0 for all indecomposable preprojective A-modules, then,
by Lemma 2.5, u(Mp,X) = u(Np,X) for any indecomposable preprojective A-
module, and consequently Mp = Np = 0, which gives a contradiction. Let Np
be a minimal, with respect to <, indecomposable preprojective A-module with
dn,n(No) > 0. Then by Lemma 2.5 we get

(N, No) — (M, No) = dar,n(No) > 0,
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because X < Ng for any indecomposable direct summand X of E(Ng) @ 7Ng.
This implies that N = Ng & N for some A-module Ni. Of course, 5§V[,N(N0) =
Om,n(TNo) = 0 and consequently [Ng, N] = [Ng, M]. By Proposition 4.1, there is
a nonsplittable exact sequence

0O—-L—-M-—EFE,—0

such that 7, is a homogencous tube for which (M & N), =0 and [L & E,, X]
[N, X] for any indecomposable A-module X ¢ 7,. Observe that Lg ¢ Ly
Mg & M;. Then we get a nonsplittable exact sequence

I IA

»:0—-Lp—>Mp—FE,—0

such that dx(X) < dpr,n(X) for any indecomposable A-module X ¢ 7,,. Thus
there is ¢t > 0 such that 65;(¢*E,) > da N (' E,), because X is not admissible for
(M,N). We set F = E,. Since 7~ ¢'F = ¢'F, we get

In(p'F) =05 (p'F) = [¢'F,Lp ® F| — [¢'F,Mp] = [¢'F,F] =1
and
Su,N(9'F) =[N, o' F] = [M, 0" F| = [Np, o' F] — [Mp, o' F] =< [Np], [¢'F] >
— < [Mp],[¢'F] >=<[Np],(t +1)-h > — < [Mp],(t +1) - h >
=(t +1)(0[Mp] — O[Np]).
This leads to [Mp] — J[Np] < 1 and, by Lemma 3.3, we have 0[Mp] = O[Np].
(ii) Since Mp <ext Lp@®E,, then Mp < Lp®E,. Let X be any indecomposable
A-module. If X ¢ P U7, then [X,Mp] = [X,Lp ® " 'E] =0. If X € T, then
0=[X,Mp] <[X,Lp®¢"'E]. Since [E,] = h = [¢"~E], applying Lemma 3.9
for any preprojective module X, we obtain
0<[X,Lp®y " 'E| - [X,Mp] = [X,Lp® E,] — [X, Mp]
:[XaL S3) El/] - [Xa M] < [Xa N] - [X7 M]

Thus Mp < Lp @ ¢" 1 E and
[X7LPEB’¢T71E] - [XaMP] < [XaN] - [X7M]

for any indecomposable A-module X ¢ 7,,. By Proposition 2.7, there is an admis-
sible sequence
0:0—-L1 — Mp—Lo—0

for (Mp,Lp @ ¢"'E). Hence, [X,L1 ® L] < [X,Lp ® " 'E] = 0 for any
indecomposable module X ¢ P U 7,,. This implies that L1 @ Lo € add(P U 7,).
Since the sequence ¥ is not admissible for (M, N), we get

[X/LPT_IE] = [XaLP EBW_lE] - [XaMP] > [XaN] - [XvM]
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for some indecomposable module X € 7,,. By Lemma 3.6(i), [p*¢'E,¢v"1E] =1
for all s > 0,0 <t < 7 and [X,¢""'E] = 0 for the remaining modules X € 7,,.
Hence, 0% (X)) = [X, N]—[X, M] = 0 for some X = p*¢'E, s >0and 0 <t <7,

(iii) Assume that ¥~ ¢/ F is a direct summand of M for some j > 1. Take the
admissible sequence

0:0-L1—- Mp—Ly—0

for (Mp,Lp ® wr_lE), considered in (ii). We can write Ly = L5 @ Y such that
L1®L5 is preprojectiveand Y € add(7,,). If Y = 0, then [X, L1®La]—[X, Mp| =0
for any X € 7, and moreover X is an admissible sequence for (M, N). Hence
Y # 0, and consequently

(X,Y]=[X,Li®LyaY] - [X,Mp] < [X,Lp ®¢"'E] - [X,Mp] = [X,4"E]

for any X in 7,. Applying Lemma 3.6(iv) we get [E,Y] < [E,¢" " 'E] = 1 and
[E',Y] < [E',¢""'E] = 0, for all simple regular modules E' # E in 7, and
consequently Y is indecomposable and Y = ¢*E for some k > 0. Since [Y,Y] <
[Y,9"1E] <1, we obtain k < 7, by Lemma 3.6. Let

e: Ly® o' E — Ly @ Y*E = Lo

be a natural epimorphism. Then the pull back of ¥y under e is a sequence of the
form

Yi:0—= L1 —» Mpoy ¢'E — Lh® o'Y*E — 0,

because ker e is isomorphic to ¢~/ E and Extl(Mp, %~/ E) = 0. Observe that
Mp @ Y~ ¢/E is a direct summand of M and 5/2j < 5'20. This implies that
5123- (X) < 0%y n(X) for any indecomposable A-module X ¢ 7,,. Since the sequence
% is not admissible for (M, N), we get o5, (X) > &} (X)) for some X € 7. Then

0%, (X) = [X, ¢’Y*E) - [X, ¢~ ¢/ E] < [X, ¢7¢" T E] = [X, 97 @ E],

because ¢/1yFE may be treated as a submodule of ¢/¢"~1E. Applying Lemma
3.6(ii) we get that [p ¢! E, 7" 1 E]—[p* ' E, ¢~ @/ E] = 1foralls > j,0 <t <r,
and [Y, /9" E] — [Y,4)~¢/E] = 0 for the remaining indecomposable modules
Y € 7,. Thus, X = ¢*¢'E and &}, x(X) = 0 for some s > j and 0 <t < 7.

(iv) Suppose that the required claim is not true. Take a maximal s > 0 and
a simple regular module £’ in 7, such that &}, x(p°E’) = 0. Applying (ii) for
the simple regular module 7~ E’, we infer that there are numbers s’ > 0 and
0 <t <7 with &) y(¢ V77 E") = 84y y(¢* "W HLE) = 0. Take a pair
(s',t') with maximal number s’. Since 5§VI,N(<pslwt/T_E’) = o T (7t -1RY),
then s’ < s’ +t < s, by maximality of s. Thus, 53\4,N(<pkwlT*E’) > 0 for all
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k> s and 0 <1 < r. Applying Lemma 3.7(ii), we get

ST wN W E) — (M, g E') = S n (@ T E)
s/ <i<s 0<j<t’
— oW E') = Sarn (" TN B + Sy v (07 01 E)
<Oy N (9" E") = Sy w (0" T B + 8y (07 T )
=— Oy n(e e T E) <0,

because s +1 > s’ and 0 < t' < r. Thus @'/ E’ is a direct summand of M for
some s’ <i<sand0<j<r Let E=77"1E" Then ¢y~ ¢t E is a direct
summand of M, and applying (iii), we get numbers p > i+ j+1land 0 < g <r
with 0%, n(pPP7E) = 0. Observe that pPYIE = Pt~ E and 0 < g +j <
2r. If ¢+ j < r, then 5M7N(¢p’jwq+jT’E’) =0, because p —j > i+ 1 > s
This leads to ¢ +j > 7, and P~ IiTir—E' = @P~itryati=rr=E’. But then
5M’N(gop_j+rwq+j_’“T_E’) =0,because p—j+r >s and 0 < qg+j—r <,
which is a contradiction.
(v) follows from (iv) and the formula a7, v (X) = )y n(77X).

Proposition 4.3. Let M and N be A-modules with M < N. Assume that there
is a tube T, in T'a such that SuNn(WIE) =0 and 5M7N(wj_1E) > 0 for some
simple regular module E in T, and j > H(M, ® N,) + r, where r = r,. Then
there exists an admissible sequence for (M, N).

Proof. Applying Lemma 3.5 we get

SN (Y E) =[N, ¢/ E] = [M,{ E] = [Np & N,/ E| — [Mp & M,,, ' E|
= < [Np), [/ E] > — < [Mp], [/ E] > +Lp(N,) — {p(M,),

and similarly

6M’N(wj_TE) =< [NP]7 [W_TE] > —< [MP]v [W_TE] >
+Lp(Ny) — (M)

This leads to

Su,n (W "E) = < [Np], [/ "E] — W E] > — < [Mp],[/""E] — [/ E] >
=< [NP],—Q > —< [Mp], —h >= a[Np] — 8[Mp] =0.

Take a maximal number k such that j —r < k < j — 2 and 5M7N(1/)kE) = 0.
Then we have dy n(¢Y'E) > 0 for any k < t < j. If Sy n(09?E) > 0 for all
—k—1<c<0and k<d<j,thenwesetY =0, p=—-k—2andqg==%kk+1.
Assume now that this is not the case. Take a maximal number ¢ and a number d
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such that —k — 1 < ¢ <0, k < d < j and dp n(¢°¥?E) = 0. Of course, ¢ < 0.
Applying Lemma 3.7(ii), we get

> ) N, U E) — p(M, 0 E) = 5, n (VP E) + 6 n (970 E)

c<p<0k<g<d
— S, N(WUE) = Sun (PP E) < S n(WIE) <0

because k£ < d < j. Hence, Y = pPyY?F is a direct summand of M for some
c<p<O0and k <qg<d.

We set V = ¢9E and W = ¢PyJ E. Applying Lemma 3.7(i) for X = @PH1y9E,
s=—-p—1,t=7—q—1, we get a short exact sequence

()
f (f1.f2)

VE®Y ——— W — 0,

Q:0—-V

where 2 : V' — 1/ E is a monomorphism. Further, jo(X) = 1 for any X € Y =
{"Y"E; p<v <0,q¢ <w < j}and 6o(X) = 0 for the remaining indecomposable
A-modules X, because t < r. Thus, ég < dp,n, andso MBSV AW < NoY®y'E.
Moreover,

0<[NeYaEWE —-[MaVaeWE) <[NYE| - [MyE =0

and M &V & W <gqee N @Y @47 E, by Proposition 3 in [9]. Observe that the set
of isomorphism classes of kernels of epimorphisms M & (V & W) — 9 E is finite.
Therefore, there is a nonsplittable short exact sequence

O:0-L—-MaVeW Ly E-0

such that L <geg N @Y, by Theorem 2.4 in [10]. Of course, M = M' @Y for
some A-module M’. We may consider the module V as a submodule of 1)/ E.

We claim that for any ¢’ € Homa (Y &V & W, E) we have im ¢’ C V. Indeed,
since

ECyEcC---CV=9y'EC---C{y'E

is the unique composition series of 1/ F in add(7,,), we get im g’ = 1" E for some
0 < j' < j. On the other hand, the equality im ¢’ = ¥/' E implies that there is an
indecomposable direct summand gokwj/E of Y@V @& W), for some k > 0. This

leads to 7/ < ¢, which proves our claim.
Then the epimorphism g is of the form

g=(g91,192): M'® (Y VW) - E,

for some g1 : M’ — ¢/Eand go: Y SV EW — V.
Consider the pull back of the sequence
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g1 w2 O
0 0 1y)
YEDY —0

O—-L-MaoYaVeW)aY

2

i)

commutative diagram with exact rows and columns

under the monomorphism :V — ¢JE @Y. Then we obtain the following

— — 0

— <{«+— o

L (f1.52)
= W
1

0
1
A
l |
0—- L —MaoYaeVeW)eY— PESY —0
1
w
1
0 0

Hence we get an exact sequence

, (f191.f1292,f2)
0-Z-MaolYaoVaW)aYy — W — 0.

We may consider the module Z as a submodule of M’ & (Y &V & W) @Y. Since
f11g2 = — faf g2, we obtain a submodule Z' = {(0,m, fga(m)); meY @V & W}
of Z. Ttis easy tosee that Z/ ~Y @V oW, Z = Z' ® Z; for some A-module 77,
and there exists an exact sequence of the form

V:0—-21 —-MoY=M-—>W —0.
Observe that, for any A-module X, we have

Sy (X)

Z1eWX]-[M,X]=[Z1eWaYaV,.X|-[MaY aV,X]
Z,X]|-[MeYaV,X|<[LeV,X|-[MaY eV, X]
[L,X]|-[MaY,X]<[NaY,X] - [MaY,X]=dun(X),

because Z <ext LBV and L <deg N @Y. Thus the sequence ¥ is admissible for
(M, N), and this finishes the proof.

4.4. Proof of Theorem. Let M and N be two A-modules such that M < N. We
shall show that M <ext N. By Lemma 1.2 in [10], we may assume that the relation
M < N is minimal.

We claim that there is an admissible exact sequence for (M, N). Suppose that
this is not the case. We may assume that M and N have no common indecompos-
able direct summand. If Mp = Np = M; = Ny = 0, then by Theorem 1 in [15], or
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Section 3 in [9], M = Mg <ext Ng = N. Then by definition of the relation <exs,
there is an admissible sequence for (M, N), and we get a contradiction. Hence, up
to duality, we may assume that Mp @ Np is nonzero. Then by Proposition 4.2(i),
0[Mp] = O[Np] and applying Lemma 3.8(i) and its dual we obtain

[Mp] = [Np]  and  [M/] = [Ny].

Assume that [Mp] = [Np] and let V be any indecomposable A-module. If V is
preprojective, then

5MP,NP(V) = [NPvV] - [MP7V] = [va] - [M7V] >0,
otherwise
onp Np (V) =00 Np(T7V) = [77V,Np] — [t~ V,Mp] =0 - 0= 0.

This implies that Mp < Np and by Corollary 4.2 in [10], Mp <ext Np. Then, by
definition of the relation <ext, there is an admissible sequence for (Mp, Np). Since
Omp.Np < On, N, this sequence is admissible for (M, N), again a contradiction.

Hence, [Mp] > [Np], and consequently > [M,] < >"[N,], where the summation
runs through all y € PY(K). Applying Lemma 3.8(iii), we conclude that there is
1 € PY(K) such that [M,] < [N,]. We set r = r,, and let E1, ..., E, be all simple
regular modules in 7,. Then by Lemma 3.8(ii) there is a simple regular module
E in 7, with {g(M,) < Lg(N,), because [X| = lg, (X)[E1]+ -+ L, (X)[E,] for
any X € add(7,). Applying Lemma 3.5, we get

oar, N (" E) =[N, E] — [M, 4" E] = [Np, o E]
_ [Mvas7’71E] 4 [wasrflE] _ [mesrflE]
= < [Npl, [0 E] > = < [Mp), [0 B] > +4p(N,) — Lp(M,,)
> < [Np|,s-h>— < [Mp],s-h>=—sd[Np| + sd[Mp] = 0,

for any integer s satisfying sr > H(M, & N,,). Hence da7, ny(X) > 0 for infinitely
many X in 7.

Applying Proposition 4.2(v), we infer that there are a simple regular module
F in 7, and a number j > H(M, & N,) + r such that 5M7N(1ij) = 0 and
either oy y(Y/~1F) > 0 or Sy n(p 9/ F) > 0. Let F' = 77771 F. Then either
SN F) =0 < Sy N1 F) or 84y n (97 F') = 0 < 8y n(? "1 F’). Then by
Proposition 4.3 or its dual there exists an admissible exact sequence for (M, N).
This proves our claim.

Take an admissible sequence 0 — L1 — M’ — Lo — 0 for (M, N). This implies
that M = M’ @V for some A-module V and we obtain M <ext L1 ® Lo ®V < N.
Since the relation M < N is minimal, then N = Li & Lo & V. This leads to
M <ext N, and completes the proof.
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