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Abstract. A curvilinear d-web W = (F1, . . . , Fd) is a configuration of d curvilinear foliations
Fi on a surface. When d = 3, Bott connections of the normal bundles of Fi extend naturally to
equal affine connection, which is called Chern connection. For 3 < d, this is the case if and only
if the modulus of tangents to the leaves of Fi at a point is constant. A d-web is associative if
the modulus is constant and weakly associative if Chern connections of all 3-subwebs have equal
curvature form. We give a geometric interpretation of the curvature form in terms of fake billiard
in §2, and prove that a weakly associative d-web is associative if Chern connections of triples of
the members are non flat, and then the foliations are defined by members of a pencil (projective
linear family of dim 1) of 1-forms. This result completes the classification of weakly associative
4-webs initiated by Poincaré, Mayrhofer and Reidemeister for the flat case. In §4, we generalize
the result for n+ 2-webs of n−spaces.
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Acurvilinear d-web on a surface S is an d-tuple of foliations of codimension 1,
W = (F1, . . . , Fn). In this paper we assume that S is real analytic, connected and
oriented, and Fi is defined by a real meromorphic 1-form ωi: of which coefficients
are locally fractions of real analytic functions. W is non singular at a p ∈ S if ωi
and ωi ∧ ωj are analytic and non zero at p for i 6= j. Σ(W ) denotes the set of
those p where W is singular. W is diffeomorphic to a d-web W ′ = (F ′1, . . . , F

′
d)

on S′ if there exists an analytic diffeomorphism of S to S′ sending Fi to F ′i for
i = 1, . . . , d. An m-subweb of W is an m-tuple of members of W .

First let d = 3 and assume W is non singular at p. Since the defining 1-forms
ωi, i = 1, 2, 3 on a surface are linearly dependent, we may assume ω1 + ω2 + ω3
vanishes identically on a neighbourhood of p. Then there exists unique 1-form θ
on a neighbourhood of p such that dωi = θ ∧ ωi for i = 1, 2, 3 [1,2]. The exterior
derivative dθ is independent of the forms ωi defining Fi as well as the permutation
of suffix i. dθ is called the web curvature form of W and denoted K(W ). Bott
connections of the normal bundles of F1, F2, F3 defined by the transverse dynamics
extend to unique affine connection without torsion the so-called Chern connection
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on the complement of Σ(W ) (see §1 for the definition). And the leaves of Fi
are geodesics of the connection. Chern connection has the connection form Θ =(
−θ 0
0 −θ

)
with respect to the coframe (ω1, ω2) (and ω3) and the curvature form

dΘ =
(
−K(W ) 0

0 −K(W )

)
[1,2,11]. A 3-web is hexagonal (or flat ) if the web

curvature vanishes identically. It is classically known that a hexagonal 3-web is
locally diffeomorphic to the 3-web of parallel lines on the plane [1,2] (see Fig.0 and
§1).

Figure 0. Hexagonal 3-web

A non singular 4-web W = (F1, . . . , F4) possesses the relative and absolute
invariants: web curvature forms of 3-subwebs and the cross ratio of tangents to
the leaves of Fi, i = 1, . . . , 4 passing through a point, which is a special case of the
basic affinor in higher dimensional webs (see [12] for the definition). The higher
covariant derivatives of the cross ratio generate all other absolute invariants [1,12].

We call d curvilinear foliations as well as a d-web are associative if their Bott
connections of the normal bundles extend to equal affine connection, in other
words, all 3-subwebs have equal Chern connection on the complement of the sin-
gular locus. It is easy to see that d foliations (3 < d) are associative if and only if
the modulus of tangents to the leaves passing through a point is constant. Clear-
ly if a d-web is associative, it is weakly associative, i.e. Chern connections of
3-subwebs have equal curvature form. But the converse is not always the case.
Poincaré [4,16,24], Mayrhofer [20,21] and Reidemeister [25] proved

Theorem 0. Poincaré, Mayrhofer, Reidemeister Let W be a germ of non sin-
gular 4-web on a surface. Assume that all 3-subwebs are hexagonal. Then W
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is diffeomorphic to a germ of 4-web of 4 pencils of lines on the projective plane
(Fig.1).

Here a pencil of lines is a family of projective lines passing through a base
point.

Figure 1. 4-web of pencils of lines

Assume no 3 of base points of the pencils in the theorem are not collinear.
Then we may assume, after a projective linear transformation, the base points of
3 pencils in the theorem respectively to (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), and the
leaves of those 3 pencils are level lines of the functions (called level functions or
defining functions) u1 = y/z, u2 = z/x, u3 = x/y in the homogeneous coordinates
x, y, z. These functions enjoy the obvious relation u1u2u3 = 1, from which

du1
u1

+
du2
u2

+
du3
u3

= 0.

This implies that the connection form is 0 and the 3-web is flat. So 3-subwebs of
the 4-web in the theorem are hexagonal (curvature vanishes).

But generically, their Chern connections are not equal since the cross ratio is
not constant unless the base points are collinear. Henaut [16] gives a simple proof
of Theorem 0, and Goldberg [12] investigated a different approach to this problem.
This paper is devoted to generalizing Theorem 0 and finding all weakly associative
n-webs.

An abelian equation of a germ of plane d-web W = (F1, . . . , Fd) is a relation
of germs of closed one forms ω′i such that ω′i ∧ ωi = 0 and

ω′1 + · · ·+ ω′d = 0.
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Denote the R-linear space of Abelian equations by A. The rank of W is

rank W = dim A.

The following bound is classically known (see c.f.[1,2.4]),

rank W ≤ π(d, 2) =
1
2

(d− 1)(d− 2),

that is Castelnuovo bound: the maximal genus of plane algebraic curves of de-
gree d. One of the most important problems in Web geometry is the following
linearization problem ([4]).

Linerarization Problem. Assume a germ of d-web attains the maximal rank
1
2(d − 1)(d − 2). Then is it linearizable?, in other words, does there exist a germ
of diffeomorhpism of the plane which sends those leaves to lines?

The importance of the problem is easily understood by the following well known
theorem. Let W be a linear d−web: the leaves are lines. Then the leaves of Fi
define germs of holomorphic curves Ci in the projective dual space. Lie[18,19] and
Darboux[6] proved the following theorem.

Algebrization Theorem. Assume W is a linear d−web and admits an Abelian
equation ω′1+· · ·+ω′d = 0 such that no ω′i vanishes identically. Then Ci, i = 1, . . . , d
extend to a (not necessarily irreducible) algebraic curve of degree d.

This was later generalized by Griffiths[13]. By a result in [22] topological
structure of linear webs determines the curve C up to projective equivalence except
for the case d = 3.

In some cases an affirmative answer to the problem is well known. For example

π(3, 2) = 1 π(4, 2) = 3 and π(5, 2) = 6.

In the case d = 3, by integrating an Abelian equation

ω1 + ω2 + ω3 = 0

we obtain ∫
ω1 +

∫
ω2 +

∫
ω3 = 0.

The triple of germs (ω1,
∫
ω2,
∫
ω3) : S → R3 sends Fi to the foliation defined by

i−th coordinate function on the linear space C2 = {x1 +x2 +x3 = 0}. Therefore,
the 3-web W is linearizable and hexagonal.

In the case d = 4, an affirmative result was obtained by Wirtinger[28] by using
an idea due to Poincaré. So let W be a linear 4-web. By the above theorem, the
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germs Ci, i = 1, . . . , 4 are contained in an algebraic curve C of degree 4. If W is
hexagonal, each 3-subweb admits an Abelian relation hence, by the theorem, each
triple of Ci, i = 1 . . . , 4 extends to an algebraic curve of degree 3. Therefore C
splits into a union of 4 lines. This tells W consists of 4 pencils of lines. This is
the 4-web in Theorem 0. However rank of the 4-web of pencils depends on the
configuration of base points (see c.f.[16]).

In the case d = 5, the following counter example is known. The exceptional
Bol 5-web on the plane E(5) consists of the pencils of conics Fi passing through
4 points pj, i 6= j among five points p1, . . . , p5 such that no 3 points are not
collinear. By Cremona transformations with 3 of those base points, say p3, p4, p5,
those pencils are sent to 2 pencils of lines respectively with base points p1, p2 and 3
pencils of conics passing through p1, p2 such that the base point sets outside p1, p2
intersect mutually with each other (the union of base points off p1, p2 consists of
3 points.) Again by Cremona transformation with vertices p1, p2 and one of those
3 base points, the 5-web is sent to 4 pencils of lines such that the 4 base points
are non degenerate, and one pencil of conics passing through the 4 base points
of pencils of lines. By a projective transformation we may assume those 4 base
points are (0, 0), (1, 0), (1, 1), (0, 1). Therefore E(5) is birationally equivalent to (a
germ of) the 5-web defined by the level functions in the coordinates (x, y):

u1 =
x

y
, u2 =

x+ y − 1
x

, u3 =
y − x
1− x, u4 =

1− x
y

, u5 =
y(1− y)
x(1− x)

. (1)

These functions play the relations

uiui+1 = 1− ui+3

for i = 1, . . . , 5 with the cyclic indices, from which we obtain rather trivial 5
Abelian equations

dui
ui

+
dui+1
ui+1

+
dui+3

1− ui+3
= 0.

From these equations, we obtain also

5∑
i=1

log (1− ui)
ui

+
log ui
1− ui

dui = 0, (2)

and by integrating the equation

5∑
i=1

Φ(ui) = const, (3)

where φ(z) =
∑

zn

n2 is Euler dilogarithm and Φ(z) = φ(1 − z) − φ(z) is Roger
dilogarithm.
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Relation (3) is nothing but the 5-term relation of 5 cross ratios of quadruples
of 5 lines configuration passing through the origin on the plane. In fact, the level
function ui is, after permutation of indices, the cross ratio of the tangent lines
of the leaves of Fj , i 6= j passing through a point. This example was generalized
by Gelfand-MacPherson[7,9], Damiano[5] and Hain-Hanamura-MacPherson[14,15]
to study polylogarithms and also to obtain a combinatorial formula of Pontrjagin
classes.

By the above form of E(5) and the symmetry under permutation of the indices
in the former presentation, we see that E(5) is hexagonal. The Abelian equations
(1), (2) are linearly independent, hence E(5) has the maximal rank = 6. One the
other hand it is known that E(5) is non linearizable.

A d−web W = (F1, . . . Fd) is hexagonal if all 3-subwebs (Fi, Fj , Fk) are hexag-
onal. Let H(d) denote the set of germs of hexagonal d−webs. Bol[1] generalized
Theorem 0 as follows.

Theorem 1. (G. Bol) Let W ∈ H(d). Assume W is not diffeomorphic to a germ
of exceptional Bol 5-web E(5). Then W is diffeomorphic to a d−web of d pencils
of lines.

The rank of hexagonal and non exceptional d−web depends on the configuration
of the base points ([16]).

The equivalent condition of d−webs of maximal rank to be linearized is obtained
by Henaut[17] in terms of web polynomials. One of crucial open problems in [4] is

Problem. Classify non linearizable d−webs of maximal rank, and find all Abelian
equations.

The purpose of this paper is to generalize Theorem 0 from a view point of
differential geometry. Those webs in Theorems 0 and 1 are all hexagonal hence
all 3-subwebs have equal curvature forms 0. We classify all d-webs, for which all
3-subwebs have equal non-zero curvature forms.

Before stating our result we prepare some notions. A pencil of meromorphic
one forms P = {ωt} on S is a projective linear family of one forms defined
on S, ωt = uω0 + vω1, (u, v) ∈ R2 − (0, 0), where t stands for the homogeneous
coordinate (u : v) as well as the coordinate v

u+v ∈ R∪∞. In the second coordinate,
ωt = (1− t)ω0 + tω1 holds for t ∈ R∪∞. P is non singular at p if ωs and ωs ∧ωt
are analytic and non zero at p for distinct s, t ∈ P1. We denote the set of those
p where P is singular by Σ(P ). The web curvature form K(P ) for P is the 2-
form dθ defined on the complement of Σ(P ), where θ is unique 1-form such that
dωt = θ ∧ ωt for all t ∈ P1. (−θ is called the connection form of P .) Clearly all
members of P are associative and all triples of the members form 3-webs which
have equal web curvature form K(P ). Cerveau [3], Ghys [10] and the author [23]
applied the web geometry of 3-webs of codimension 1 to classify codimension 2
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foliations of 3 manifolds. In the papers by Gelfand-Zakharevich[8] and Regal[26],
a generalized structure of linear family of one forms is studied.

Example. Let W be a 3-web defined by level functions x, y and a function f and
let

ω0 = −fx dx, ω1 = −fy dy.

Clearly these one forms define the coordinate foliations of x, y. Define

ωt = (1− t) ω0 + t ω1.

Then ω1/2 = −1
2df defines the foliation by f . Let

θ =
fxy
fy

dx +
fxy
fx

dy.

Then
dωt = θ ∧ ωt

holds for all t ∈ R. This tells that all triples (ωt1 , ωt2 , ωt3) have the same connec-

tion form Θ =
(
−θ 0
0 −θ

)
with the coframe (ωt1 , ωt2) and the curvature form

dΘ =
(
−dθ 0

0 −dθ

)
, where dθ = log (fxfy )xy dx ∧ dy is the web curvature form.

Corollary 3 asserts that if all 3-subwebs of a d−web W have equal non zero cur-
vature form, then W embeds to a one parameter family of foliations defined by an
P = {ωt}. A similar result in higher dimensional case is investigated in §4.

Let W = (F1, F2, F3) be a non singular 3-web on an oriented surface S. In this
paper geodesics mean the leaves of the foliations. A geodesic triangle is a smooth
triangle ∆ = ∆(E1, E2, E3) with edges Ei in a leaf Lσ(i) ∈ Fσ(i) for i = 1, 2, 3
transversal at the vertices Vj,k = Ej ∩ Ek, j 6= k. Here σ is a permutation of
{1, 2, 3} and the convention Ei+3 = Ei is used. The orientation of ∆ and the
edge Ei are given by ∂∆ = E1 +E2 +E3 and ∂Ei = Vi,i+1 − Vi−1,i (see Fig. 2).
Define σ(∆) = 1 or − 1 alternatively if the orientation is positive or opposite.
From later on we assume the permutation σ is trivial.

Let W = (F1, F2, F3, F4) be a 4-web. A Schläfli configuration is a quadruple of
geodesic triangles ∆1 = ∆(E2, E3, E4),∆2 = ∆(E′1, E

′
3, E

′
4),∆3 = ∆(E′′1 , E

′′
2 , E

′′
4 )

⊂ ∆2 and ∆4 = ∆(E′′′1 , E
′′′
2 , E

′′′
3 ) ⊂ ∆1 with the following properties (see Fig.3).

(1) The edges with suffix i are contained in a common leaf Li ∈ Fi for i =
1, ..., 4,

(2) ∆j ,∆k have common vertex Vm,n = Em∩En,where {j, k,m, n} = {1, 2, 3, 4},
(3) ∆2 + ∆4 = ∆1 + ∆3, where ∆i denotes the underlying set of ∆i.
(4) The 3-subweb Wi = (F1, ..., F̂i, ..., F4) is non singular on a neighbourhood

of ∆i for i = 1, . . . , 4.
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Figure 2. ∆(E1, E2, E3)
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Figure 3. Schläfli configuration

In other words a Schläfli configuration is formed by leaves of F1, . . . , F4 in gen-
eral position. The goal of this paper is to prove the following generalization of
Theorem 0.

Theorem 2. Assume 3-subwebs of a 4-web W = (F1, F2, F3, F4) are non hexag-
onal. Then the following conditions are equivalent.

(1) Fi is defined by a 1-form ωti , ti ∈ P1, in a pencil of meromorphic 1-forms
P = {ωt}.

(2) The cross ratio C(F4, F3, F2, F1) of tangents to the leaves of Fi, i = 1, ..., 4



Vol. 73 (1998) 4-web 185

passing through a point is constant on the complement of Σ(W ).
(3) F1, . . . , F4 are weakly associative: The web curvature form K(F1, ..., F̂i, ...,

F4) of the 3-subweb Wi = (F1, ..., F̂i, ..., F4) is independent of i.
(4) For any Schläfli configuration (∆1,∆2,∆3,∆4),

4∑
i=1

σ(∆i)
∫

∆i

K(F1, ..., F̂i, ..., F4) = 0. (?)

(5) F1, . . . , F4 are associative: Bott connections of the normal bundles of F1, . . . ,
F4 extend to equal affine connection on the complement of Σ(W ).

The following is an immediate consequence of the theorem, and in remarkable
contrast to Theorem 1.

Corollary 3. Let W = (F1, . . . , Fd) be a non hexagonal d-web. The the following
conditions are equivalent.

(1) Fi is defined by a 1-form ωti , ti ∈ P1, in a pencil of meromorphic 1-forms
P = {ωt}.

(2) The modulus of tangents to the leaves of Fi, i = 1, ..., d passing through a
point is constant on the complement of Σ(W ).

(3) F1, . . . , Fd are weakly associative.
(5) F1, . . . , Fd are associative.

In §4 we prove a generalization of Theorem 2 for d-webs of an n-manifold,
n+ 1 < d, of codimension one.

All results in this paper remain valid for non singular C3-smooth webs. The
argument is local, so from now on we assume S is a connected domain of R2.

1. Bott connection and Chern connection

Bott connection of a non singular foliation is defined by the transverse dynam-
ics. To state more precisely in our setting, recall the integrability condition in
Frobenius theorem

dωi = θ ∧ ωi,

where ωi is a defining one form of Fi such that ω1 + ω2 + ω3 = 0. The 1-form θ
defines the (partial) connection of the normal bundle of the foliation Fi as follows.
Let L be a leaf of Fi, p, q ∈ L, and C ⊂ L an oriented smooth curve joining p to
q. The parallel transport T (X) of a vector X normal to L at p along C is defined
by the relation

ωi(T (X)) = exp(
∫
C

θ) · ωi(X).
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To extend Bott connection to an affine connection of S, consider an (infinitesimal-
ly) small geodesic triangle ∆ with vertex p. By the transverse dynamics along C,
∆ is transported to unique (infinitesimally) small geodesic triangle ∆′ with vertex
q (Fig.4).

T

q p

L

’

Figure 4. Transverse dynamics and Bott connection

This parallel transport determines a linear map of the tangent spaces TpS to
TqS. The linear map is defined also for all piecewise ”geodesic” curves by composite
of those linear maps along geodesic pieces. It is easy to see this transportation
determines an affine connection with the structure equation

d

(
ω1
ω2

)
=
(
θ 0
0 θ

)
∧
(
ω1
ω2

)
with respect to the coframe ω1, ω2. The connection form of the affine connection

is
(
−θ 0
0 −θ

)
and the curvature form is

d

(
−θ 0
0 −θ

)
+
(
−θ 0
0 −θ

)
∧
(
−θ 0
0 −θ

)
=
(
−dθ 0

0 −dθ

)
=
(
−K(W ) 0

0 −K(W )

)
.

This affine connection is called Chern connection of the 3-web W . Chern connec-
tion is in other words unique common extension of Bott connections of F1, F2, F3.
The structure group of the connection is R∗: the group of similar transformations,
and the holonomy map along a closed cycle C is

exp (
∫
C

θ) ·
(

1 0
0 1

)
= exp (

∫
Area bounded by C

K(W )) ·
(

1 0
0 1

)
.
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In Web geometry K(W ) is called the Web curvature form.
Assume that θ is closed, i.e. the web curvature form vanishes identically.

Then ω̃i = exp(−
∫
θ) · ωi is closed and ω̃1 + ω̃2 + ω̃3 = 0. By integrating this

equation, we obtain the developing map (
∫
ω̃1,
∫
ω̃2,
∫
ω̃3) of S into the hyperplane

H = {(u1, u2, u3) ∈ R3 | u1 + u2 + u3 = 0}, which sends the leaves of the
web to the lines defined by ui = const. in H. Thomsen (c.f.[4,27]) proved that
the Hexagonality of 3-webs is equivalent to the closure condition of all piecewise
geodesic hexagons as in Fig.5.

Figure 5. Closed hexagon

In general this ”hexagon” is not closed (Fig.6) .
Now assume that S ⊂ R2 and the foliations F1, F2, F3 are locally defined

by level functions x, y and an f(x, y) on a neighbourhood of the origin such that
f(t, 0) = f(0, t) = t and f(t, t) = 2t: f(x, y) = x+ y+ k(x− y)xy+ · · · . Then the
web curvature form for the 3-web W = (F1, F2, F3) is

K(W ) =
∂2

∂x∂y

(
log

fx
fy

)
dx ∧ dy = (k + higher terms)dx ∧ dy

and the return map R(x) of the x-axis as in Fig.6 is written in the coordinate x
on the leaf L centered at p as follows.

R(x) = x+ kx3 + · · · .

To see Taylor coefficients of R, it suffices to note R′(x) = 1 + 3kx2 + · · · is the
linear term of the holonomy at x anti-clockwisely along the ”non-closed hexagon”
in Fig.6, while the area of the ”hexagon” is proportional to 3x2. In the next
section we interpret the curvature in terms of ”fake billiards”, which is composites
of transverse dynamics along piecewise geodesic curves.
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x

R(x)

Figure 6. Non-closed hexagon

2. Transverse dynamics and fake billiard

Let W = (F1, F2, F3) be a non singular 3-web on an S ⊂ R2 and assume all leaves
are connected. Let Li be a leaf of Fi, p, q ∈ Li and j, k 6= i. The transverse
dynamics

T jkpq : Lj(p), p→ Lk(q), q

is a germ of diffeomorphism of the leaf Lj(p) of Fj passing through p to the leaf
Lk(q) of Fk passing through q, which assigns to an x ∈ Lj(p) close to p unique
intersection point y ∈ Li(x) ∩Lk(q). Fake billiard along boundary of an oriented
geodesic triangle ∆ = ∆(E1, E2, E3) is the return map

T i∂∆ = Ti+2 ◦ Ti+1 ◦ Ti : Li+1(Vi−1,i), Vi−1,i → Li+1(Vi−1,i), Vi−1,i,

where Tj denotes the transverse dynamics along the edge Ej

T j+1,j+2
Vj−1,jVj,j+1

: Lj+1(Vj−1,j), Vj−1,j → Lj+2(Vj,j+1), Vj,j+1,

(see Fig.7 and Fig.8).
Clearly T i∂∆, i = 1, 2, 3 are conjugate with each other : T−1

i ◦T i+1
∂∆ ◦Ti = T i∂∆.

We denote the derivative of T i∂∆ at Vi−1,i by dT∆.

Lemma 1. Fake billiard along an oriented geodesic triangle ∆ = ∆(F1, F2, F3)
has the following derivative at the vertices

dT∆ = −exp
(
−σ(∆)

∫
∆
K(F1, F2, F3)

)
,
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Figure 7. Fake billiard T 1
∂∆
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Figure 8. Fake billiard T 1
∂∆ along another triangle

where σ(∆) = 1 or −1 respectively ∆ is the clockwise orientation or anti-clockwise.

Proof. Assume ∆ and F1, F2, F3 are defined by level functions f, x and y as in
Fig.8.

Then σ(∆) = −1. Let V31 = (a, 0), V12 = (0, a) and

T 22
V31V12

(a, y) = (0, y′).
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Then we obtain

log
(
dy′

dy
(y = 0)

)
=
∫
V31V12

(
−fx
fy

)
y

dx

=
∫
V31V12

(
fx
fy

)
y

dx

dy
dy

=
∫
V31V12

(
fx
fy

)
y

fx
fy

dy

=
∫
V31V12

(
log

fx
fy

)
y

dy.

Let T 23
V12V12

(0, y′) = (x, a). Then

log
dx

dy′
(y′ = a) = log

fx
fy

(0, a). (2)

Let T 31
V12V23

(x, a) = (x, y′′). Then

log
d′′

dx
(x = 0) = log

fx
fy

(0, 0). (3)

From (2) and (3), we obtain

log
dy′′

dy′
= log

dy′′

dx
− log

dy′

dx

= log
fx
fy

(0, 0)− log
fx
fy

(0, a)

=
∫
V12V23

(
log

fx
fy

)
y

dy.

(4)

From (1) and (4)

log
(
−dy

′′

dy

)
=
∫
V31V12V23

(
log

fx
fy

)
y

dy

=
∫

∆

(
log

fx
fy

)
xy

dx ∧ dy

=
∫

∆
K(W ).

This completes the proof. �
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Let W = (F1, F2, F3, F4) be a non singular 4-web on S ⊂ R2. For the lines
ki = {y = aix}, li = {y = bix}, i = 1, 2 define the cross ratio C(k1, k2, l1, l2) by

C(k1, k2, l1, l2) =
(a1 − b1)(a2 − b2)
(a1 − b2)(a2 − b1)

.

Define the cross ratio of tangents to the leaves Li(Vi,j) ∈ Fi passing through the
intersection Vi,j = Li ∩ Lj by

C(Vi,j) = C(TpL4(Vi,j), TpL3(Vi,j), TpL2(Vi,j), TpL1(Vi,j)).

From now on we assume 1 < C(k1, k2, l1, l2) < ∞ (this holds uniformly on the
connected component of Vi,j in the non-singular locus).

Lemma 5. Let ∆3 = ∆(E1, E2, E4) be a geodesic triangle of the 3-subweb (F1, F2,
F4) (Fig.9). Then the following composite of transverse dynamics along ∂∆3,

T̃∆3 = T 34
V41V12

◦ T 33
V24V41

◦ T 43
V12V24

: L4(V12), V12 → L4(V12), V12

has the derivative at V12

dT̃∆3 =
C(V41)

C(V41)− 1
(1− C(V24)) dT∆3 .

V

V

V

 41

 24
 12

T
3

T
3

Figure 9.
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Proof. Let fi be a level function of Fi defined on a neighbourhood of ∆3. Let

T 32
V41

: L3(V41), V41 → L2(V41), V41

T 13
V24

: L1(V24), V24 → L3(V24), V24

denote the transverse dynamics respectively along the leaves of F1, F2 such that

f1 ◦ T 32
V41

= f1 , f2 ◦ T 13
V24

= f2.

It is easy to see

d
(
f4 ◦ T 13

V24

)
= (1− C(V24)) df4,

d
(
f4 ◦ T 32

V41

)
=

(C(V41)
(C(V41)− 1)

df4,

from which

d(f4 ◦ T 32
V41
◦ T 33

V24V41
◦ T 13

V24
) =

(C(V41)
(C(V41)− 1)

(1− C(V24)) df4.

By definition we obtain

T̃∆3 = T 24
V41V12

◦ T 32
V41
◦ T 33

V24V41
◦ T 13

V24
◦ T 41

V12V24
,

from which we obtain the statement. �

Lemma 6. Let ∆1,∆2,∆3 be as in Fig.10. Then

dT̃∆3 = dT∆2 · dT−∆1 · C(V34),

where −∆1 denotes the triangle ∆1 with reverted orientation.

V

V

V

V

 41

 24 

 34

 12
 = V

 13

2

1

3

Figure 10.
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Proof. Let T∆2V13 , T−∆1V13 , T∆3V24 denote fake billiards along ∂∆2,−∂∆1, ∂∆3
starting at V13, V24. It is easy to see fake billiard T∆2V13 ◦ T−∆1V13 is conjugate
with

T̃∆3V24 ◦ T
13
V34V24

◦ T 41
V13V34

◦ T 24
V34V13

◦ T 32
V24V34

= T̃∆3V24 ◦ T
13
V34V24

◦ T 21
V34
◦ T 32

V24V34
,

where T 21
V34

: L2(V34), V34 → L1(V34), V34 is defined by f3 ◦ T 21
V34

= f3, f3 being
the defining function of F3. Differentiating the equality we obtain the statement
using the equality

C(V34) · d
(
f4 ◦ T 21

V34

)
= df4.

�

Lemma 7. Let ∆1,∆2,∆3 be as in Fig.10. Then

dT∆1 · dT−∆2 · dT∆3 = −C(V41)− 1
C(V41)

C(V34)
1

C(V24)− 1

Proof. The statement follows from Lemmas 5 and 6.

Proposition 8. Let (∆1,∆2,∆3,∆4) be Schläfli configuration as in Fig.11. Then

∑
(−1)i

∫
∆i

K(F1, ..., F̂i, ..., F4)

= log
C(V41)− 1
C(V41)

· C(V23)− 1
C(V23)

· 1
C(V24)− 1

· 1
C(V13)− 1

·C(V34) ·C(V12)

Proof. We may assume V34 = (0, 0), F3, F4 are defined by the coordinate functions
y, x and F1, F2 by functions f, g respectively. Let V12 = (a, b) and P1 = (0, b), P2 =
(a, 0). Let � denote the geodesic rectangle with the vertices V12, P1, V34, P2,
and ∆′1 (resp. ∆′2) the geodesic triangle with the vertices V12, V24, P1 (resp.
V12, V13, P2) and let ∆′′1 = ∆4 + ∆′2,∆

′′
2 = ∆3 + ∆′1.

Then

∫
�
K(F1, F3, F4)−

∫
�
K(F2, F3, F4) = log

k C(V12)
C(P1)C(P2)
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3

V

1

2 4
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  V
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 41

 24

 34  13

  23

 12

Figure 11.

The alternative sum in the equality of the proposition is

− {
∫

∆′1
+
∫
�

+
∫

∆′′1
K(F2, F3, F4)}+ {

∫
∆′2

+
∫
�

+
∫

∆′′2
K(F1, F3, F4)}

−
∫

∆3

K(F1, F2, F4) +
∫

∆4

K(F1, F2, F3)

= {−
∫

∆′1
K(F2, F3, F4) +

∫
∆′′2

K(F1, F3, F4)−
∫

∆3

K(F1, F2, F4)}

+ {−
∫
�
K(F2, F3, F4) +

∫
�
K(F1, F3, F4)}

− {−
∫

∆′1
K(F1, F3, F4) +

∫
∆′′1

K(F2, F3, F4)−
∫

∆4

K(F1, F2, F3)

By Lemma 4 and Lemma 7

= log {−C(V41)(C(V41)− 1)
(C(V24)− 1)C(V41)

}{+C(V12)C(V34)
C(P1)C(P2)

}{−C(V41)(C(V23)− 1)
(C(V13)− 1)C(V23)

}

= log {C(V41)− 1
C(V41)

· C(V23)− 1
C(V23)

· 1
C(V24)− 1

· 1
C(V13)− 1

·C(V34) · C(V12)}.

�
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3. Proof of Theorem 0 and Theorem 2

First we prove Theorem 2. The implications (1) → (2), (3) → (4), (1) → (5) are
clear. The implication (1)→ (3) follows from the uniqueness of the 1-form θ(P ).

Proof of (5) → (3). For each 3-subweb W ′ = (Fi, Fj , Fk) if Bott connections of
Fi, Fj , Fk extend to equal affine connection, it is Chern connection of W ′. There-
fore common extension of all Bott connections is Chern connection of 3-subwebs.

�
Proof of (2) → (1). Assume W is non singular at p. Let ωi be a meromorphic 1-
form defining Fi on a neighbourhood of p. Then ω3 is presented as ω3 = λω1 +µω2
with meromorphic functions λ, µ on a neighbourhood of p. Now we may assume
λ = −1, µ = 2 replacing ω1, ω2 and F4 is defined by ω4 = λ′ω1 + µ′ω2. The
ratio C = λ′/µ′ is non zero constant by assumption. Therefore we may assume
ω4 = Cω1+ω2. Define ωt = (2−t)ω1+(t−1)ω2. Then ω1 = ω1, ω2 = ω2, ω3 = ω3

and ω4 = ω2+c/1+c. By analyticity this relation holds on S. �

Proof of (4)→ (3). Consider the Schläfli configuration such that V12 = V24 = V41
as in Fig.12.

2 1 4

Figure 12.

By Hypothesis (4)∫
∆1

K(W1) =
∫

∆2

K(W2) +
∫

∆4

K(W4),

where K(Wi) denotes the web curvature form of the 3-subweb of W forgetting the
i-th foliation. This tells that the integral of the curvature form over a geodesic
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triangle can be calculated by decomposing into small geodesic triangles. Now
decompose the ∆1 into infinitely many geodesic triangles of the same type as ∆2
as in Fig.13.

2

Figure 13.

Then it follows that ∫
∆1

K(W1) =
∫

∆1

K(W2).

This holds for all geodesic triangles ∆1 in the non singular locus of W . Therefore
K(W1) = K(W2) holds on S. This argument applies to show all 3-subwebs have
equal curvature form. �

Proof of (3), (4) → (2). By analyticity, if the cross ratio is locally constant, it is
constant on the domain of definition S. So we may assume W is non singular and
F1, F2, F3, F4 are defined by level functions f, g and the coordinate functions y, x
of R2 respectively. Then the cross ratio is

C(F4, F3, F2, F1) =
fx gy
fy gx

.

By suitable coordinate transformation of x, y we may assume f(t, 0) = f(0, t) =
g(t, 0) = t, and applying the linearlization theorem to the dynamics t→ g(0, t) we
may assume g(0, t) = kt. Here k is the cross ratio at the origin, and f, g are of the
form

f(x, y) = x+ y +mxy +O,

g(x, y) = x+ ky + nxy +O′,
(*)
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O,O′ being the remainder terms of x, y of order 3 which vanish identically on the
x and y axes. It is easy to see that only similar transformations (x, y)→ (cx, cy),
c 6= 0, respect the dynamics t → g(0, t) = kt. Therefore the ratio (m : n) as well
as k gives rise to an absolute invariant of 4-webs. By definition, the cross ratio at
(x, y) is

C(x, y) = C(F4, F3, F2, F1)(x, y) =
(k + nx)(1 +my)
(1 + ny)(1 +mx)

+O′′.

Denote C(x, 0) = A(x) and C(0, y) = B(y) for simplicity. On the x-axis C(x, y)
restricts to

A(x) =
k + nx

1 +mx
+ · · · = k + (n− km)x+ · · · .

By Proposition 5 applied to Schläfli configuration as in Fig.12 we obtain

A(kx)
A(x)

=
A(kx)− 1
A(x) − 1

.

This relation admits unique solution by Taylor expansion with given initial value
C(0). With the initial condition C(0) = k the solution is

C(x, 0) = A(x) = k +
(n− km)x

1− (n−km)x
k−1

.

Similarly we obtain

C(0, y) = B(y) = k +
k(m− n)y

1− k(m−n)y
k−1

.

By the hypothesis (3) K(W1) = K(W2), so

∂2

∂x∂y
log (

fx
fy

) =
∂2

∂x∂y
log (

gx
gy

),

from which

∂2

∂x∂y
log C(x, y) =

∂2

∂x∂y
(log (

fx
fy

)− log (
gx
gy

)) = 0.

Therefore
C(x, y) = A(x)B(y)/k.

Now assume a non singular 4-web W ′ = (F ′1, . . . , F
′
4) (not necessarily of the

above normal form) is defined by the level functions f ′, g′, y, x, and assume the
cross ratio function C′(x, y) is a product of two linear fractions A′(x), B′(y) of x
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and y. Let φ and ψ be the diffeomorphisms of the x-axis and the y-axis, which
normalize W ′ to the above normal form (*). Since the cross ratio is an absolute
invariant,

C′(x, y) = C(φ(x), ψ(y)).

First assume n 6= m, km. This is equivalent that A(x), B(y) are not constant.
Then it follows from the above equality that

φ, ψ x

Since the transverse dynamics of F1, F2 in the normal form sending the x-axis to
the y-axis respecting the origin are linear maps, those dynamics for W ′ are also
linear fractions of x. This argument applies to germs of the normal form W at all
points (x, y) on a neighbourhood of the origin to show that

the transverse dynamics sending horizontal lines to vertical lines are
all linear fractions of x.

It is easy to see that this implies also

F1, F2

x y

(see Fig.14.)

Figure 14.

Therefore we may assume that the restrictions of the level functions f, g to
the horizontal and the vertical lines are linear fractions in x, y. We may write as

f =
a(x)y + b(x)
c(x)y + d(x)
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with functions a, b, c, d of x.

Claim.
f(x, y) =

c1xy + c2x+ c3y + c4
c′1xy + c′2x+ c′3y + c′4

. ( **)

Proof of the claim. u(x) = f(x, y1), v(x) = f(x, y2), w(x) = f(x, y3) are linear
fraction of x for all small distinct y1, y2, y3. The coefficients a(x), b(x), c(x), d(x)
are solved as rational functions of u, v, w hence f is a rational function of x, y.
The numerator and denominator are of degree 1 in x and y by the above result.
Therefore f is in the above form. �

Now we will see that the curvature formK(F1, F3, F4) of the 3-subweb (F1, F3,
F4) vanishes at the origin. (This can be also seen by straight forward calculation.)
Recall the return map R defined as in §1, Fig.6. Since R is defined by compos-
ing the various transverse dynamics respecting the origin, all of which are linear
fractions by the above form of f , R is also a linear fraction of x. On the other
hand the rotation map has the expansion R(x) = x+ k(0, 0)x3 + · · · , where the
second order term is missing. Therefore R is the identity and in particular the
web curvature vanishes at the origin. This argument applies at all point in the
domain of definition S to show that the curvature form vanishes identically. This
contradicts the hypothesis of the theorem.

Next assume n = m and n 6= km. Then by the same argument as the above
case B(y) is constant and

C(x, y) = C(x, 0) = A(x) = k +
(n− km)x

1− (n−km)x
k−1

is not constant. In this case exchange the roles of F4 and F1 (or F2) in the above
argument. Then it reduces to the first case n 6= m, km, since the cross ratio C is
not constant on the leaves of F1, F2, F3 passing through the origin.

Similar argument applies to the case n = km and n 6= m. The rest is the case
m = n = 0. Clearly this implies that the cross ratio function is locally constant.
This completes the proof of Theorem 2. �

Proof of Theorem 0. Assume that the 4-web W is weakly associative, hexagonal
and the cross ratio is not constant along the x and y axes. By the above result
F1, F2, F3, F4 are respectively defined by the level functions f, g, y, x such that f, g
are in the form (**). So the web extends naturally to a 4-web on the projective
plane: F3, F4 extend to the pencils of lines with base points p1 = (1 : 0 : 0), p2 =
(0 : 1 : 0), and F1, F2 extend to pencils lines if c1 = c′1 and pencils of conics
with 4 base points p1, p2, q1, q2 and p1, p2, q3, q4, respectively, if c1 6= c′1. First
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assume F1, F2 are pencils of conics. If those base points degenerate, i.e three of
4 base points are collinear, then the pencil of conics degenerates, i.e. it splits as
a union of the line passing through the collinear 3 points and a pencil of lines
passing through the remaining point. This is equivalent that the level function f
(or g) is a linear fraction and defines a pencil of lines. So assume F1, F2 are non
degenerate and consider the 3-subweb (F1, F2, F3) on the projective plane. By
Cremona transformation with vertices p1, p2 and q1, the foliations F1, F3, F4 are
transformed to the pencils of lines F̄1, F̄3, F̄4 respectively with base points q̄2, p̄1, p̄2
and F2 is transformed to pencil of conics F̄2 with 4 base points p̄1, p̄2, q̄3, q̄4, where
p̄1, p̄2 are the images of lines p2q1, p1q1 and q̄2, q̄3, q̄4 are the image of q2, q3, q4
respectively. If these 4 base points degenerate, F̄2 is a pencil of lines and the
statement of the theorem is proved. So assume F̄2 is non degenerate as in Fig.15.

p

q
q

 2

 3
 4

_

_
_

:base point of
           

 base point of 
                 

p
 1

:

_

F
 2

_

F
 3

_

F
 4

_

F
 1

q
 2

_

Figure 15.

Claim. 3-web (F̄1, F̄2, F̄3) is hexagonal if and only if q̄2 coincides with one of
q̄3, q̄4 if and only if q2 coincides with one of q3, q4.

Proof of the claim. First consider the 3-web of the plane defined by the coordinate
functions x, y and a rational function f . The web curvature form is

∂2

∂x∂y
log

fx
fy

dx ∧ dy.

If the web is hexagonal, this vanishes identically, hence

fx
fy

= A(x) ·B(y)
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with rational functions A,B. In particular the set T of those p ∈ R2 where the
foliations are non singular but the web is singular is a finite union of leaves defined
by x, y = const.. We apply this fact to the 3-web (F̄1, F̄2, F̄3), assuming the base
points p̄1, q̄2 are situated on the line at infinity by a projective transformation. The
singular locus T (W ′) of our web W ′ = (F̄1, F̄2, F̄3) is the set of those p ∈ P2−p̄1q̄2,
where the leaf of F̄2 is non singular and tangent to the leaf of either F̄1 or F̄3.
By the above argument T (W ′) is a union of some lines passing through p̄1 or q̄2.
Since all leaves of F̄2 contain p̄1, the lines passing through p̄1 and the leaves of
F̄2 have no tangent point off p̄1. So the singular locus T (W ′) is the set of those
p ∈ P2− p̄1q̄2 where F̄2 is non singular and tangent to F̄1. Assume T (W ′) contains
a line ` passing through p̄1. Then ` ought to be the line spanned by p̄1, q̄2, because
the tangent line to the leaves of F̄2 at p ∈ ` is asymptotic to ` as p tends to p̄1 and
all those tangent lines contain q̄2 hence ` also contains q̄2. Therefore the singular
locus T (W ′) consists of lines passing through q̄2 but p̄1. Let `′ ∈ F̄1 be a line in
the singular locus passing through q̄2. Then `′ is tangent to F̄2 on `′ − q̄2, hence
`′ is contained in a conic in F̄2. This tells that q̄2 is in the union X of singular
leaves of F̄2, which is the union of projective lines spanned by two base points of
F̄2, and `′ is one of those lines. It is easily seen by Fig.16 that if q̄2 is not one of
the base points of F̄2, the singular locus has a component which is not contained
in X . Therefore q̄2 is one of p̄1, p̄2, q̄3, q̄4. If q̄2 is either p̄1 or p̄2, then F1 coincides
with either F3 or F4 and W is a hexagonal 3-web. Therefore the only possibility
is the case q̄2 is either q̄3 or q̄4. �

By the claim, q̄2 coincides with q̄3 or q̄4. Cremona transformation with vertices
p1, p2 and q2 transforms the foliations of our web to pencils of lines.

Next assume F1 is non degenerate and F2 is a pencil of lines with a base
point q3. By the same argument as above, 3-subwebs of W are hexagonal if and
only if q3 coincides with one of q1, q2. Then Cremona transformation with the
vertices p1, p2, q3 transforms F1 to the pencil of lines with base point q̄, where
{q1, q2} = {q3, q} and q̄ is the image of q under the transformation.

If F1 is degenerate and F2 is non degenerate, a similar argument applies.
The rest is the case where F1, F2, F3, F4 are pencils of lines. This completes

the proof of Theorem 0. �

4. Associative webs and weakly associative webs of codimension
1 in higher dimension

Let W = (F1, . . . , Fn+1) be a non singular (i.e. Fi’s are non singular and in general
position) (n+1)-web of codimension 1 on an open subset of Rn. Chern connection
γi of W is an extension of Bott connection of the normal bundle of Fi (see [5] for the
definition). In the case n = 3 twice the average of the curvature forms of γ1, . . . , γ4
had been already defined by Blaschke [1], so we call it Blaschke curvature form.
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To define Blaschke curvature form for n + 1-web of codimension 1 on an n-
manifold M , assume that Fi is locally defined by a level function ui. A relation
W (u1, . . . , un+1) = 0 of those ui is called web function.Blaschke curvature form is
defined by

dΓ = d(−
∑

i=1,...,n+1

(log Fui)uidui) =
1
2

∑
i,j=1,...,n

(log
Fui
Fuj

)uiujdui ∧ duj .

It is easy to see that dΓ is independent of the choice of defining level func-
tions. When (u1, . . . , un) is a local coordinate (x1, . . . , xn) of M and un+1 =
f(x1, . . . , xn), a web function is given by

F = un+1 − f(u1, . . . , un)

and

dΓ = d(−
∑

i=1,...,n

(log fxi)xidxi) =
1
2

∑
i,j=1,...,n

(log
fxi
fxj

)xixjdxi ∧ dxj .

By definition we obtain

Proposition 9. Blaschke curvature form restricts to that of the i+ 1-web on the
intersections of leaves of n − i foliations cut out by the other i + 1 foliations for
i = 2, 3, . . . , n− 1. Conversely Blaschke curvature form is determined by the web
curvature forms of the 3-webs on n− 2-intersections.

We call n+ 2 foliations of codimension 1 of an n-manifold M are associative
if the modulus of tangent hyperplanes to the leaves passing through a point is
constant, and we say those foliations are weakly associative if all n + 1-subwebs
have equal Blaschke curvature form. If the modulus of the tangent hyperplanes
is constant, the cross ratios of 4-webs on n − 2-intersections of the leaves are
constant. In particular 3-subwebs of those 4-webs have equal web curvature forms
by Theorem 2 and by the second half of Proposition 9, n+ 2 foliations are weakly
associative. In the following we discuss the converse.

For simplicity assume that M is Euclidean n space, Fi is defined by the i-th
coordinate xi and Fn+1, Fn+2 are defined by level functions f, g respectively on a
neighbourhood of the origin. Assume that Blaschke curvature forms of all n+ 1-
subwebs are equal. Then the 4-webs on n− 2-intersections are weakly associative
by Proposition 9. Assume that those curvilinear 4-webs are not hexagonal, i.e.
all 3-subwebs are not hexagonal. Then the cross ratio of tangents to the leaves of
those curvilinear 4-webs is constant on each (n − 2)-intersection of the leaves by
Theorem 2.

Lemma 10. Let Hi, i = 1, . . . , n + 2 be codimension one subspaces in Euclidean
n-space in general position. The modulus of those Hi is determined by the modulus
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of 4-lines in intersections of n − 2 of those Hi, i 6= 1, n + 1, n + 2 cut out by the
remaining 4 hyperplanes.

Proof. Assume Hi is defined by xi = 0 for i = 1, . . . , n, Hn+1 is defined by
x1 + · · · + xn = 0 and Hn+2 is defined by x1 + a2x2 + · · · + anxn = 0. The
x1xi-plane is the n− 2-intersection of Hj , j 6= 1, i, n+ 1, n+ 2. On this plane the
other 4 subspaces cut out 4 lines x1 = 0, xi = 0, x1 + xi = 0 and x1 + aixi = 0.
The modulus of these 4 lines determines the coefficient ai. �

By the lemma the modulus of tangent hyperplanes of the leaves of Fi, i =
1, . . . , n+ 2 is constant along n− 1-intersections of Fi, i 6= j, k, ` for distinct j, k, `.
Therefore it is constant on the domain of definition. We can state the result in
the following general form.

Theorem 11. Assume d foliations F1, . . . , Fd, n+ 2 ≤ d of codimension 1 on an
n-manifold are non singular, in general position and also the curvilinear 3-webs
on the intersection of leaves of n − 2 foliations cut out by 3 of the remaining 4
foliations are not hexagonal. Then the following conditions are equivalent.

(1) F1, . . . , Fd are associative: the modulus of tangent planes to the leaves
of F1, . . . , Fd passing through a point is constant.

(2) F1, . . . , Fd are weakly associative: Blaschke curvature forms of (n+ 1)-
subwebs are equal.

The statement remains valid for webs with generic singularity. In the hexago-
nal case the statement is not true. In fact d pencils of hyperplanes on Rn satisfies
(2) but (1). The author does not know if there exist other such examples. It seems
interesting to classify all such webs, generalizing Theorem 0 and Theorem 1.

Clearly a non singular associative d-web of codimension 1 on an n-manifold,
n < d, can be defined by a d-tuple of members of n-dimensional non singular linear
family of one forms L = {ωv}v∈Rn . We say such d foliations are generic if the m
points in the projectivization PL = Pn−1 are non degenerate and not contained
in a quadric hypersurface. Then all members of L are integrable by Frobenius
theorem. The following proposition cited in [23] is a special case of diagonalizable
n+ 1-webs (see [11]).

Proposition 12. If all members of a non singular linear family of one forms L
on an open subset of Rn of dimension n are integrable and dim  L = n ≥ 3, there
exists unique closed one form θ such that

dωv = θ ∧ ωv.

for all ωv ∈ L.

By the proposition we obtain
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Proposition 13. If linearly independent integrable one forms F1, . . . , Fd (possibly
singular) on a n-manifold are weakly associative and generic and d is sufficiently
large, then the d-web (F1, . . . , Fd) is parallelizable at non singular points.

Here a non singular d-web (F1, . . . , Fd) is parallelizable if it is locally diffeo-
morphic to the d-web by d foliations by parallel hyperplanes in Rn. In the paper
[23] a more detailed structure of such parallelizable webs is investigated.

Non generic case is studied by Gelfand- Zakharevich [8] and M.H.Rigal [26]
from different view points.
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