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fourth order equation in Rn
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Abstract. In this paper, we consider the following conformally invariant equations of fourth
order {

∆2u = 6e4u in R4,

e4u ∈ L1(R4),
(1)

and {
∆2u = u

n+4
n−4 ,

u > 0 in Rn for n ≥ 5,
(2)

where ∆2 denotes the biharmonic operator in Rn. By employing the method of moving planes, we
are able to prove that all positive solutions of (2) are arised from the smooth conformal metrics on
Sn by the stereograph projection. For equation (1), we prove a necessary and sufficient condition
for solutions obtained from the smooth conformal metrics on S4.
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1. Introduction

Recently, there have been much analytic work on the conformal geometry. A
well known example is the Yamabe problem or, more generally, the problem of
prescribling scalar curvature. Given a smooth function K defined in a compact
Riemannian manifold (M, g0) of dimension n ≥ 2, we ask whether there exists a
metric g conformal to g0 such that K is the scalar curvature of the new metric g.
Let g = e2ug0 for n = 2 or g = u

4
n−2 g0 for n ≥ 3, then the problem is reduced to

find solutions of the following nonlinear elliptic equations:

∆u+Ke2u = K0 (1.1)
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for n = 2, or, {
4(n−1)
n−2 ∆u+Ku

n+2
n−2 = K0u,

u > 0 in M
(1.2)

for n ≥ 3, where ∆ denotes the Beltrami-Laplacian operator of (M, g0) and K0
is the scalar curvature of g0. In studying equations (1.1) and (1.2), it is very
important to understand the solution set of{

∆u+ n(n− 2)u
n+2
n−2 = 0 in Rn,

u > 0 in Rn
(1.3)

for n ≥ 3, or, {
∆u+ e2u = 0 in R2,

e2u ∈ L1(R2).
(1.4)

By employing the method of moving planes, Caffarelli-Gidas-Spruck [CGS] was
able to classify all the solutions of (1.3) for n ≥ 3, and, Chen-Li [CL] did the same
thing for the equation (1.4).

There are another interesting examples arising from the conformal geometry.
For a compact Riemannian manifold of dimension 4, Chang and Yang [CY] con-
sidered the existence of extremal functions of the variational problem:

II[w] =< Pw,w > +
∫
Q0wdVg0 − (

∫
Q0dVg0) log

∫
e4wdVg0 , (1.5)

where P is the Paneitz operator on M , discovered by Paneitz:

Pϕ = ∆2ϕ+ δ(
2
3
K0I − 2Ric)dϕ,

Q0 =
1
12

(K2
0 −∆K0 − 3|Ric|2),

where Ric is the Ricci curvature of (M, g0). The variational form (1.5) arises form
the difference of log-determinants of conformally covariant operator with respect to
metrics in a conformal class. For background material and other related problems,
we refer [BCY], [CY] and the references therein. The extremal function u of II(w)
satisfies a conformal invariant elliptic equation of fourth order:

Pu+ 2Q0 = 2Qe4u, (1.6)

where Q is a constant. When (M, g0) is the standard S4, by using the coordinate
of the stereographic projection in R4, the equation (1.6) can be reduced to{

∆2u = 6e4u in R4,

e4u ∈ L1(R4),
(1.7)
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where ∆2 denotes the biharmonic operator. It is expected that in order to under-
stand the equation (1.6), we should classify all the solutions of (1.7) completely.

The equation (1.7) looks very similar to the equation (1.4). In fact, there are
many common properties shared by both equations. For example, the biharmonic

operator ∆2 in R4 has const. log
1

|x− y| as its fundamental solution. And the

equation (1.7) is invariant under the change of the conformal transformation. In
particular, the new function w(x) = u(

x

|x|2 )− 2 log |x| satisfies the same equation

as u does. However, the appearance of the biharmonic operator in (1.7) expects
to make the equation (1.7) very different from (1.4). In fact, a study of radial
solutions of (1.7) shows that there are solutions of (1.7) which do not come from
the smooth functions on S4 through the stereographic projection. This is not quite
the same as the equation (1.4). But, under certain constraint on the behavior of
u at ∞, we have

Theorem 1.1. Suppose that u is a solution of (1.7) with |u(x)| = o(|x|2) at ∞.
Then there exists some point x0 ∈ R4 such that u is radially symmetric about x0
and

u(x) = log
2λ

(1 + λ2|x− x0|2)
. (1.8)

Let α be defined by

α =
3

4π2

∫
R4

e4u(y)dy. (1.9)

Theorem 1.2. Let u be a solution of (1.7). Then the following statements hold.
(i) After an orthorgonal transformation, u(x) can be represented by

u(x) =
3

4π2

∫
R4

log(
|y|
|x− y| )e

4u(y)dy −
4∑
j=1

aj(xj − x0
j )

2 + c0

= −
4∑
j=1

aj(xj − x0
j )2 − α log |x|+ c0 +O(|x|−τ ) (1.10)

for some τ > 0 and for large |x|. The function ∆u satisfies

∆u(x) = − 3
2π2

∫
R4

e4u(y)

|x− y|2 dy − 2
4∑
j=1

aj (1.11)

where aj ≥ 0, c0 are constants and x0 = (x0
1, . . . , x

0
4) ∈ R4. Moreover, if ai 6= 0

for all i, then u is symmetric with respect to the hyperplane {x | xi = x0
i }. If

a1 = a2 = a3 = a4 6= 0, then u is radially symmetric with respect to x0.
(ii) The total integration α ≤ 2. If α = 2, then u(x) has the form of (1.8).
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In this paper, we also consider the following equation analogue to the equation
(1.3): {

∆2u = u
n+4
n−4 ,

u > 0 in Rn
(1.12)

for n ≥ 5. The equation (1.12) can be derived from the Sobolev embedding of H2

into L
2n
n−4 :

sup
u∈H2(R4)

∫
|∆u|2

(
∫
u

2n
n−4 )

n−4
n

. (1.13)

The existence of extremal functions of (1.13) was shown in [L] by P.L. Lions. In
the same paper, Lions also proved the radial symmetry of any extremal function
of (1.13). In general, the radial symmetry of solutions of (1.12) holds also.

Theorem 1.3. Suppose that u is a smooth solution of (1.12). Then u is radially
symmetric about some point x0 ∈ Rn and u has the following form:

u(x) = cn(
λ

1 + λ2|x− x0|2
)
n−4

2 (1.14)

for some constant λ > 0, where cn = [n(n− 4)(n− 2)(n+ 2)]−
n−4

8 .

Similarly, we also have

Theorem 1.4. Suppose that u is a nonnegative solution of

∆2u = up in Rn (1.15)

for 1 < p <
n+ 4
n− 2

. Then u ≡ 0 in Rn.

As in equations (1.3) and (1.4), we will use the method of moving planes to
prove the radial symmetry. In our situation, however, the maximum principle can
not directly be applied to u without any information of ∆u. Hence we have to get
some informations about ∆u from equations (1.7) and (1.12). First, we are going
to prove that for any solution of (1.7), ∆u(x) can be reprensented by

∆u(x) =
−3
2π2

∫
R4

e4u(y)

|x− y|2 dy − c1 (1.16)

for some nonnegative constant c1 ≥ 0. Thus, u satisfies ∆u < 0 in R4. The
representation (1.16) is an indication that we should apply the method of moving
planes to −∆u, not u itself. The method of moving planes was first invented by
A.D. Alexandrov, and was shown to be a powerful tool in studying equations (1.3)
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and (1.4) by Gidas-Ni-Nirenberg [GNN], Caffarelli-Gidas-Spruck [CGS], Chen-Li
[CL] and many others. As usual, in order to start the process of moving planes at
∞, we have to understand the asymptotic behavior of both u and ∆u at infinity.
The analysis of asymptotic behaviors will be carried out in Section 2. In Section 3,
we will establish the radial symmetry and prove Theorem 1.1 and Theorem 1.2.
In Section 4, both Theorem 1.3 and Theorem 1.4 are proved.

The author would like to thank Professors Alice Chang and Paul Yang for
introducing him to this problem. While preparing the manuscript, I was informed
by Professor A. Chang that she and P. Yang have also obtained similar results by
using the method of moving plane.

2. Asymptotic behavior

In this section, we want to study the asymptotic behavior for a solution u of (1.7).
First, we note that the fundamental solution of the biharmonic operator ∆2 in R4

is
P (x, y) =

1
8π2 log

1
|x− y| .

Let u be a solution of (1.7). Set

α =
3

4π2

∫
R4

e4u(y)dy, (2.1)

and

v(x) =
3

4π2

∫
R4

log(
|x− y|
|y| )e4u(y)dy. (2.2)

Obviously, v(x) satisfies

∆2v(x) = −e4u(x) in R4. (2.3)

Lemma 2.1. Suppose u is a solution of (1.7). Let α be given as in (2.1). Then
there exists a constant C such that

v(x) ≤ α log |x|+ C

Proof. For |x| ≥ 4, we decompose R4 = A1 ∪ A2, where A1 = {y | |y − x| ≤ |x|
2
}

and A2 = {y | |y−x| ≥ |x|
2
}. For y ∈ A1, we have |y| ≥ |x|−|x−y| ≥ |x|2 ≥ |x−y|,

which implies

log
|x− y|
|y| ≤ 0. (2.4)
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Since |x− y| ≤ |x|+ |y| ≤ |x||y| for |x|, |y| ≥ 2 and log |x− y| ≤ log |x|+ C for
|x| ≥ 4 and |y| ≤ 2, we have

v(x) ≤ 3
4π2

∫
A2

log
|x− y|
|y| e4u(y)dy

≤ 3
4π2 (log |x|

∫
A2

e4u(y)dy +
∫
|y|≤2

log
|x− y|
|y| e4u(y)dy

≤ 3
4π2 (

∫
R4

e4u(y)dy) log |x|+ C

= α log |x|+ C. �

Lemma 2.2. Suppose u is a solution of (1.7). Then ∆u(x) can be represented by

∆u(x) =
−3
2π2

∫
R4

e4u(y)

|x− y|2 dy − C1 (2.5)

where C1 ≥ 0 is a constant.

Proof. Let w(x) = u(x)+v(x). By (2.3), we have ∆2w(x) = 0 in R4. Since ∆w(x)
is a harmonic fumction in R4, we have for any x0 ∈ R4 and r > 0,

∆w(x0) =
2

π2r4

∫
|y−x0|≤r

∆w(y)dy

=
2

π2r4

∫
|y−x0|=r

∂w

∂r
(y)dσ. (2.6)

where π2/2 is the volume of the unit ball and dσ denotes the area element of the
sphere |y − x0| = r.

Integrating (2.6) along r, we have

r2

8
∆w(x0) = −

∫
|x−x0|=r

wdσ − w(x0),

where −
∫
|x−x0|=r

wdσ =
1

2π2r3

∫
|x−x0|=r

wdσ is the integral average of w over the

sphere |x− x0| = r. Hence, by the Jensen inequality,

exp(
r2

2
∆w(x0)) ≤ e−4w(x0) exp(4−

∫
|x−x0|=r

wdσ)

≤ e−4w(x0)−
∫
|x−x0|=r

e4wdσ.
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Since w(x) = u(x) + v(x) ≤ u(x) + α log |x|+ c, we have r3−4α exp(
∆w(x0)

2
r2) ∈

L1[1,∞). Thus ∆w(x0) ≤ 0 for all x0 ∈ R4. By Liouville’s Theorem, ∆w(x) ≡
−C1 in R4 for some constant C1 ≥ 0. Hence (2.5) follows immediately. �

Let h(x) be the solution of{
∆2h(x) = f(x) in Ω,
∆h(x) = h(x) = 0 on ∂Ω,

where Ω is a bounded domain of R4. Following the argument of [BM], we have

Lemma 2.3. Suppose f ∈ L1(Ω̄). For any δ ∈ (0, 32π2), there exists a constant
Cδ > 0 such that the inequality,∫

Ω
exp(

δ|h|
‖f‖L1

)dx ≤ Cδ(diam Ω)4, (2.7)

where diam Ω denotes the diameter of Ω.

Proof. Without loss of generality, we may assume 0 ∈ Ω. Let R = diam Ω. Set

v(x) =
1

8π2

∫
BR(0)

log(
2R
|x− y|)|f̃(y)|dy

where f̃(y) = f(y) for y ∈ Ω and f̃(y) = 0 for y 6∈ Ω. By a direct computation, we
have

∆v(x) =
−1
4π2

∫
BR(0)

|x− y|−2|f̃(y)|dy ≤ 0 (2.8)

for x ∈ Ω. Since both v and −∆v are positive on ∂Ω, we have by the maximum
principle,

|h(x)| ≤ v(x) for x ∈ Ω.

Applying the Jensen inequality, we have∫
Ω

exp(
δ|h(x)|
‖f‖L1

)dx

≤
∫

Ω
exp(

δ

8π2

∫
BR(0)

log(
2R
|x− y|)dµ(y))

≤
∫

Ω

∫
BR(0)

(
2R
|x− y|)

δ

8π2 dµ(y)dx ≤ CδR4,

where dµ(y) =
1

‖f‖L1
|f̃(y)|dy. Hence Lemma 2.3 is proved. �
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Lemma 2.4. Let u be a solution of (1.7) and v is defined by (2.2). Then, given
any ε > 0, there exists a R = R(ε) such that for |x| ≥ R, v(x) satisfies

v(x) ≥ (α− ε) log |x|, and, (2.9)

lim
|x|−→+∞

∆v(x) = 0. (2.10)

Proof. To prove (2.9), we first claim that for any ε > 0, there exists R = R(ε) > 0
such that

v(x) ≥ (α − ε

2
) log |x|+ 3

4π2

∫
B(x,1)

log |x− y|e4u(y)dy. (2.11)

To prove (2.11), we decompose R4 = A1 ∪ A2 ∪ A3, where A1 = {y | |y| < R0},
A2 = {y | |x − y| ≤ |x|

2 , |y| ≥ R0}, and A3 = {y | |x − y| ≥ |x|
2
, |y| ≥ R0}. Let

R0 = R0(ε) be sufficiently large such that

3
4π2

∫
A1

log
|x− y|
|y| e4u(y)dy ≥ (α − ε

4
) log |x| (2.12)

for large |x|.
For |x| large, we have∫

A2

log(
|x− y|
|y| )e4u(y)dy

=
∫
A2

log |x− y|e4u(y)dy −
∫
A2

log |y|e4u(y)dy

≥
∫
B(x,1)

log |x− y|e4u(y)dy − log(2|x|)
∫
A2

e4u(y)dy.

For y ∈ A3 and |y| ≤ 2|x| we have |x− y| ≥ |x|
2
≥ |y|

4
. For x ∈ A3 and |y| ≥ 2|x|

we have |x− y| ≥ |y| − |x| ≥ |y|
2

. In any case, we have for y ∈ A3,

|x− y|
|y| ≥ 1

4
.

Hence ∫
A3

log
|x− y|
|y| e4u(y)dy ≥ log(

1
4

)
∫
A3

e4u(y)dy. (2.14)

By (2.12), (2.13) and (2.14), we have (2.11) for large |x|.
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Let 0 < ε0 < π2 and R0 = R0(ε0) > 0 be sufficiently large such that

6
∫
B(x,4)

e4udy ≤ ε0 (2.15)

for |x| ≥ R0. Let h be the solution of{
∆2h = 6e4u(y) in B(x, 4),
h = ∆h = 0 on ∂B(x, 4).

By Lemma 2.3, we have for small ε0,∫
B(x,4)

e12|h|dy ≤ c1, (2.16)

for some constant c1 independent of x.
Set q(y) = u(y)− h(y) for y ∈ B(x, 4). Then q satisfies{

∆2q(y) = 0 on B(x, 4),
∆q = ∆u and q = u on ∂B(x, 4).

(2.17)

Let q̃(y) = −∆q(y). By Lemma 2.2, q̃(y) is harmonic with positive boundary value
on ∂B(x, 2). Applying the maximum principle, we have q̃(y) > 0 in B(x, 4). Thus,
by the Harnack inequality, we have

q̃(y) ≤ c2q̃(x) = −c2−
∫

∂B(x,4)
∆udσ (2.18)

for y ∈ B̄(x, 2) where c2 is a constant depending on n only.
Integrating the equation (1.1), we have for any r > 0,∫

∂B(x,r)

∂

∂r
(∆u)dσ = 6

∫
B(x,r)

e4udy.

Integrating the identity above along r, we have

−
∫

∂B(x,r)
∆u−∆u(x) =

3
2π2

∫
B(x,r)

(
1

|x− y|2 −
1
r2 )e4u(y)dy (2.19)

Applying Lemma 2.2 and (2.19), we have

−−
∫

∂B(x,r)
∆u =

3
2π2

∫
|x−y|≥r

e4u(y)

|x− y|2 dy +
3

2π2r2

∫
B(x,r)

e4u(y)dy + C1.
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In particular, we have r = 4,

−−
∫

∂B(x,4)
∆u ≤ c3. (2.20)

Hence, by (2.18), we have

q̃(y) ≤ c4 for y ∈ B(x, 2). (2.21)

Since q satisfies {
∆q(y) = −q̃(y) in B(x, 4),
q = u on ∂B(x, 4),

by estimates for linear elliptic equations (e.g. see Theorem 8.17 in [GT]), we have
for any p > 1 and σ > 2

sup
B(x,1)

q ≤ c (‖q+‖Lp(B(x,2)) + ‖q̃‖Lσ(B(x,2))), (2.22)

where q+ = max(q, 0) and c = c(p, σ). Recall q = u− h. Thus, q+(y) ≤ u+(y) +
|h(y)| for y ∈ B(x, 4). By (2.15), we have∫

B(x,2)
q+p ≤ c5

∫
B(x,2)

e2q+ ≤ c5(
∫
B(x,2)

e4u+
)

1
2 (
∫
B(x,2)

e4|h|)
1
2 .

Since e4u+ ≤ 1 + e4u, we have together with (2.21),

sup
B(x,1)

q ≤ c6. (2.23)

Since u = h+ q, we have

u(y) ≤ h(y) + q(y) ≤ c6 + |h(y)|

for y ∈ B(x, 1). Therefore,∫
B(x,1)

e12u ≤ c7
∫
B(x,1)

e12|h|dy ≤ c8, (2.24)

and then,

|
∫
B(x,1)

log |x− y|e4u(y)dy| ≤(
∫
B(x,1)

(log
1

|x− y| )
2dy)

1
2

(
∫
B(x,1)

(e8u(y)dy)
1
2 ≤ c9,
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where c9 is a constant in dependent of x. By (2.11), (2.9) follows immediately. By
(2.24), it is an elementary exercise to prove lim

|x|−→∞
∆v(x) = 0. �

Lemma 2.5. Suppose |u(x)| = o(|x|2) at ∞. Then

u(x) =
3

2π2

∫
R4

log(
|y|
|x− y|)e

4u(y)dy + C0 (2.25)

where C0 is a constant. Furthermore, for any ε > 0, there exists R = R(ε) > 0
such that u(x) satisfies

−α log |x| ≤ u(x) ≤ (−α+ ε) log |x| (2.26)

for |x| ≥ R(ε).

Proof. By Lemma 2.2, we have

∆u(x) =
−3
2π2

∫
2π2

∫
R4
|x− y|−2e4u(y)dy − C1.

Suppose |u(x)| = o(|x|2). First, we claim C1 = 0. Otherwise, we have ∆u(x) ≤
−C1 < 0 for |x| ≥ R0 where R0 is sufficiently large.

Let
h(y) = u(y) + ε|y|2 +A(|y|−2 −R2−n

0 ) (2.27)

where ε is small such that

∆h(y) = ∆u+ 8ε < −C1
2
< 0 (2.28)

for |y| ≥ R0, and A is sufficiently large so that inf
|y|≥R0

h(y) is achieved by some

y0 ∈ R4 with |y0| > R0. This can be done because lim
|y|−→+∞

h(y) = +∞ for any

A > 0. Applying the maximum principle to (2.28) at y0, we have a contradiction.
Hence the claim is proved.

By the claim, we have ∆(u + v) = 0 in R4. By the assumption and Lemma
2.1, we have |u+ v(x)| = o(|x|2) at ∞. Since u+ v is a harmonic function, by the

gradient estimates of harmonic functions, we have u(x) + v(x) =
4∑
j=1

ajxj + a0 for

some constants aj ∈ R, 0 ≤ j ≤ 4. Thus,

e4u(x) = ea0e−4v(x)e
∑4

j=1
ajxj ≥ const. |x|−4αe

∑4
j=1

ajxj.



Vol. 73 (1998) Solutions of a conformally invariant fourth order equation in Rn 217

Since e4u(x) ∈ L1(R4), we have aj = 0 for 1 ≤ j ≤ 4. Hence, we have proved
(2.25). Obviously, (2.26) immediately follows from (2.25), (2.9) and Lemma 2.1.
The proof of Lemma 2.5 is finished. �

Now suppose u is a smooth solution of

∆2u = Q(x)e4u in R4 (2.29)

where Q(x) ∈ C1(R4). Then we have the following Pohozaev identity.

Lemma 2.6. Suppose u is an entire smooth function of (2.29). Then for any
R > 0, we have∫

BR

Q(x)e4udx+
1
4

∫
BR

(x · 5Q)e4udx

=
1
4

∫
∂BR

Q(x)|x|e4udσ −
∫
∂BR

|x|[ (∆u)2

2
+ |x|∂u

∂r

∂

∂r
∆u]dσ

+
∫
∂BR

∂

∂r
(r
∂u

∂r
)∆udσ. (2.30)

Proof. The proof of Lemma 2.6 goes exactly the same as in the case of the semi-
linear elliptic equations of second order. For the sake of completeness, we give a
proof here.

Multiplying x · 5u on the both sides of the equation (2.29), we have

1
4

∫
∂BR

Q|x|e4udσ − 1
4

[
∫
BR

[(x · 5Q) + 4Q]e4udx

=
∫
BR

(x · 5u)Qe4udx =
∫
BR

(x · 5u)∆2udx

=
∫
BR

∆(x · 5u)∆udx+
∫
∂BR

[r
∂u

∂r

∂

∂r
(∆u)−∆u

∂

∂r
(r
∂u

∂r
)]dσ

=
∫
∂BR

|x|[ |∆u|
2

2
+
∂u

∂r

∂

∂r
(∆u)]dσ −

∫
∂BR

∆u
∂

∂r
(r
∂u

∂r
)dσ,

where we have ultilized
1
2

div (x(∆u)2) = ∆(x · 5u)∆u. Obviously, (2.30) follows
immediately. �

Lemma 2.7. Let u be a solution of (1.7) and u(x) = o(|x|2) at ∞. Then α = 2.

Proof. By Lemma 2.5, we have

u(x) =
3

4π2

∫
R4

log(
|y|
|x− y| )e

4u(y)dy + C0.
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By elementary calculations, we have

|x|∂u
∂r

(x) = − 3
4π2

∫
R4

x · (x− y)
|x− y|2 e4u(y)dy, (2.31)

∂

∂r
(r
∂u

∂r
)(x) = − 3

4π2

∫
R4

2r2 − x · y
r|x− y|2 e4u(y)dy (2.32)

+
3

2π2

∫
R4

(x · (x− y))2

r|x− y|4 e4u(y)dy,

and,

∆u(x) = − 3
2π2

∫
R4

e4u(y)

|x− y|2 dy (2.33)

Since e4u(y) ≥ |y|−4α for large |y| by lemma 2.5, we have α > 1. Therefore, it is
easy to calculate from (2.31) ∼ (2.33) that

lim
|x|−→+∞

|x|∂u
∂r

(x) = −α, (2.34)

lim
|x|−→+∞

∂

∂r
(r
∂u

∂r
)(x)|x| = 0, (2.35)

lim
|x|−→+∞

∆u(x)|x|2 = −2α, (2.36)

and
lim

|x|−→+∞

∂

∂r
(∆u(x))|x|3 = 4α. (2.37)

Applying the Pohozaev identity and (2.34) ∼ (2.37), the right hand side of
(2.30) (Here, Q(x) = 6) tends to 4π2α2. Hence, we have

8π2α = 4π2α2,

which implies α = 2. �

Lemma 2.8. Let u satisfy the assumption of Lemma 2.5. Then u(x) satisfies

u(x) = −2 log |x|+ c+O(|x|−1), (2.38)

and 

−∆u(x) = 4|x|−2 +
∑4
j=1 ajxj |x|−4 +O(x−4),

− ∂

∂xi
∆u(x) = −8xi|x|−4 +O(|x|−4),

− ∂2

∂xi∂xj
∆u(x) = O(|x|−4)

(2.39)
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for large |x|, where c, aj , 1 ≤ j ≤ 4 are constant.

Proof. Let w(x) = u(
x

|x|2 ) − 2 log |x|. By a straightforward computation, w(x)

satisfies{
∆2w(x) = 6e4w(x) in R4\{0},
|w(x)| = o(log 1

|x| ) and |∆w(x)| = o( 1
|x|2 ) as |x| −→ 0.

(2.40)

Set h(x) be the solution of{
∆2h(x) = 6e4w(x) in B1

h(x) = w(x) on ∂B1, ∆h(x) = ∆w(x), on ∂B1.
(2.41)

Since Lemma 2.5 implies e4w(x) ∈ Lp(B̄1) for any p > 1, by the regularity
theorems of linear elliptic equations, h(x) ∈ C3,τ (B̄1) for any 0 < τ < 1. Let
q(x) = w(x) − h(x). Then q(x) satisfies

∆2q = 0 in B1\{0},
q = ∆q = 0 on ∂B1,

|q(x)| = o(log
1
|x| ), |∆q(x)| = o(

1
|x|2 ) as |x| −→ 0.

(2.42)

By the maximum principle, we have, for any ε > 0

|∆q(x)| ≤ ε/|x|2

for x ∈ B̄1. Applying the maximum principle again, we have

|q(x)| ≤ ε log
1
|x| .

Thus, q(x) ≡ 0. Namely, w(x) = h(x) ∈ C3,τ (B̄1). By the regularity of the linear
elliptic equation again, we have w(x) ∈ C∞(B̄1). It is not difficult to see that
(2.39) follows immediately. �

3. Radial symmetry

Now we are in the position to finish the proof of Theorem 1.1.
Proof of Theorem 1.1. Suppose that u is a smooth entire solution of (1.7) such that
u(x) = o(|x|2) at ∞. Let v(x) = −∆u(x). By Lemma 2.8, v(x) has a harmonic
asymptotic expansion at ∞:

v(x) = 1
|x|2 (4 +

∑4
j=1

ajxj
|x|2 ) +O( 1

|x|4 ),

vxi = −8xi
|x|4 +O( 1

|x|4 ),

vxixj = O( 1
|x|4 ).

(3.1)
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We want to apply the method of moving planes to prove that u is symmetric about
some point in R4. Following conventional notations, we let for any λ, Tλ = {x =
(x1, . . . , x4) | x1 = λ},Σλ = {x | x1 > λ} and xλ = (2λ− x1, x2, . . . , x4) be the
reflection point of x with respect to Tλ. To start the process of moving planes
along the x1-direction, we need two lemmas below.

Lemma 3.1. Let v be a positive function defined in a neighborhood at infinity
satisfying the asymptotic expansion (3.1). Then there exists λ̄0 < 0 and R > 0
such that the inequality

v(x) > v(xλ)

holds for λ ≤ λ̄0, |x| ≥ R and x ∈ Σλ.

Lemma 3.2. Suppose v satisfies the assumption of Lemma 3.1, and v(x) > v(xλ0)
for x ∈ Σλ0 . Assume v(x) − v(xλ0) is superharmonic in Σλ0 . Then there exist
ε > 0, S > 0 such that the followings hold.

(i) vx1 > 0 in |x1 − λ0| < ε and |x| > S.
(ii) v(x) > v(xλ) in x1 ≥ λ0 +

ε

2
> λ and |x| > S

for all x ∈ Σλ, λ ≤ λ1 with |λ1 − λ0| < c0ε, where c0 is a small positive number
depending on λ0 and v only.

The proofs of both lemmas are contained in [CGS]. Please see Lemma 2.3 and
Lemma 2.4 in [CGS] for their proofs.

For any λ, we consider wλ(x) = u(x)− u(xλ) in Σλ. Then wλ(x) satisfies{
∆2wλ(x) = bλ(x)wλ in Σλ,
wλ(x) = ∆wλ(x) = 0 on Tλ,

where bλ(x) = 6
e4u(x) − e4u(xλ)

u(x)− u(xλ)
> 0 in Σ̄λ. By Lemma 3.1, ∆wλ(x) = v(xλ) −

v(x) < 0 for x ∈ Σλ, λ ≤ λ̄0 and |x| ≥ R. Since v(x) > 0 in R4, there exists
λ̄1 < λ̄0 such that

v(xλ) < v(x)

for |x| ≤ R and λ ≤ λ̄1. Therefore, we have

∆wλ(x) < 0

in Σλ for λ ≤ λ̄1. By Lemma 2.8, lim
|x|−→+∞

wλ(x) = 0. Applying the maximum

principle, we have wλ(x) > 0 in Σλ for all λ ≤ λ̄1.
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Let λ0 = sup{λ | v(xµ) ≤ v(x) for x ∈ Σµ and µ ≤ λ}. Since v(x) tends to
zero at ∞, it is not difficult to see that λ0 < +∞. We claim that

u(x) ≡ u(xλ0)

for all x ∈ Σλ0 .
The claim will be proved by contradiction. Suppose wλ0 6≡ 0 in Σλ0 . By

continuity, ∆wλ0(x) ≤ 0 in Σλ0 . Since wλ0(x) tends to 0 as |x| −→ +∞ by (2.38),
the strong maximum principle implies wλ0(x) > 0 in Σλ0 . By applying equaiton
(1.7), we have ∆2wλ0(x) = 6(e4u(x) − e4u(xλ0 )) > 0, which implies ∆wλ0 is a
subharmonic function. Applying the strong maximum principle again, we have
∆wλ0(x) < 0 in Σλ0 .

By the definition of λ0, there exists a sequence λn ↑ λ0 such that sup
Σλn

∆wλn(x) >

0. Since lim
|x|−→+∞

∆wλn(x) = 0, there exists xn ∈ Σλn such that ∆wλn(xn) =

sup
Σλn

∆wλn(x) > 0. By Lemma 3.2. xn is bounded. Without loss of generality,

we may assume x0 = lim
n−→+∞

xn. If x0 ∈ Σλ0 , then by the continuity, we have

∆wλ0(x0) = 0, which yields a contradition to ∆wλ0(x) < 0 in Σλ0 . If x0 ∈ Tλ0 ,
then 5(∆wλ0(x0)) = 0, which yields a contradiction to the Hopf boundary Lem-
ma because ∆wλ0 is a negative subharmonic function in Σλ0 . Therefore, the claim
is proved. Obviously, the radial symmetry of u follows from the claim.

By a straightforward computation, uλ(|x|) ≡ log(
2λ

1 + λ2|x|2 ) is a family of

solutions of (1.7) for λ > 0. Now let ω(r) be a radial solution of (1.7). From the
uniqueness of ODE, ω(r) is completely determined by ω(0) and ∆ω(0) = 4ω′′(0)
(ω always satisfies ω′(0) = ω′′′(0) = 0). Without loss of generality, we may assume
ω(0) = uλ0(0) for some λ0 > 0. If ω′′(0) < u′′λ0

(0), then ω(r) < uλ0(r) for small
r > 0. We first claim uλ0(r) > ω(r) for all r > 0.

Suppose there exists r0 > 0 such that uλ0(r0) = ω(r0) and uλ0(r) > ω(r) for
0 ≤ r < r0. Then, by (1.7),

∂

∂r
∆(uλ0(r)− ω(r)) > 0

for 0 < r ≤ r0. In particular, ∆(uλ0(r) − ω(r)) > 0 for 0 ≤ r ≤ r0. Since
uλ0(r)−ω(r) = 0 on r = r0, the maximum principle implies uλ0(r)−ω(r) < 0 for
all 0 ≤ r ≤ r0, which yields a contradiction to uλ0(0) = ω(0). Thus, the claim is
proved.

From the proof above, we also have ∆uλ0(r)−∆ω(r) is increasing in r. Thus,
ω(r) ∼ −cr2 as r −→ +∞ for some constant c > 0.

If ω′′(0) > u′′λ0
(0), then we have ω(r) > uλ0(r) for all r > 0. By the equation

(1.7), ∆ω(r) −∆uλ0(r) is increasing in r. Thus, if ω(r) exists for all r > 0 then
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ω(r) ≥ cr2 for r large and for some c > 0. Hence,
∫

R4
e4ω(|x|)dx = +∞, and the

proof of Theorem 1.1 is completely finished. �

Lemma 3.3. Suppose that u is a harmonic function in Rn such that exp(u −
c|x|2) ∈ L1(Rn) for some c > 0. Then u is a polynomial of order at most 2.

Proof. For any unit vector ξ ∈ R4, we want to prove uξξ(x) ≡ a constant. By
Liouville’s Theorem, it suffices to prove uξξ(x) is bounded from above by a constant
independent of x. Without loss of generality, we may take x = 0 and ξ = e1.

Since ux1x1 is harmonic, we have for any r > 0,

ux1x1(0) =
1

σnrn

∫
Br(0)

ux1x1(x)dx

=
1

σnrn

∫
∂Br(0)

ux1

x1
|x|dσ

where σn is the volume of the unit ball in Rn. Integrating the identity along r,
we have

σn
n+ 1

rn+1ux1x1(0) (3.2)

=
∫
Br

ux1

x1
|x|dx

= −
∫
Br

u
∂

∂x1
(
x1
|x| )dx+

∫
∂Br(0)

u
x2

1
|x|2 dσ

= −
∫
Br

u(
1
|x| −

x2
1
|x|3 )dx+

∫
∂Br(0)

u
x2

1
|x|2 dσ

= −
∫
Br

u

|x|dx+
∫
Br

u
x2

1
|x|3 dx+

∫
∂Br(0)

u
x2

1
|x|2 dσ

The first integration can be written as∫
Br

u

|x|dx =
∫ s

0
(−
∫

∂Bs(0)
udσ)(nσn)sn−2ds

= nσnu(0)
∫ r

0
sn−2ds

= nσnu(0)
rn−1

n− 1

= (
nσn
n− 1

)rn−1u(0). (3.3)
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By a direct computation, we have∫
Br

x2
1
|x|3 dx =

σn
n− 1

rn−1, (3.4)

and ∫
∂Br

x2
1
|x|2 dσ = σnr

n−1. (3.5)

By (3.2), we have

r2

n+ 1
ux1x1(0) = − n

n− 1
u(0) +

1
n− 1

−
∫

Br(0)
udµ1 +−

∫
∂Br(0)

udµ2,

where dµ1 =
x2

1
|x|3 dx and dµ2 = ν2

1dσ on = ∂Br(0). By Jensen’s inequality, we

have

exp(
r2

2(n+ 1)
ux1x1(0))

≤ exp(− n

2(n− 1)
u(0))(−

∫
Br(0)

e
u

2(n−1) dµ1) · (−
∫

∂Br(0)
e
u
2 dµ2)

For any positive c1 > 0, we have∫ ∞
1

exp[(
1

2(n+ 1)
ux1x1(0)− c1)r2]dr

≤ exp(− n

2n− 1
u(0))(

∫ ∞
1

(−
∫

Br(0)
ue

u
n−1 dµ1)e−c1r

2
dr)

1
2

(
∫ ∞

1
(−
∫

∂Br(0)
ueudµ1e

−c1r2dr)
1
2 . (3.6)

By the assumption, we can choose a large c1 such that the right hand side of (3.6)
is finite. Thus, we have

ux1x1(0) ≤ 2(n+ 1)c1.

By Liouville’s Theorem, we have ux1x1(x) ≡ constant. Obviously, the conclusion
of Lemma 3.3 follows immediately. �

Proof of Theorem 1.2. Suppose that u is a solution of (1.7) with e4u ∈ L1(R4).
Let

v(x) =
3

4π2

∫
R4

log(
|x− y|
|y| )e4u(y)dy,
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and w(x) ≡ u(x) + v(x). By Lemma 2.2, we have ∆w(x) ≡ −C1 in R4. Applying
Lemma 3.3, we have w(x) ≡ Σ(aijxixj + bkxk) + c0, where aij = aji. After a
change of coordinate by an orthorgonal transformation, we may assume

u(x) =
3

4π2

∫
R4

log
|y|
|x− y|e

4u(y)dy −
4∑
i=1

(aix2
i + bixi) + c0,

where ai ≥ 0, bi and c0 are constants. Since e4u ∈ L1(R4), we have bi = 0
whenever ai = 0. Thus u(x) can be written as

u(x) =
3

4π2

∫
R4

log
|y|
|x− y|e

4u(y)dy −
n∑
i=1

ai(xi − x0
i )2 + c0 (3.7)

After a translation, we may assume x0 = 0. Let ũ(x) ≡ u(x) +
n∑
i=1

aix
2
i . Then

ũ(x) satisfies
∆2ũ(x) = Q(x)e4ũ(x) in R4 (3.8)

where Q(x) = 6e−4
∑n

i=1
aix

2
i .

If ai = 0 for all i, then it is the case of Theorem 1.1. Thus, we assume ai 6= 0

for 1 ≤ i ≤ k, ai = 0 for i > k where 1 ≤ k ≤ 4. Lemma 2.1 implies α > 1 − k

4
.

As in Lemma 2.8, we let w̃(x) = u(
x

|x|2 )− α log |x| = o(log
1
|x| ). Then w̃ satisfies

∆w̃ + Q̃(x)e4w̃ = 0 in R4\{0} (3.9)

where Q̃(x) = 6e
−
∑

j
aj(

xj

|x|2
)2

|x|4(α−2).

Since α > 1 − k

4
, we have Q̃(x)e4w̃ ∈ Lp(B1) for some p > 1. By the same

proof of Lemma 2.8, we have w̃ ∈ C0,τ (B̄1) for some 1 > τ > 0. In particular, we
have

ũ(x) = −α log |x|+ c0 + o(|x|−r)
at ∞, which together with (3.7), yields (1.10).

If ai < 0 for all i, then it is easily to see Q̃(x)e4w̃ ∈ Lp(B̄1) for any p > 1.
Thus w̃ ∈ C∞(B̄1). Therefore, ũ satisfies both (2.38) and (2.39) for large |x|, i.e.,
we have for large |x|,

ũ(x) = −α log |x|+ c0 +O(|x|−1), (3.10)

−∆ũ(x) =
2α
|x|2 +

n∑
j=1

cjxj
|x|4 +O(|x|−4),

−(∆ũ)xi(x) = −4αxi
|x|4 +O(|x|−4),

(∆ũ)xixj = O(|x|−4).

(3.11)
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Employing (3.10) and (3.11), we can use, as in the proof of Theorem 1.1, the
method of moving planes to show that ũ(x) is symmetric with respect to hyper-
plane {x | xi = 0} for 1 ≤ i ≤ 4. In particular, if a1 = . . . = a4 6= 0, then u is
radially symmetric with respect to 0. Hence, we have proved (i) of Theorem 1.2.

If α ≥ 2, then Q̃(x)e4w̃ ∈ Lp(B̄1) for any p > 1 also. Therefore w̃ ∈ C∞(B̄i),
and, e4ũ = O(|x|−8) at ∞. By (2.31) ∼ (2.33), we can prove without difficulty:

lim
|x|−→+∞

|x|∂ũ
∂r

(x) = −α, (3.12)

lim
|x|−→+∞

r
∂

∂r
(r
∂ũ

∂r
)(x) = 0, (3.13)

lim
r−→+∞

∆ũ(x)|x|2 = −2α, (3.14)

and,

lim
r−→+∞

∂

∂r
(∆ũ)r3 = 4α. (3.15)

Applying the Pohozaev identity, we have

8π2α+
1

32π2

∫
R4

(x,5Q)e4ũdx = 4π2α2.

Since α ≥ 2, we have 8π2α ≤ 4π2α2. Thus,∫
R4

(x,5Q)e4udx ≥ 0.

Since
x · 5Q = −

∑
ajx

2
j e
−Σajx2

j ≤ 0,

we have aj = 0 for all j. Then, by Theorem 1.1, we have α = 2 and u(x) has a
form of (1.8). Hence, (ii) of Theorem 1.2 is proved. �

4. Proof of Theorem 1.3

Let u be a smooth positive solution of

∆2u = up in Rn,

for 1 < p ≤ n+ 4
n− 4

and n ≥ 5. As in the case of the equation (1.3), we let

u∗(x) = |x|4−nu(
x

|x|2 ) (4.1)
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By a direct computation, u∗ satisfies

∆2u∗ = |x|−τu∗p in Rn\{0}, (4.2)

where τ = n+ 4− p(n− 4) ≥ 0. Let v(x) = −∆u∗(x). By (4.1), we have
v(x) = c0|x|2−n +

∑n
j=1

ajxj
|x|n +O( 1

|x|n )

vxi = −(n− 2)c0|x|−nxi +O( 1
|x|n )

vxixj = O( 1
|x|n )

(4.3)

at ∞, where c0 > 0 and aj ∈ R. In particular, we have for large |x|,

∆u∗(x) < 0. (4.4)

As in Theorem 1.1, we need to prove ∆u∗(x) < 0 in Rn\{0}.

Lemma 4.1. Let u be a smooth positive solution of

∆2u = |x|−τup in B1\{0} (4.5)

where 1 < p ≤ n+ 4
n− 4

, τ = (n+4)−p(n−4) and n ≥ 5. Then ∆u is a subharmonic

function in B1 in the distributional sense.

Proof. First, we want to prove |x|−τup ∈ L1(B̄ 1
2
). Suppose |x|−τup 6∈ L1(B̄ 1

2
).

Then we have∫
∂Br

∂

∂r
(∆u)dσ −

∫
∂Bs

∂

∂r
(∆u)dσ =

∫
Br\Bs

|x|−τup > 0 (4.6)

for all 0 < s ≤ r ≤ 1
2

. Since the right hand side of (4.6) tends to +∞ as s −→ 0,
there exists r1 > 0 such that

−
∫

∂Br

∂

∂r
(∆u)dσ ≤ −c1r1−n

∫
B 1

2
\Br
|x|−τup, (4.7)

which implies∫
∂Br

∆udσ −
∫
∂Bs

∆udσ ≤ −c1
∫ r

s

τ1−n
∫
B 1

2
\Br
|x|−τupdxdτ, (4.8)

and ∫
∂Br

∆udσ ≥ c2r−n+2 (4.9)
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for 0 < r ≤ r2 and for some 0 < r2 < r1. Let ū = −
∫

∂Br

udσ. By (4.9),

(rn−1ū′(r))′ ≥ c2r. (4.10)

If lim
r−→0

rn−1ū′(r) ≥ 0, then we have for any r > 0,

rn−1ū′(r) ≥ 1
2
c2r

2, (4.11)

which yields,

ū(r) ≥
∫ r

0
ū′(t)dt ≥ 1

2
c2

∫ r

0
t3−ndt = +∞,

a contradiction. Therefore we may assume there exists 0 < r3 < r2 such that for
all r ≤ r3, we have

rn−1ū′(r) ≤ −c3, (4.12)

where c3 is a positive constant. Therefore,

ū(r) ≥ c4r2−n. (4.13)

Suppose ū(r) ≥ c4r
−s for some σ ≥ n − 2. Then, by (4.7) and (4.8), we have

for small r > 0,
(∆ū(r))′ ≤ −c1r−σ̃−n+2, (4.14)

∆ū(r) ≥ c2r−σ̃−n+3, (4.15)

rn−1ū′(r) ≤ −c3r−σ̃+3, (4.16)

and,
ū(r) ≥ c4r−σ̃+5−n, (4.17)

where σ̃ = τ + pσ. We note that, in order to have (4.16) held, we need σ̃ > 3.
Since τ = n+ 4− p(n− 4) and σ ≥ n− 2, we have σ̃ ≥ τ + p(n− 2) ≥ n+ 6 > 5.
Since σ̃ + n − 5− pσ = τ + n − 5 ≥ 0 for n ≥ 5, after a finite time of iterations,
we have

ū(r) ≥ r−(1+β), (4.18)

ū′(r) ≤ −r−(2+β), (4.19)

ū′′(r) ≥ r−(3+β), (4.20)

and,
ū′′′(r) ≤ −r−(4+β) (4.21)
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for 0 ≤ r ≤ 2r0 where β =
4

p− 1
(Since ū′ ≤ 0, we have 0 < ∆ū(r) ≤ ū′′ and

ū(3)(r) ≤ (∆ū)′ < 0). By (4.19) ∼ (4.21), we have by Jensen inequality,

ū(4)(r) ≥ ∆2ū(r) ≥ |x|−τ ūp(r). (4.22)

Let v(r) = A(r − r0)−β for r0 ≤ r ≤ 2r0. By direct computations, we have

v(4)(r) = Aβ(β + 1)(β + 2)(β + 3)(r − r0)− (β + 4)
= Aβ(β + 1)(β + 2)(β + 3)vp(r) < r−τvp(r)

for r0 ≤ r ≤ 2r0 if A is large. If r0 is sufficiently small, then by (4.18) ∼ (4.21),
we have v(r) ≤ ū(r) for all r0 ≤ r ≤ 2r0. However, lim

r−→r0
ū ≥ lim

r−→r0
v(r) = +∞

yields a contradiction. Therefore, we have proved |x|−τup ∈ L1(B̄ 1
2
).

Let ϕ ∈ C∞0 (B 1
2
) be a nonnegative function. We want to prove∫

∆ϕ∆udx ≥ 0. (4.23)

Let ηε ∈ C∞0 (B 1
2
) satisfy ηε(x) ≡ 1 for |x| ≥ 2ε, and ηε(x) ≡ 0 for |x| ≤ ε. We

also assume
|Djηε(x)| ≤ c

εj

for 1 ≤ j ≤ 4. Multiplying (4.5) by ϕ(x)ηε, we have

0 <
∫
ϕ(x)ηε(x)|x|−τup(x)dx

=
∫

∆(ϕ(x)ηε(x))∆u(x)dx (4.24)

=
∫

∆u(x){∆ϕ(x)ηε(x) + 25 ϕ(x)5 ηε + ϕ(x)∆ηs}dx

Let ψ(x) = 25 ϕ(x) 5 ηε + ϕ(x)∆ηε(x). We have ψ(x) ≡ 0 for |x| ≤ ε and for
|x| ≥ 2ε, and |∆ψ(x)| ≤ c ε−4.

Since
n

q
+
τ

p
=

4
p

+ 4 > 4 where
1
q

= 1− 1
p

, we have

|
∫

∆u(x)ψ(x)dx| ≤
∫
u(x)|∆ψ(x)|dx

≤ c ε−4(
∫
ε≤|x|≤2ε

|x|−τup(x)dx)1/pε
n
q+ τ

p

≤ c εnq + τ
p−4 −→ 0,
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as ε −→ 0. Therefore, by (4.24), we have∫
∆u(x)∆ϕ(x)dx = lim

ε−→0

∫
ηε(x)∆u(x)∆ϕ(x)dx

=
∫
ϕ(x)|x|−τup(x)dx > 0.

Thus, ∆u(x) is a subharmonic in B 1
2
. �

Proofs of Theorem 1.3. and Theorem 1.4. Let v(x) = −∆u∗(x). By Lemma 4.1
and (4.3), we have v(x) > 0 in R4\{0} and v(x) satisfies for any r > 0,

v(x) ≥ inf
∂Br(0)

v(x) > 0, for x ∈ Br(0). (4.25)

Since u∗(x) is a superharmonic function in Br(0)\{0} and u∗(x) > 0, then we have

u∗(x) ≥ inf
∂Br(0)

u∗(y) for x ∈ Br(0) (4.26)

(For a proof of (4.26), please see Lemma 2.1 in [CLn]).
Following notations in Section 3, we let wλ(x) = u∗(x) − u∗(xλ) in Σλ. Since

v(x) = −∆u∗ has a harmonic expansion (4.3) at infinity, by Lemma 3.1 and (4.25),
there exists a λ̄0 < 0 such that

∆wλ(x) < 0 in Σλ

for all λ ≤ λ̄0. By the maximum principle, we have

wλ(x) > 0 in Σλ

for all λ ≤ λ̄0.

We consider the case p <
n+ 4
n− 4

first. Let

λ0 = sup{λ < 0 | ∆wµ(x) < 0 in Σµ for µ ≤ λ}.

Suppose λ0 < 0. Although u∗ may has a singularity at 0, by (4.25) and (4.26), we
still can apply the same arguments as in Theorem 1.1 to prove wλ0(x) ≡ 0 in Σλ0 .
Since τ < 0, it yields a contradiction. Thus we must have λ0 = 0 and

u(−x1, x2, . . . , xn) ≤ u(x1, x2, . . . , xn) for x1 ≥ 0.

By applying the method of moving planes along any direction in Rn, u∗(x) is
radially symmetric with respect to 0. Since we can take any point in Rn as the
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origin, we conclude that if u is a positive smooth solution in Rn, then u ≡ constant
in Rn which implies u ≡ 0 in Rn, a contradiction. Thus, Theorem 1.4 is proved.

For the case p =
n+ 4
n− 4

, we also let

λ0 = sup{λ < 0 | ∆wµ(x) < 0 in Σµ for µ ≤ λ}.

If λ0 < 0, by applying the same arguments again, we can show wλ0(x) ≡ 0.
Thus, u∗(x) has a removable singularity at 0 and u itself satisfies (4.3) at infinity.
Therefore, we can directly apply the method of moving plane to u itself to yield
the radial symmetry of u about some point x0 in Rn. If λ0 = 0, then we can do the
same procedure by moving the hyperplane Tλ from positive direction of x1. Thus,
we can prove either u∗ has a removable singularity at 0 or u∗(x) is symmetric with
respect to the hyperplane {x | x1 = 0} . In any case, the radial symmetry of u
follows immediately.

Suppose that u is radially symmetric with respect to 0. We can take another
point x0 6= 0 as the origin of the ”Kelvin” transformation, and do the same
procedure as the above. Since u is not radially symmetric about x1, we have
λ0 6= 0, namely, u(x) satisfies (4.3) at infinity. In particular, we have ∆u(x) −→ 0
as |x| −→ +∞.

By a direct computation, we can see that uλ(x) = cn(
λ

1 + λ2|x|2 )
n−4

2 is a

solution of (1.12) for any λ > 0. Suppose ω(r) is a radial solution of (1.12) and
ω(0) = uλ0(0) for some λ0 > 0. If ∆ω(0) > ∆uλ0(0), then we can prove ω(r) blows
up in finite r. Because, if ω(r) exists for all r > 0, as in the proof of Theorem 1.1,
then we can show ω(r) > uλ0(r) for all r > 0 and (∆ω−∆u)′(r) > 0 for all r > 0.
Therefore

∆ω(∞) = lim
r−→+∞

(∆ω −∆uλ0)(r) > (∆ω −∆uλ0)(0) > 0,

which yields a contradition to lim
|x|−→+∞

∆ω(x) = 0 which was already proved for

any solution of (1.12). If ∆ω(0) < ∆uλ0(0), then, by the same proof, ω(r) must
become zero at a finite r. Thus the proof of Theorem 1.3 is considered completely
finished. �

In fact, the same proof can imply

Theorem 4.2. Suppose u is a positive smooth solution of

∆2u = up in Rn\{0},

where 1 < p ≤ n+ 2
n− 4

. Assume 0 is a nonremovable singularity, then u is radially

symmetric with respect to the origin.
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Corollary 4.3. Let u be a solution of{
∆2u = up in B1\{0},
u > 0,

where 1 < p <
n+ 4
n− 4

. Then u(x) ≤ c|x|−
4
p−1 for |x| ≤ 1

2
, where c is a constant,

depending on n a nd p only.

Corollary 4.3 is an immediate consequence of Theorem 1.3 and a blow-up ar-
gument due to R. Schoen for the equation (1.3) (for example, please see [P].) We
omit the details of the proof.

References

[BCY] T. Branson, S-Y. A. Chang and P. C. Yang, Estimates and extremal problems for the
log-determinant on 4-manifolds, Communication Math. Physics 149 (2) (1992), 241–262.

[BM] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of −∆u =
V (x)eu in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223–1253.

[BO] T. Branson and B. Orsted, Explicit functional determinants in four dimensions, Proc.
Amer. Math. Soc. 113 (1991), 669–682.

[CGS] L. Caffarelli, B. Gidas and J. Spruck, Asymptotic Symmetry and local behavior of semilinear
elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271–
297.

[CL] Chen, E. and Li, C., Classification of solutions of some nonlinear elliptic equations, Duke
Math. J. 63 (3) (1991), 615–622.

[CLn] C.C. Chen and C.S. Lin, Local behavior of singular positive solutions of semilinear elliptic
equations with Sobolev exponent, Duke Math. J. 78 (1995), 315–334.

[CY] S-Y. A. Chang and P. C. Yang, Extremal metrics of zeta functional determinants on 4-
manifolds, Annals of Math. 142 (1995), 1171–212.

[GNN] B. Gidas, W.M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear equations
in Rn. Analysis and Applications part A, pp. 369–402, Advances in Math. Supp. Stud.
79, Academic Press, New York–London 1981.

[GT] D. Gilbarg, N. S, Trudinger, Elliptic partial differential equations, 2nd edition, Grundlehren
der mathematischen Wissenschaften 224, Springer-Verlag, 1983.

[L] P. L. Lions, The concentration-compactness principle in the calculus of variations. The
locally compact case, parts 1 and 2. Ann. Inst. H. Poincaré Anal. Non Linéaire. 1
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