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In the course of his construction of groups of intermediate growth, Grigorchuk
[Gri] showed that there are continuously many quasiisometry classes of 2-generator
groups. In this paper, we describe another class of groups exhibiting the latter
phenomenon, and for which the demonstration is elementary. Unlike those of
Grigorchuk, our groups have exponential growth, and can be taken to be torsion
free. In fact, they can be exhibited explicitly as small cancellation groups as
follows.

Let (N) be the set of subsets of the natural numbers, N. Given F, F ′ ∈ (N),
we write F ∼ F ′ if the symmetric difference of F and F ′ is finite. This defines an
equivalence relation on (N) with every equivalence class countable. There are
thus continuously many equivalence classes.

Given F ∈ (N), let S(F ) = {22n |n ∈ F}. Given p ∈ N, let wp(a, b) = (apbp)7

be the (cyclic) word in two letters, a and b. Given S ⊆ N, let Γ(S) be the group
with presentation 〈a, b | (wp(a, b))p∈S〉. We show:

Proposition 1. If F, F ′ ∈ (N) are such that Γ(S(F )) and Γ(S(F ′)) are quasi-
isometric, then F ∼ F ′.

We chose the words (apbp)7 for simplicity. The groups thus defined have 7-
torsion. If we want torsion-free groups, we could for example use the words
a(apbp)12 instead.

This construction is clearly quite arbitrary. Its essential features may be sum-
marised as follows. We chose the cyclic words wp so as to satisfy the C′(1/6)
cancellation property (see for example [LS]). This means that if w′ is a common
(linear) subword of wp and wq , then either p = q or 6L(w′) < min{L(wp), L(wq)}.
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Here, L denotes the length of a word. Note that L(wp) = 14p, so in the presen-
tation of one of our groups, the lengths of relators grow superexponentially. Any
construction retaining these features should serve for our purposes. Note that if we
were to use the words a(apbp)12, then the resulting groups would be torsion-free
— in a small cancellation group, any torsion must show up in the cyclic symmetry
of one of the relators, see [LS]. (The examples described by Grigorchuk are torsion
groups.)

One obvious corollary of the above proposition is the result of B. H. Neumann
[N] that there are continuously many finitely generated groups up to isomorphism.
There are now many proofs of this around, though most of these arguments seem
to be essentially algebraic in nature and in particular tend to make some use of
torsion.

The quasiisometry invariant that distinguishes Grigorchuk’s groups is the
growth function. Indeed, the main objective of that paper was to construct
groups of superpolynomial but subexponential growth. In contrast, our groups
are all non-amenable. In fact, they all contain non-cyclic free subgroups. Consid-
er, for example, the elements a5b6 and a7b8. The existence of a Dehn algorithm
for C′(1/6) groups shows that no non-trivial reduced word in these elements can
represent the trivial element in the group. They therefore generate a free group.

Our quasiisometry invariant, though in principle applicable to any finitely gen-
erated group, is tailored to our particular examples. It would be interesting to
search for other kinds of quasiisometry invariants (for example among those sug-
gested in [Gro]) that are capable of distinguishing continuously many quasiisome-
try classes while remaining reasonably amenable to computation.

The idea of the proof of Proposition 1 is very simple. In a small cancellation
group, the lengths of the relators determine the sizes of the “holes” in the Cayley
graph, and so give rise to a geometrically defined subset of the natural numbers.
This subset can change only by a linearly bounded amount under quasiisometry.
By arranging that it grows superexponentially, we can recover, up to finite ambi-
guity, the original set of natural numbers used for our presentation. To do this
properly, we need a few definitions.

Let X be a connected graph with vertex set V (X). Let dX be the combinatorial
distance function defined on V (X). If Y is another graph, and k ∈ N, we say that a
map φ : V (X)→ V (Y ) is k-lipschitz if for all x, y ∈ X , we have dY (φ(x), φ(y)) ≤
kdX(x, y). Note that a 1-lipschitz map φ : V (X) → V (Y ) extends to a map
φ : X → Y in which every edge of X is either mapped homeomorphically to an
edge of Y or is collapsed to a vertex of Y . We say that two graphs X and Y are
k-quasiisometric if there are k-lipschitz maps φ : V (X)→ V (Y ) and ψ : V (Y )→
V (X) such that dX(x, ψ ◦ φ(x)) ≤ k for all x ∈ X and dY (y, φ ◦ ψ(y)) ≤ k for all
y ∈ Y .

A cycle, β, is a graph homeomorphic to a circle. We write L(β) for the number
of vertices (or edges) of β. A net , σ, is the 1-skeleton of a cellulation of the topo-
logical disc (i.e. a presentation of the disc as a CW-complex in which every closed
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2-cell is embedded). We imagine σ as coming equipped with certain preferred
subcycles, namely, its boundary, ∂σ, and the set, (σ), of boundaries of 2-cells.
Let M(σ) = max{L(γ) | γ ∈ (σ)}.

Let X be a graph. A loop in X consists of a 1-lipschitz map, f : β → X from a
cycle, β, into X . A spanning disc for the loop, (β, f) consists of a 1-lipschitz map,
f : σ → X of a net, σ, into X , where we have identified β with ∂σ in such a way
that f |∂σ agrees with f as already defined on β. Let H(β, f) be the minimum
value of M(σ) as σ ranges over all nets which give rise to spanning discs for (β, f)
in this way. Clearly, H(β, f) ≤ L(β).

Definition. A loop, (β, f) is taut if L(β) = H(β, f).

We write H(X) ⊆ N for the set of values taken by H(β, f) as (β, f) ranges over
all taut loops in X .

Lemma 2. If f : β → X is a loop, then H(β, f) ∈ H(X).

Proof. Let L = H(β, f). Suppose, for contradiction, that L /∈ H(X). Let
f : σ → X be a spanning disc for (β, f) with M(σ) = L. Suppose γ ∈ (σ)
with L(γ) = L. Now (γ, fγ) is a loop in X , where fγ denotes the restriction of
f to γ. Since L /∈ H(X), this loop is not taut, so we can find a spanning disc,
fγ : σγ → X for (γ, fγ) with M(σγ) < L. Note that ∂σγ is identified with γ,
and so the net σγ gives rise to a subdivision of the 2-cell bounded by γ in the
cellulation of the disc given by σ.

We perform this construction for each such loop γ, and, in this way, obtain
a net, σ′, with σ a subgraph of σ′ and with ∂σ = ∂σ′. Note that M(σ′) < L.
Moreover, the maps fγ allow us to extend f to a spanning disc f : σ′ → X for
(β, f). This gives the contradiction that L = H(β, f) ≤M(σ′) < L. We conclude
that L ∈ H(X). �

Definition. Given k ∈ N, we say that two subsets, H,H ′ ⊆ N are k-related if
given any L ∈ H with L > k2 + 2k+ 1 there is some L′ ∈ H ′ with L/k ≤ L′ ≤ kL,
and conversely, swapping H and H ′.

The artificial constant k2 + 2k + 1 arises from the following lemma:

Lemma 3. Suppose that the connected graphs X and Y are k-quasiisometric, then
the sets H(X) and H(Y ) are k-related.

Proof. Let φ : X → Y and ψ : Y → X be the maps given by the hypothesis.
Suppose that L ∈ H(X) with L > k2 + 2k+ 1. Let f : β → X be a taut loop with
L(β) = L. Now, φ ◦ f : V (β) → V (Y ) is a k-lipschitz map. We can subdivide β
to give a loop β′, with V (β) ⊆ V (β′) and L(β′) ≤ kL, so that φ ◦ f |V (β) extends
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to a loop g : β′ → Y . Let L′ = H(β′, g). By Lemma 2, we have L′ ∈ H(Y ). Note
that L′ ≤ L(β′) ≤ kL. We extend g to a spanning disc g : σ → Y with ∂σ = β,
and with M(σ) = L′. Now ψ ◦ g : V (σ) → X is a k-lipschitz map. We subdivide
σ (as a graph) to obtain a (homeomorphic) net, σ′, and extend ψ ◦ g|V (σ) to a
1-lipschitz map, h : σ′ → X . Note that M(σ′) ≤ kL′. Also, ∂σ′ is a subdivision
of β in which each edge has been subdivided into at most k2 edges. Note that
V (β) ⊆ V (∂σ′), and from the construction, h(x) = ψ◦φ◦f(x) for x ∈ V (β). Thus
dX(f(x), h(x)) ≤ k.

Now construct an annulus by gluing together a set of L squares cyclically along
their “vertical” edges. We identify the “top” boundary circle with β, and identify
the “bottom” boundary circle, after subdivision, with ∂σ′. After subdividing each
of the L vertical edges into at most k edges, we can find a 1-lipschitz map, i, of the
1-skeleton of this annulus into X , such that i|β = f and i|∂σ′ = h|∂σ′. (Note that
the length of the boundary of each 2-cell in this annulus is at most k2+2k+1.) We
now formally glue this 1-skeleton to the net σ′ along the common circle, ∂σ′, to
obtain a net σ′′ with ∂σ′′ = β. The maps h and i combine to give us a 1-lipschitz
map j : σ′′ → X with j|∂σ′′ = f . Thus, (σ′′, j) is a spanning disc for (β, f).
Moreover, M(σ′′) ≤ max{M(σ′), k2 + 2k + 1} ≤ max{kL′, k2 + 2k + 1}. Since β
is taut, we have M(σ′′) ≥ L(β) = L. Since, by assumption, L > k2 + 2k + 1, it
follows that L ≤ kL′. We see that L/k ≤ L′ ≤ kL as required.

The converse follows by symmetry. �

To relate this to the groups we have constructed, we need the following obser-
vation. Given S ⊆ N and q ∈ N, let qS = {qn |n ∈ S}. Recall that if F, F ′ ⊆ N,
we write F ∼ F ′ to mean that the symmetric difference is finite.

Lemma 4. Suppose that F, F ′ ⊆ N, and that qS(F ) and qS(F ′) are k-related for
some k ∈ N. Then, F ∼ F ′.

Proof. If F 6∼ F ′ then, without loss of generality, we can find some n ∈ F \ F ′
with q22n−1

> k2 + 2k + 1 > k. Now q22n ∈ F , so there is some m ∈ F ′ with
q22n/k ≤ q22m ≤ kq22n . Thus 22n−1

< 22n/k ≤ 22m ≤ k22n < 22n+1
, and so

m = n, giving the contradiction that n ∈ F ′. �

To relate this to small cancellation groups, we need the following observation.
Suppose that A is a finite alphabet, and (wi)i∈I is a collection of cyclically reduced
words of letters in A and their formal inverses, indexed by a set I, and satisfying
the C′(1/6) cancellation condition pairwise (i.e. if i 6= j, then the largest common
subword of wi and wj (or w−1

j ) has length less than (1/6) min{L(wi), L(wj)}). We
have:

Lemma 5. Let X be the Cayley graph of the presentation 〈A | (wi)i∈I〉. Then,
H(X) = {L(wi) | i ∈ I}.
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Proof. This follows more or less from the existence of a Dehn algorithm for C′(1/6)
groups. Suppose, first, that w is a cyclically reduced word representing the identity,
which we can think of as a loop in X . If w is not equal to a relator or its inverse,
then we can find some relator wi (or w−1

i ) with L(wi) < L(w), and which has
a common subword of length more than (1/2)L(wi) with w. This allows us to
shorten w, and continuing inductively, we can reduce w to the identity using only
relators of length less than L(w). In particular, this gives us a spanning disc, σ,
for w, with M(σ) < L(w). Thus, w is not taut.

Conversely, suppose w is not taut. There is a spanning disc, σ, for w, with
M(σ) < L(w). Applying the construction of the last paragraph to each 2-cell of
σ, we obtain another spanning disc for w, this time with each 2-cell corresponding
to a conjugate of a relator (of length less than L(w)). At least one of these 2-cells,
corresponding to a conjugate of wi, say, has a common subword of length more
than (1/2)L(wi) with L(w). This shows that w cannot itself be a relator.

We have shown that the taut loops in X are precisely conjugates of relators
and their inverses. This gives the result. �

Finally, we return to the examples given at the beginning. Note that ifX is the
Cayley graph of Γ(S(F )), then, by Lemma 5, we haveH(X) = 14S(F ). By Lemma
3, we see that if Γ(S(F )) is k-quasiisometric to Γ(S(F ′)) then 14S(F ) is k-related
to 14S(F ′). By Lemma 4, it follows that F ∼ F ′. This proves Proposition 1.
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