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Abstract. Let V be Euclidean space. Let W ⊂ GL(V ) be a finite irreducible reflection group.
Let A be the corresponding Coxeter arrangement. Let S be the algebra of polynomial functions
on V. For H ∈ A choose αH ∈ V ∗ such that H = ker(αH). The arrangement A is known to
be free: the derivation module D(A) = {θ ∈ DerS | θ(αH ) ∈ SαH} is a free S-module with
generators of degrees equal to the exponents of W. In this paper we prove an analogous theorem
for the submodule E(A) of D(A) defined by E(A) = {θ ∈ DerS | θ(αH) ∈ Sα2

H}. The degrees
of the basis elements are all equal to the Coxeter number. The module E(A) may be considered
a deformation of the derivation module for the Shi arrangement, which is conjectured to be free.
The proof is by explicit construction using a derivation introduced by K. Saito in his theory of
flat generators.
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§ 1. Introduction

Let V be a Euclidean space of dimension l over R. Let ( , ) denote the positive
definite symmetric bilinear form on V. Let W ⊆ GL(V ) be a finite group gener-
ated by orthogonal reflections [Bou, V.2.3]. Let A be the corresponding Coxeter
arrangement, the set of hyperplanes H ⊂ V such that W contains the orthogonal
reflection which fixes H. Let S be the algebra of polynomial functions on V. The
algebra S is naturally graded by S =

⊕
q≥0 Sq where Sq is the space of homo-

geneous polynomials of degree q. Thus S1 = V ∗ is the dual space of V. Let DerS
be the S-module of R-derivations of S. We say that θ ∈ DerS is homogeneous of
degree q if θ(S1) ⊆ Sq. Choose for each hyperplane H ∈ A a linear form αH ∈ V ∗
such that H = ker(αH). Define Q ∈ S by

Q =
∏
H∈A

αH . (1.1)
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The polynomial Q is uniquely determined, up to a constant multiple, by the group
W. Let

D(A) = {θ ∈ DerS | θ(αH) ∈ SαH} . (1.2)

K. Saito [Sai1, Theorem], [Ter,Theorem 2] proved that D(A) is a free S-module
of rank l and that a set of basis elements for D(A) as S-module may be described
as follows. Let R = SW be the algebra of W -invariant polynomials on V. By a
theorem of Shephard, Todd, and Chevalley [Bou, V.5.3, Theorem 3] there exist
algebraically independent homogeneous polynomials f1, . . . , fl ∈ R such that R =
R[f1, . . . , fl]. Let x1, . . . , xl be an orthonormal basis for V ∗. Let ∂i be partial
differentiation with respect to xi. Define θj ∈ DerS by θj =

∑l
i=1 (∂ifj) ∂i for

1 ≤ j ≤ l. Then {θ1, . . . , θl} is an S-basis for D(A). Note that θj is homogeneous
of degree deg(fj)−1. The integers mj = deg(fj)−1 for 1 ≤ j ≤ l are the exponents
of W [Bou, V.6.2, Proposition 3].

In this paper we will prove an analogous theorem for the submodule E(A) of
D(A) defined by

E(A) = {θ ∈ DerS | θ(αH) ∈ Sα2
H} . (1.3)

Note that we have replaced SαH in (1.2) by Sα2
H in (1.3), which explains the

phrase “double Coxeter arrangement” in the title of this paper. If θ ∈ D(A) and
α = αH then θ(Q) = θ(α ·Q/α) = (Q/α)θ(α)+αθ(Q/α) ∈ Sα so that θ(Q) ∈ SQ.
On the other hand, it may happen that θ ∈ E(A), but θ(Q) 6∈ SQ2.

To state our theorem we need some preliminary definitions. Assume that W
is an irreducible subgroup of GL(V ). The form ( , ) on V induces a positive
definite symmetric bilinear form on V ∗, sometimes called the inverse form, which
we also write as ( , ). Let e1, e2, . . . , el be a basis for V . We do not assume that
e1, e2, . . . , el is an orthonormal basis unless orthonormality is explicitly stated.
Let x1, x2, . . . , xl be the dual basis for V ∗. Let Γ be the matrix of the inverse
form with respect to the chosen basis x1, . . . , xl. Thus Γij = (xi, xj) . Number the
invariant polynomials fj so that deg(f1) ≤ · · · ≤ deg(fl). Since W is irreducible,
the Coxeter number h of W is defined [Bou, V.6.1] and h = deg(fl) [Bou, V.6.2].
Let K be the quotient field of S. K. Saito [Sai2, 2.2], [SYS, (1.6)] studied an R-
derivation D ∈ DerK such that Dfj = 0 for 1 ≤ j ≤ l − 1 and Dfl ∈ R∗. This
derivation is uniquely determined, up to a constant multiple, by the group W and
does not depend on choice of basic invariants f1, . . . , fl. Define rational fuctions
hj ∈ K for 1 ≤ j ≤ l by

hj = Dxj .

Let J(h1, . . . , hl) be the Jacobian matrix, labeled so that ∂ihj is its (i, j) entry. We
will prove in Corollary 3.32 that J(h1, . . . , hl) is invertible over K. This is perhaps
the most difficult point in the paper. Furthermore J(h1, . . . , hl)−1 has entries in
S. The structure of the S-module E(A) is given by the following theorem.

Theorem 1.4. Let W ⊆GL(V ) be a finite irreducible group generated by reflec-
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tions. Define an l × l matrix P by

P = ΓJ(h1, . . . , hl)−1 . (1.5)

Define ξ1, . . . , ξl ∈ DerS by ξj =
∑l
i=1 pij ∂i for 1 ≤ j ≤ l, where pij is the (i, j)

entry of P. Then ξi ∈ E(A), and E(A) is a free S-module with basis ξ1, . . . , ξl.

Note that if x1, . . . , xl is an orthonormal basis for V ∗ then Γ is the identity
matrix and (1.5) becomes P = J(h1, . . . , hl)−1. We will see that all entries of P
are homogeneous of degree equal to the Coxeter number h. Thus all derivations
ξ1, . . . , ξl are homogeneous of degree h. We will prove in Proposition 4.7 that the
homogeneous component E(A)h of degree h is isomorphic to V ∗ as W -module.
The rational functions h1, . . . , hl may be computed as follows. Let J(f1, . . . , fl)
be the Jacobian matrix of f1, . . . , fl. Since f1, . . . , fl are algebraically independent,
J(f1, . . . , fl) is invertible over K. Then [h1, . . . , hl] is, up to constant multiple, the
l-th row of J(f1, . . . , fl)−1.

Remark 1.6. Define polynomials u1, . . . , ul ∈ S by ui = Qhi for 1 ≤ i ≤ l.
Invertibility of the matrix J(h1, . . . , hl) is equivalent to invertibility of the matrix
J(u1, . . . , ul), which was conjectured in [Sol2].

Remark 1.7. The definition (1.3) of E(A) is due to Ziegler [Zie, Definition 4]
who developed the theory of multiarrangements. A double Coxeter arrangement
is a multiarrangement with multiplicity two for each hyperplane belonging to the
Coxeter arrangement.

Remark 1.8. We were led to study the double Coxeter arrangements by an at-
tempt to understand the Shi arrangements [Shi1], [Sshi2]. Suppose that W is a
Weyl group. Choose a crystallographic root system in V ∗ and choose the linear
forms αH so that ±αH is a root for each H ∈ A. Let α1, . . . , αn ∈ V ∗ be a system
of positive roots. The Shi arrangement Ã of type W is an affine arrangement with
2n hyperplanes whose defining polynomial is Q̃ =

∏n
i=1(αi − 1)

∏n
i=1 αi. Shi ar-

rangements have been studied by Stanley [Sta1], [Sta2] and others. A special case
of a conjecture due to Edelman and Reiner [EdR, Conjecture 3.3] states that the
cone [OrT, p.14] cÃ of each Shi arrangement is a free arrangement with exponents
{1, h, . . . , h} [OrT, Definition 4.15, Definition 4.25]; the module D(cÃ) is a free
module over R[x0, . . . , xl]. Athanasiadis [Ath] verified this conjecture for type Al.
Note that the restriction (as a multiarrangement) of cÃ to the infinite hyperplane
x0 = 0 is the double Coxeter arrangement. Therefore, if the conjecture is true,
then, by Ziegler’s theorem [Zie, Theorem 11], we may conclude that the double
Coxeter arrangement is a free arrangement with exponents {h, h, . . . , h}, which is
true by our main result, Theorem 1.4. So Theorem 1.4 may be regarded as a piece
of evidence supporting the conjecture.

Here is an outline of the paper. In Section 2 we introduce more notation and
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state some elementary facts. In Section 3 we prove the invertibility of J(h1, . . . , hl).
In Section 4 we complete the proof of Theorem 1.4. In Section 5 we compute the
matrix P in case l = 2 and in case W has type Bl. In Section 6 we use the invert-
ibility of the matrix J(u1, . . . , ul) to describe the differential 1-forms which are
anti-invariant under W.

§2. Notation and preliminary definitions

In this Section we fix more notation, state some elementary facts about derivations
and differential forms, and introduce some of the main constructs in the argument.
We often use the notation of Section 1 without comment. When convenient we
choose a basis e1, . . . , el for V and let x1, . . . , xl denote the dual basis for V ∗. Let
〈 , 〉 : V ∗ × V → R denote the natural pairing. Thus 〈xi, ej〉 = δij . Let DerS be
the S-module of R-derivations of S. For each v ∈ V let ∂v ∈ DerS be the unique
derivation such that ∂vx = 〈x, v〉 for x ∈ V ∗. Define ∂i ∈ DerS by ∂i = ∂ei . Then
∂ixj = δij and DerS is a free S-module with basis ∂1, . . . , ∂l. There is a natural
isomorphism S ⊗ V → DerS of S-modules given by

f ⊗ v 7→ f∂v (2.1)

for f ∈ S and v ∈ V. Let Ω1
S = HomS(DerS , S) be the S-module dual to DerS .

Define d : S → Ω1
S by df(θ) = θ(f) for f ∈ S and θ ∈ DerS . Then d(ff ′) = (df)f ′+

f(df ′) for f, f ′ ∈ S. Furthermore, Ω1
S is a free S-module with basis dx1, . . . , dxl

and df =
∑l
i=1 (∂if)dxi. There is a natural isomorphism S ⊗ V ∗ → Ω1

S of S-
modules given by

f ⊗ x 7→ fdx (2.2)

for f ∈ S and x ∈ V ∗. The modules DerS and Ω1
S inherit gradings from S which

are defined by deg(f∂v) = deg(f) and deg(fdx) = deg(f) if f ∈ S is homogeneous.
We define several W -module structures which stem from the given W -module

structure on V. If f ∈ S define wf ∈ S by (wf)(v) = f(w−1v) for v ∈ V. This
makes S a W -module and W acts as a group of R-algebra automorphisms of S. In
particular V ∗ = S1 has a W -module structure, and 〈wx,wv〉 = 〈x, v〉 for w ∈ W,
x ∈ V ∗ and v ∈ V. The spaces S ⊗ V and S ⊗ V ∗ have W -module structures
given by w(f ⊗ v) = wf ⊗ wv and w(f ⊗ x) = wf ⊗ wx. We give DerS a W -
module structure by defining (wθ)(f) = w(θ(w−1f)) for w ∈ W, θ ∈ DerS and
f ∈ S. Then w∂v = ∂wv for w ∈ W and v ∈ V. To check this it suffices to check
that both derivations w∂v and ∂wv have the same effect on V ∗. This is so since
(w∂v)(x) = ∂v(w−1x) = 〈w−1x, v〉 = 〈x,wv〉 = ∂wv(x). We give Ω1

S a W -module
structure by defining w(fdx) = (wf)d(wx) for w ∈ W, f ∈ S and x ∈ V ∗. In
particular, w(dx) = d(wx). The isomorphisms in (2.1) and (2.2) are W -module
isomorphisms.

Define an S-bilinear form ( , ) : Ω1
S × Ω1

S → S by
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(fdx, f ′dx′) = ff ′(x, x′) (2.3)

for f, f ′ ∈ S and x, x′ ∈ V ∗ where (x, x′) denotes the form on V ∗ inverse to the
given form on V. In particular, (dx, dx′) = (x, x′) for x, x′ ∈ V ∗. If w ∈ W then,
since (wx,wx′) = (x, x′) for w ∈W, it follows from (2.3) that w(ω, ω′) = (wω,wω′)
for ω, ω′ ∈ Ω1

S .
Let K be the quotient field of S. We make various conventions about matrices

over K which will be used throughout the paper. Let Ml(K) denote the set of
l × l matrices over K. We use similar notation for matrices over other rings. If A
is any rectangular matrix over K we let Aij denote the (i, j) entry of A and let
A> denote the transpose of A. It is sometimes convenient to define a matrix as
A = [aij ]. When we do this, it is understood that i is the row index and j is the
column index, so that Aij = aij . If w ∈W we define the matrix w[A] by

w[A]ij = w(Aij) .

Then w[AB] = w[A]w[B] when the matrix products are defined, and w[A]> =
w[A>]. Row vectors y ∈ Kl are viewed as matrices y = [y1, . . . , yl]. Column
vectors are viewed as matrices y> = [y1, . . . , yl]>. If A is a rectangular matrix
over K and ∂ ∈ DerK we define the matrix ∂[A] by

∂[A]ij = ∂(Aij) .

Then ∂[AB] = ∂[A]B + A∂[B] when the matrix products are defined. If y =
[y1, . . . , yl] ∈ Kl we let J(y) denote the Jacobian matrix defined by

J(y)ij = ∂iyj.

Let R = {f ∈ S | wf = f for all w ∈ W} be the algebra of W -invariant
polynomial functions on V. As in Section 1, choose algebraically independent ho-
mogeneous polynomials f1, . . . , fl ∈ R such that R = R[f1, . . . , fl]. Let f =
[f1, . . . , fl] ∈ Sl. For 1 ≤ j ≤ l define θj ∈ DerS by

θj(g) = (dg, dfj)

for g ∈ S, where ( , ) is the bilinear form on Ω1
S defined by (2.3). It is known

[Sai1], [Ter, Theorem 2] that D(A) is a free S-module with basis θ1, . . . , θl.
Let DerR denote the R-module of R-derivations of R and define DerK in similar

manner. Then DerK = K∂1⊕· · ·⊕K∂l. Define D(1), . . . , D(l) ∈ DerR by D(i)fj =
δij . Let DerK denote the K-vector space of R-derivations of K. We may extend
D(i) : R → R uniquely to an element of DerK which we also call D(i). Since
D(i) =

∑l
j=1(D(i)xj)∂j we have δik = D(i)fk =

∑l
j=1(D(i)xj)(∂jfk). Thus

[D(i)xj ] = J(f)−1 . (2.4)
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Recall, from the Introduction, that we number the exponents mj = deg(fj) − 1
so that m1 ≤ · · · ≤ ml. Since W is irreducible we have ml−1 < ml [Bou, V.6.2,
Corollary 2], and ml+1 = h is the Coxeter number of W [Bou, V.6.2, Theorem 1].
It follows from the inequality ml−1 < ml that the one-dimensional space RD(l)

is uniquely determined by W and is independent of the choice of f1, . . . , fl [Sai2,
(2.2)], [SYS, (1.6)]. This remark of Saito is fundamental for the proof of our
theorem. We make the following

Definition 2.5. A Saito derivation is a nonzero element of RD(l).

Thus Saito derivations are characterized by the property

Df1 = Df2 = · · · = Dfl−1 = 0, Dfl ∈ R∗ . (2.6)

We choose a Saito derivation D and fix it throughout the paper. Define hj ∈ K
for 1 ≤ j ≤ l and h ∈ Kl by

hj = Dxj and h = [h1, . . . , hl] . (2.7)

It follows from (2.4) that h is, up to constant multiple, the last row of J(f)−1 :

h .= [J(f)−1
l1 , . . . , J(f)−1

ll ] . (2.8)

Here and elsewhere .= means equality of vectors (or matrices or polynomials) up
to a nonzero constant multiple. By [Bou, , Proposition 6 (ii)] we have

detJ(f) .= Q . (2.9)

It follows from (2.9) that D(i)(S) ⊆ Q−1S for 1 ≤ i ≤ l. Thus

hj ∈ Q−1S (2.10)

for 1 ≤ j ≤ l. If g ∈ S is homogeneous, we define the degree of Q−1g ∈ K by
deg(Q−1g) = deg(g) − deg(Q) = deg(g) −

∑l
i=1 mi ; the second equality follows

from (2.9). From (2.8) we have

deg(hj) = −ml . (2.11)

Define L1, . . . , Ll ∈ DerK by

Li = [∂i, D] = ∂iD −D∂i . (2.12)

Then Lixj = ∂iDxj −D∂ixj = ∂iDxj −Dδij = ∂iDxj = ∂ihj so that

J(h) = [Lixj ] . (2.13)
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Define a matrix N ∈Ml(S) by

Nij = (dxi, dfj) = θj(xi) . (2.14)

Let
Γ = [(xi, xj)] (2.15)

be the matrix of the form ( , ) on V ∗ with respect to the basis x1, . . . , xl. Then

N = ΓJ(f) . (2.16)

Thus, if x1, . . . , xl is an orthonormal basis then N = J(f). Define a matrix B ∈
Ml(K) by

B = −N>J(h)J(f) = −J(f)>ΓJ(h)J(f) . (2.17)

The matrices J(h) and B are the key constructs in our argument. Note that h
depends only on the chosen derivation D and not on the chosen basic invariants
f1, . . . , fl. On the other hand B does depend on f1, . . . , fl. We will prove in
Corollary 3.33 that if W is not of type Dl with l even, and we replace D by −D if
necessary, then it is possible to choose a basis x1, . . . , xl for V ∗ and basic invariants
f1, . . . , fl so that B has the form

B =


0 0 · · · 0 ml

0 0 · · · ml−1 ∗
...

...
...

...
0 m2 · · · ∗ ∗
m1 ∗ · · · ∗ ∗

 . (2.18)

where the entries ∗ lie in R. The reason for the possible sign change in D will
become clear in the proof of Corollary 3.33. In Section 5 we give examples of a
matrix B of the form (2.18) in case l = 2 and in case W has type Bl.

Remark 2.19. K. Saito introduced the concept of flat generators for the ring of
polynomial invariants of an irreducible real reflection group W [Sai2]. A system
of basic invariants f1, . . . , fl is called a system of flat generators if the matrix
D[(dfi, dfj)] is a constant matrix. It is known [Sai2] that the space Rf1 + · · ·+Rfl
is uniquely determined by W . In [SYS], Saito, Yano and Sekiguchi explicitly
determined a system of flat generators for each irreducible Coxeter group except
E7 and E8. We will see in (3.28) that D[(dfi, dfj)] = B + B>. So the matrix B
may be regarded as a refinement of D[(dfi, dfj)] in the sense that B determines
D[(dfi, dfj)]. The study of B therefore seems intriguing. For example we do not
know if B is a constant matrix for a system of flat generators. It is known [Sai2,
(5.1)], [SYS, (1.12)] that D[(dfi, dfj)] is an invertible matrix. The invertibility
is important because it gives a linear structure on the quotient variety V/W =
Spec R[f1, . . . , fl] [Sai2]. In Lemma 3.9 we will show that B is also invertible.
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§ 3. Invertibility of B and J(h)

In this Section we will prove that the entries of B are W -invariant polynomials
and that detB ∈ R∗ is a unit. It follows then from (2.9), (2.16) and (2.17) that
detJ(h) .= Q−2.

Lemma 3.1. B ∈Ml(R).

Proof. Let ρ : W → GLl(R) be the matrix representation of W afforded by the
W -module V relative to the basis e1, . . . , el. Thus

wej =
l∑

i=1

ρ(w)ijei and wxj =
l∑

i=1

ρ(w−1)jixi . (3.2)

Since w∂v = ∂wv for w ∈W and v ∈ V we also have

w∂j =
l∑

i=1

ρ(w)ij∂i . (3.3)

To prove that the entries of B are W -invariant we need transformation rules for
the action of w ∈ W on certain matrices defined by basic invariants f1, . . . , fl.
These rules are

w[N ] = ρ(w−1)N , (3.4)

w[J(f)] = ρ(w)>J(f) , (3.5)

w[h] = hρ(w−1)> , (3.6)

w[J(h)] = ρ(w)>J(h)ρ(w−1)> . (3.7)

We sketch the proofs of these formulas. To prove (3.4) note that w[N ]ij =
w(Nij) = w((dxi, dfj)) = (w(dxi), w(dfj)) = (d(wxi), d(wfj)) = (d(wxi), dfj) =∑l
k=1 ρ(w−1)ik(dxk, dfj) = (ρ(w−1)N)ij . To prove (3.5), note that w[f ] = f and

use (3.3). To prove (3.6), note that w[J(f)−1] = J(f)−1ρ(w−1)> and use (2.8).
The last transformation rule (3.7) follows from (3.6) and (3.3). It follows from
(3.4)–(3.7) that w[B] = w[N>]w[J(h)]w[J(f)] = N>J(h)J(f) = B. Thus the
entries of B are W -invariant. To complete the proof we must show that the en-
tries of B are polynomials. It follows from (2.13) that Li =

∑l
k=1 (Lixk)∂k =∑l

k=1 (∂ihk)∂k. Then (J(h)J(f))ij =
∑
k (∂ihk)(∂kfj) = Lifj = [∂i, D]fj =

∂iDfj −D∂ifj = −D∂ifj = −D[J(f)ij ]. This shows that

J(h)J(f) = −D[J(f)] . (3.8)

Since J(f) ∈ Ml(S), it follows from (2.10) that D[J(f)] ∈ Ml(Q−1S), so QB ∈
Ml(S). Since Bij ∈ R and Q is an anti-invariant polynomial, it follows that QBij
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is an anti-invariant polynomial and hence [Bou, V.5.5, Proposition 6(iv)] lies in
QR. Thus Bij ∈ R. �

The next lemma asserts, in particular, that detB is a non-zero real number.

Lemma 3.9. 1) If W is not of type Dl with l even then

B =


0 0 · · · 0 B1l
0 0 · · · B2,l−1 B2l
...

...
...

...
0 Bl−1,2 Bl−1,l−1 Bl−1,l
Bl1 Bl2 · · · Bl,l−1 Bll

 (3.10)

where

Bij = 0 if i+ j < l + 1
Bij ∈ R∗ if i+ j = l + 1 (3.11)

miBij = mjBji if i+ j = l + 1 .

2) If W is of type Dl with l = 2k then the 2 × 2 block in rows and columns
k, k+1 of the matrix (3.10) – the center of the matrix – is to be replaced by a 2×2
block

B0 =
[
Bk,k Bk,k+1
Bk+1,k Bk+1,k+1

]
(3.12)

with constant entries, where Bk,k+1 = Bk+1,k and detB0 ∈ R∗. The statement
(3.11) still holds true outside the 2× 2 block B0.

Proof. We agree in this argument that summation indices range over 1, . . . , l. From
(2.17) and (3.8) we have

B = J(f)>ΓD[J(f)]. (3.13)

If y ∈ K let grad(y) = [∂1y, . . . , ∂ly] ∈ Kl denote the gradient vector and let
Hess(y) ∈Ml(K) denote the Hessian matrix, defined by Hess(y)ij = ∂i∂jy. Then

Bij =
∑
p,q

(∂pfi) (dxp, dxq)D(∂qfj)

=
∑
p,q

(∂pfi) (dxp, dxq)
∑
r

hr(∂r∂qfj)

=
∑
p,q,r

(∂pfi) (dxp, dxq) (∂q∂rfj)hr

= grad(fi) Γ Hess(fj) h> .

(3.14)
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It follows from (3.14) and (2.11) that

deg(Bij) = mi +mj − 1−ml = mi +mj − h (3.15)

when Bij 6= 0. Thus Bij = 0 whenever mi + mj < h. Also Bij ∈ R by (3.15)
whenever mi +mj = h.

We remark, parenthetically, that if i+ j ≤ l then j < l − i+ 1 so mi +mj ≤
mi + ml−i+1 = h by duality in the exponents [Bou, V.6.2]. If equality holds in
the last formula then, since j 6= l− i+ 1, it follows from list of exponents in [Bou,
VI.4] that W is of type Dl with l even. Thus in Case 1) the matrix B has the form
(3.10). We do not know, at this stage, that the entries Bi,l−i+1 on the second
diagonal are nonzero. Now return to the main line of argument. Define the row
vector

g(i,j) = grad(fi)ΓHess(fj) ∈ Sl . (3.16)

Then deg(g(i,j)) = mi +mj − 1 when g(i,j) 6= 0. By arguments like those used in
the proofs of (3.4)–(3.7) we have the following transformation rules:

Γ = w[Γ] = ρ(w−1)Γρ(w−1)> , (3.17)

w[grad(fi)] = grad(fi)ρ(w) , (3.18)

w[Hess(fj)] = ρ(w)>Hess(fj)ρ(w) . (3.19)

From these transformation rules, we have

w[g(i,j)] = g(i,j)ρ(w) . (3.20)

If g = [g1, . . . , gl] ∈ Sl and w[g] = gρ(w) for all w ∈W then g1dx1 + · · ·+ gldxl =
[g][dx1, . . . , dxl]> is W -invariant. It is shown in [Sol1, Theorem] that every W -
invariant 1-form g1dx1 + · · ·+ gldxl with gi ∈ S lies in

∑
k Rdfk. Thus, by (3.20),

we may write
g(i,j) =

∑
k

r
(i,j)
k grad(fk) (3.21)

with homogeneous r(i,j)
k ∈ R. It follows from (3.14) and (3.15) that

Bij = g(i,j)h> =
∑
k

r
(i,j)
k grad(fk)h> =

∑
k

r
(i,j)
k Dfk = r

(i,j)
l Dfl (3.22)

and
deg(r(i,j)

k ) = mi +mj −mk − 1 (3.23)

when r(i,j)
k 6= 0. Let x = [x1, . . . , xl]. Since deg(∂jfi) = mi for 1 ≤ j ≤ l, it follows

from (3.16) and the Euler formula that

mi g(i,j)x> = mi grad(fi) Γmj grad(fj)>

= mj grad(fj) Γmi grad(fi)> = mj g(j,i)x>
(3.24)
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because Γ is a symmetric matrix. On the other hand, by (3.21) and the Euler
formula, we have

mig(i,j)x> = mi

∑
k

r
(i,j)
k grad(fk)x> = mi

∑
k

r
(i,j)
k (mk + 1)fk. (3.25)

Combine (3.25) with (3.24). This gives

mi

∑
k

r
(i,j)
k (mk + 1)fk = mj

∑
k

r
(j,i)
k (mk + 1)fk (3.26)

for all 1 ≤ i, j ≤ l. It follows from (3.23) that both sides of (3.26) are homogeneous
polynomials of degree mi + mj . Suppose now that i, j satisfy mi + mj = h =

deg(fl). Then deg(r(i,j)
k ) < h and thus r(i,j)

k ∈ R[f1, . . . , fl−1]. Since the invariant
polynomials f1, . . . , fl are algebraically independent, we can equate the coefficients
of fl on both sides of (3.26) and conclude that mi r

(i,j)
l (ml+1) = mj r

(j,i)
l (ml+1).

This proves
miBij = mjBji whenever mi +mj = h (3.27)

because of (3.22). Note that Bij ∈ R by (3.15) whenever mi + mj = h. On the
other hand

B +B> = J(f)>ΓD[J(f)] +D[J(f)>]ΓJ(f) = D[J(f)>ΓJ(f)] = D[(dfi, dfj)]
(3.28)

where the last equality follows from (2.3). The matrix on the right is non-singular,
as shown in [Sai2, (5.1)], [SYS, (1.13)]. Thus

det(B +B>) 6= 0. (3.29)

Case 1) Assume that W is not of type Dl with l even. If i + j < l + 1, then
mi +mj < h and thus, as we have already remarked, Bij = 0. Note that

det(B +B>) .=
∏

i+j=l+1

(Bij +Bji). (3.30)

By (3.29) and (3.30) we have Bij +Bji 6= 0 whenever i+ j = l+ 1. It follows from
(3.27) that Bij 6= 0 whenever i+ j = l + 1. This proves the desired result in Case
1).

Case 2) Assume that W is of type Dl with l = 2k even. If i + j < l + 1 with
(i, j) 6= (k, k), then mi +mj < h and thus Bij = 0. Let B0 be as in (3.12). Then

det(B +B>) .= det(B0 +B>0 )
∏

(Bij +Bji), (3.31)

where the product is over the set {(i, j) | i+ j = l+ 1 and |i− j| > 1}. By (3.29)
we have Bij +Bji 6= 0 whenever i+ j = l+ 1 and |i− j| > 1. It follows from (3.27)
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that Bij 6= 0 whenever i + j = l + 1 and |i − j| > 1. Since mk = mk+1, we have
Bk,k+1 = Bk+1,k by (3.27). Thus B0 is a symmetric matrix. By (3.29) and (3.31),
we have 4 detB0 = det(2B0) = det(B0 +B>0 ) 6= 0. Thus detB0 6= 0. �

Corollary 3.32. The matrix J(h) has determinant detJ(h) .= Q−2. Thus J(h)
is invertible and h1, . . . , hl are algebraically independent.

Proof. We have detJ(h) = (det Γ)−1(detJ(f))−2(detB) .= Q−2 by (2.17), (2.9)
and Lemma 3.9. �

Corollary 3.33. If W is not of type Dl with l even, then it is possible to choose a
Saito derivation D and basic invariants f1, . . . , fl so that B has the form (2.18).

Proof. Choose any basis x1, . . . , xl, and basic invariants f1, . . . , fl. Then B has
the form (3.10) where

miBi,l+1−i = ml+1−iBl+1−i,i for 1 ≤ i ≤ l . (3.34)

Suppose first that l = 2k is even. Define ci = mi/Bl+1−i,i for 1 ≤ i ≤ k and ci = 1
for k + 1 ≤ i ≤ l. Then cicl+1−iBl+1−i,i = mi for 1 ≤ i ≤ l by (3.34). Define
f ′i = cifi for 1 ≤ i ≤ l and let f ′ = [f ′1, . . . , f

′
l ]. Let B′ = −J(f ′)>ΓJ(h)J(f ′) and

let C = diag(c1, . . . , cl). Since J(f ′) = J(f)C we have B′ = CBC so B′l+1−i,i =
cicl+1−iBl+1−i,i = mi. Thus replacement of f by f ′ gives us (2.18). If l = 2k + 1
is odd we must modify the argument slightly. Note that the condition (3.34) is
vacuous for i = k + 1. If Bk+1,k+1 < 0 we replace D by −D. Thus, by (3.13),
we may assume that Bk+1,k+1 > 0. Define ci = mi/Bl+1−i,i for 1 ≤ i ≤ k and
ci = 1 for k + 2 ≤ i ≤ l by analogy with the case l = 2k. Choose ck+1 so
that c2k+1Bk+1,k+1 = mk+1. Let f ′i = cifi for 1 ≤ i ≤ l. Then D and the basic
invariants f ′1, . . . , f

′
l have the desired property. �

We use the fact that B is invertible to give the following alternative expression
for the matrix P in Theorem 1.4.

Proposition 3.35. Define A = B−1 ∈Ml(R). Then

P = −NAN>.

Proof. By (2.16) and (2.17) we have N = ΓJ(f) and B = −N>J(h)J(f). Thus
NAN> = NB−1N> = −ΓJ(f)J(f)−1J(h)−1(N>)−1N> = −ΓJ(h)−1 = −P. �
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§ 4. Proof of Theorem 1.4

In this Section we will prove Theorem 1.4. We will also determine the graded
W -module structure of E(A). It turns out that its homogeneous component of
degree h is W -isomorphic to V ∗.

Recall that the matrix P = ΓJ(h1, . . . , hl)−1 of Theorem 1.4 is defined using
a basis e1, . . . , el for V and the dual basis x1, . . . , xl for V ∗ together with Saito’s
derivation D. We will study how P is transformed if e1, . . . , el is replaced by
another basis for V . Suppose a basis e′1, . . . , e

′
l for V is connected with e1, . . . , el

through an invertible matrix M ∈GLl(R):

e′j =
l∑

i=1

Mijei. (4.1)

The new objects, which are defined using the new basis e′1, . . . , e
′
l, will be denoted

by x′j , ∂
′
j ,Γ
′ etc.. As in (3.2)–(3.7) and (3.17)–(3.19), we have

x′j =
l∑

i=1

(M−1)jixi , ∂′j =
l∑

i=1

Mij∂i , (4.2)

Γ′ = M−1Γ(M>)−1 , h′ = h(M>)−1 , J ′(h′) = M>J(h)(M>)−1 . (4.3)

Thus
P ′ = M−1P (M>)−1. (4.4)

Recall that the derivations ξ1, . . . , ξl ∈ DerS of Theorem 1.4 are defined by ξj =∑l
i=1 pij ∂i where pij is the (i, j) entry of P. By (4.2) and (4.4), we have

ξ′j =
l∑

i=1

(M−1)jiξi. (4.5)

In other words, ξ1, . . . , ξl satisfy the same base change rule as x1, . . . , xl.

Lemma 4.6. If H ∈ A then ξi(αH) ∈ Sα2
H . Thus ξi ∈ E(A) for 1 ≤ i ≤ l.

Proof. Because of (4.5), we may assume that αH = x1 and that x1, . . . , xl is
an orthonormal basis. Then P = J(h)−1. It is thus enough to show that each
entry of the first row of P is divisible by x2

1. Since x1, . . . , xl is an orthonormal
basis we have θj =

∑l
i=1(∂ifj)∂i ∈ D(A), as remarked in the Introduction. Thus

∂1fj = θj(x1) ∈ Sx1, so each entry of the first row of J(f) is divisible by x1.
Thus, outside the first column, each entry of adjJ(f), is divisible by x1. Since
detJ(f) .= Q is divisible by x1 exactly once, each entry of J(f)−1 .= Q−1adjJ(f),
outside the first column, has no pole along x1 = 0. In particular, hj (2 ≤ j ≤ l) has
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no pole along x1 = 0. It follows that each entry of J(h) outside the first column
has no pole along x1 = 0. Therefore, each entry of the first row of adjJ(h) has
no pole along x1 = 0. Recall that J(h) .= Q−2 from Corollary 3.32. This implies
that each entry of the first row of J(h)−1 .= Q2 adjJ(h) is divisible by x2

1. �

Now we may complete the proof of Theorem 1.4. By Corollary 3.32 we have

det[ξj(xi)] = detP = det(ΓJ(h)−1) .= Q2.

By Ziegler’s generalization [Zie, p.351] of Saito’s criterion [Sai3, p.270], [OrT,
Theorem 4.19] to multiarrangements, we can conclude that ξ1, . . . , ξl ∈ E(A)
form a basis for the S-module E(A). This completes the proof of Theorem 1.4.

The space E(A) inherits a grading from DerS . Let E(A)q ⊂ E(A) denote the
space of homogeneous elements of degree q. Then E(A) =

⊕
q≥0 E(A)q . It follows

from Theorem 1.4 that
E(A) = S ⊗R E(A)h

and that
E(A)h =

⊕
k R ξk .

Thus the W -module structure of E(A) is determined by that of E(A)h. The W -
module structure of E(A)h is given by the following:

Proposition 4.7. The R-linear map Ξ : V ∗ −→ E(A)h defined by Ξ(xi) = ξi for
1 ≤ i ≤ l, is a W -isomorphism.

Proof. We have already remarked in (4.5) that ξ1, . . . , ξl satisfy the same base
change rule as x1, . . . , xl. Thus the assertion follows from (4.5) with M = ρ(w). �

Since W is assumed irreducible, it follows from Schur’s lemma that an arbitrary
W -isomorphism from V ∗ to E(A)h is a nonzero constant multiple of the map Ξ.

Proposition 4.8. If H ∈ A then Ξ(αH) ∈ αH DerS.

Proof. Write αH = c1x1 + · · ·+ clxl with ci ∈ R. Then Ξ(αH) =
∑
k ck Ξ(xk) =∑

k ckξk. For 1 ≤ i ≤ l, let ei ∈ Rl be the i-th elementary unit vector. Then,
by Proposition 3.35, Ξ(αH)(xi) =

∑
k ckξk(xi) = eiPgrad(αH)> = −eiNAN>

grad(αH)> = −eiNA(grad(αH)N)> ∈ SαH because grad(αH)N = [θ1(αH), . . . ,
θl(αH)] ∈ (SαH)l. �
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§ 5. Examples

In this Section we will study two examples: the two-dimensional double Coxeter
arrangements and the double Coxeter arrangements of type Bl.

1. The two-dimensional case: Let V be two dimensional Euclidean space. Let
W ⊂ GL(V ) be a finite irreducible reflection group. Thus W is a dihedral group of
order 2n where n > 2. Let A be the corresponding Coxeter arrangement. Choose
Q as in (1.1). Then deg(Q) = n. Choose an orthonormal basis e1, e2 for V . Let
x1, x2 be the dual basis for V ∗. Then Γ is the identity matrix. The exponents
of W are m1 = 1,m2 = n − 1. To construct the matrix P we must find a Saito
derivation. Define λ ∈ Ω1

S by λ = x1dx1 +x2dx2. Define σ ∈ Ω2
S by σ = dx1∧dx2.

Let w ∈W. Then wλ = λ and wσ = det(w)σ. Define the star operator ∗ : V ∗ → V ∗

by x ∧ y = (∗x, y)σ for x, y ∈ V ∗. Extend ∗ to an S-module map ∗ : Ω1
S → Ω1

S by
S-linearity. Then ∗(df) = −(∂2f)dx1 + (∂1f)dx2 for f ∈ S. Since wσ = det(w)σ
we have w(∗θ) = det(w) ∗(wθ) for θ ∈ Ω1

S . Suppose f ∈ R. Then w(λ, ∗df) =
(wλ,w(∗df)) = det(w)(λ, ∗df) so −x2(∂1f) + x1(∂2f) = (λ, ∗df) ∈ QR. Define
D ∈ DerK by

D =
1
nQ

(−x2∂1 + x1∂2). (5.1)

Then D maps R → R. Now let f1, f2 be basic invariants with deg(f1) = 2 and
deg(f2) = n. Since deg(Q) = n > 2 = deg(f1) we have Df1 = 0. Since deg(f2) =
n = deg(Q) we have Df2 ∈ R. If Df2 = 0 then Dx1 = 0 = Dx2, a contradiction
because Dfk = (Dx1)(∂1fk) + (Dx2)(∂2fk) for k = 1, 2 and J(f1, f2) 6= 0. Thus
Df1 = 0 and Df2 ∈ R∗ so D is a Saito derivation by (2.6). We use this D and
follow the procedure in Sections 2 and 3 to construct the matrix P, the derivations
ξ1, ξ2 and the matrix B. From (2.7) we have

h =
1
nQ

[−x2, x1] .

We compute

J(h) =
1

nQ2

[
x2Q1 Q− x1Q1

−Q+ x2Q2 −x1Q2

]
,

where Qi = ∂iQ for i = 1, 2. Since detJ(h) = (1− n)/n2Q2 we have

P = J(h)−1 =
n

n− 1

[
x1Q2 Q− x1Q1,

−Q+ x2Q2 −x2Q1

]
, (5.2)

and
ξ1 =

n

n− 1
{x1Q2∂1 + (x2Q2 −Q)∂2}

ξ2 =
n

n− 1
{(Q− x1Q1)∂1 − x2Q1∂2} .

(5.3)
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By Theorem 1.4, the derivations ξ1 and ξ2 form a basis for E(A). Note in (5.2)
that the matrix P depends only upon choice of x1, x2 and Q. The reader may have
noticed that the group W is peripheral to the computations in this section. In
fact we can use the derivations defined by (5.3) to prove a proposition about any
central arrangement in a real two dimensional vector space V.

Proposition 5.4. Suppose V is a real vector space of dimension 2. Let A be
an arbitrary central arrangement in V and let Q be its defining polynomial. Let
n = |A| = degQ. Define an S-module E(A) as in (1.3). Then the derivations ξ1
and ξ2 given by (5.3) form a basis for E(A).

Proof. Note that det[ξj(xi)] = detP .= Q2. Thanks to Ziegler’s generalization [Zie,
p.351] of Saito’s criterion [Sai3, p.270], [OrT, Theorem 4.19] to multiarrangements,
it is enough to show that ξi ∈ E(A) for i = 1, 2. Let H ∈ A. Write αH = ax1 +bx2
with a, b ∈ R. Then

ξ1(αH) .= ax1Q2 + b(x2Q2 −Q) = αHQ2 − bQ = α2
H∂2(Q/αH) ∈ α2

HS.

So ξ1 ∈ E(A). Similarly ξ2 ∈ E(A). �

Now we return to the case of Coxeter arrangements. Since f1
.= x2

1 + x2
2 we

may choose f1 = (x2
1 + x2

2)/2. If n is even, then the invariant f2 is not uniquely
determined up to a constant multiple. We make a special choice of f2. Define

f2 = −Q(DQ) .

We will find the matrix B = J(f)>ΓD[J(f)] in (3.13) and check that f1, f2 is a
system of flat generators in the sense of K. Saito; see Remark 2.19. First note that
f2 is an invariant because Q2 ∈ R and D : R → R since D is a Saito derivation.
Since the Laplacian ∆ = ∂2

1 + ∂2
2 commutes with the action of W , and Q is an

anti-invariant, ∆Q is also an anti-invariant. Since Q is an anti-invariant of minimal
degree, we have

0 = ∆Q = Q11 +Q22. (5.5)

To compute J(f) use (5.5). Calculate n∂1f2 = −∂1(−x2Q1 + x1Q2) = x2Q11 −
Q2 − x1Q12 = −(x2Q22 + Q2 + x1Q12) = −((n − 1)Q2 + Q2) = −nQ2. Thus
∂1f2 = −Q2. Similarly ∂2f2 = Q1. Thus

J(f) =
[
x1 −Q2
x2 Q1

]
.

To compute D[J(f)] use (5.1) and (5.5). Calculate nQ(DQ1) = −x2Q11+x1Q12 =
x2Q22 + x1Q12 = (n − 1)Q2. Thus DQ1 = (n − 1)Q2/nQ. Similarly DQ2 =
−(n− 1)Q1/nQ. Thus

B = J(f)>D[J(f)] =
[
x1 x2
−Q2 Q1

]
1
nQ

[
−x2 (n− 1)Q1
x1 (n− 1)Q2

]
=
[

0 n− 1
1 0

]
,
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and

A = B−1 =
[

0 1
1

n−1 0

]
.

The alternative expression of P given in Proposition 3.35 is:

P = −
[
x1 −Q2
x2 Q1

] [
0 1
1

n−1 0

] [
x1 x2
−Q2 Q1

]
.

This agrees with (5.2) via the Euler formula. By (3.28),

D[(dfi, dfj)] = B +B> =
[

0 n
n 0

]
.

It follows that f1, f2 is a system of flat generators. Note, by (5.5), that ∆f2 =
∂1(−Q2) + ∂2Q1 = 0. Thus f2 is harmonic.

2. The case Bl: LetW be the Coxeter group of type Bl acting on an l-dimensional
Euclidean space V by signed permutations of an orthonormal basis e1, . . . , el. Let
A be the corresponding Coxeter arrangement. Let x1, . . . , xl be the dual basis for
V ∗. Then Γ is the identity matrix. Define

pi = pi(x1, . . . , xl) =
1
i

l∑
k=1

xik

for i ≥ 1. Define p0 = 1. Let fi = p2i. We will use the basic invariants f1, . . . , fl to
find the matrices B,A, and P . To simplify formulas we use the following notation
[Mac, pps.26-27]: if α = (α1, . . . , αl) ∈ Nl, let Aα = [xαij ] and let aα = detAα.
Then

J(f) =

x1 x3
1 · · · x2l−1

1
...

...
...

xl x3
l · · · x2l−1

l

 = A(1,3,... ,2l−1) .

Define a derivation D ∈ DerK by

Dy =
1

a(1,3,... ,2l−1)

∣∣∣∣∣∣∣
x1 x3

1 · · · x2l−3
1 ∂1y

...
...

...
...

xl x3
l · · · x2l−3

l ∂ly

∣∣∣∣∣∣∣ , (5.6)

for y ∈ K. Since Df1 = Df2 = · · · = Dfl−1 = 0 and Dfl = 1, D is a Saito
derivation. For i ≥ 0 let

ci(x1, . . . , xl) =
∑

i1+···+il=i
xi11 · · ·x

il
l
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be the i-th complete symmetric polynomial; it is not possible to use the now
standard notation hi of [Mac] since hi has already been used. Let

c̃i = c̃i(x1, . . . , xl) = ci(x2
1, . . . , x

2
l ) .

Then c̃i is a W -invariant polynomial of degree 2i. Define c̃i(x1, . . . , xl) = 0 if
i < 0.

Lemma 5.7. The derivation D satisfies D(p2l+2i) = c̃i(x1, . . . , xl) for i ≥ −l.

Proof. From (5.6) we have

D(p2l+2i) =
a(1,3,... ,2l−3,2l+2i−1)

a(1,3,... ,2l−1)
=
a(0,2,... ,2l−4,2l+2i−2)

a(0,2,... ,2l−2)
. (5.8)

Define δ = (l − 1, l − 2, . . . , 1, 0) ∈ Nl and define λ = (i, 0, . . . , 0, 0) ∈ Nl. Then
λ + δ = (l + i − 1, l − 2, . . . , 1, 0). The right hand side of (5.8) is thus aλ+δ/aδ
with xi replaced by x2

i . By [Mac, (I.3.1), (I.3.9)] we have aλ+δ/aδ = ci(x1, . . . , xl).
Thus the right hand side of (5.8) is c̃i(x1, . . . , xl). �

Since J(f)ij = x2j−1
i , the entries of B = J(f)>D[J(f)] in (3.13) are

Bij =
∑
k

x2i−1
k D(x2j−1

k ) = (2j − 1)
∑
k

x2i+2j−3
k D(xk)

= (2j − 1)D(p2i+2j−2) = (2j − 1)c̃i+j−l−1(x1, . . . , xl)

by Lemma 5.7. Thus

B =



0 0 0 · · · 0 2l− 1
0 0 0 · · · 2l− 3 (2l− 1)c̃1
0 0 0 · · · (2l− 3)c̃1 (2l− 1)c̃2
...

...
...

...
...

0 0 5 · · · (2l − 3)c̃l−4 (2l − 1)c̃l−3
0 3 5c̃1 · · · (2l − 3)c̃l−3 (2l − 1)c̃l−2
1 3c̃1 5c̃2 · · · (2l − 3)c̃l−2 (2l − 1)c̃l−1



=



1 0 · · · 0 0 0
c̃1 1 · · · 0 0 0
c̃2 c̃1 · · · 0 0 0
...

...
...

...
...

c̃l−3 c̃l−4 · · · 1 0 0
c̃l−2 c̃l−3 · · · c̃1 1 0
c̃l−1 c̃l−2 · · · c̃2 c̃1 1




0 0 · · · 0 2l− 1
0 0 · · · 2l − 3 0
...

...
...

...
0 3 · · · 0 0
1 0 · · · 0 0
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On the other hand, it is known [Mac, p.21] that



1 0 · · · 0 0 0
c̃1 1 · · · 0 0 0
c̃2 c̃1 · · · 0 0 0
...

...
...

...
...

c̃l−3 c̃l−4 · · · 1 0 0
c̃l−2 c̃l−3 · · · c̃1 1 0
c̃l−1 c̃l−2 · · · c̃2 c̃1 1



−1

=



1 0 · · · 0 0 0
−ẽ1 1 · · · 0 0 0
ẽ2 −ẽ1 · · · 0 0 0
...

...
...

...
...

(−1)l−3ẽl−3 (−1)l−4ẽl−4 · · · 1 0 0
(−1)l−2ẽl−2 (−1)l−3ẽl−3 · · · −ẽ1 1 0
(−1)l−1ẽl−1 (−1)l−2ẽl−2 · · · ẽ2 −ẽ1 1


,

where ẽi = ẽi(x1, . . . , xl) = ei(x2
1, . . . , x

2
l ) is the i-th elementary symmetric poly-

nomial in x2
1, . . . , x

2
l . Therefore A = B−1 is equal to


0 0 · · · 0 1/1
0 0 · · · 1/3 0
...

...
...

...
0 1/(2l− 3) · · · 0 0

1/(2l− 1) 0 · · · 0 0



·



1 0 · · · 0 0 0
−ẽ1 1 · · · 0 0 0
ẽ2 −ẽ1 · · · 0 0 0
...

...
...

...
...

(−1)l−3ẽl−3 (−1)l−4ẽl−4 · · · 1 0 0
(−1)l−2ẽl−2 (−1)l−3ẽl−3 · · · −ẽ1 1 0
(−1)l−1ẽl−1 (−1)l−2ẽl−2 · · · ẽ2 −ẽ1 1


.

Since Γ is the identity matrix we have N = J(f). Thus, by Proposition 3.35, the
matrix P in Theorem 1.4 is given by

P = −NAN> = −J(f)AJ(f)>

with A as above.
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§ 6. Anti-invariant differential 1-forms

If M is an R[W ]-module let MW = {x ∈ M | wx = x for all w ∈ W} denote the
space of invariant elements in M. Let Mdet = {x ∈M | wx = det(w)x for all w ∈
W} denote the space of anti-invariant elements in M. In this section we use the
fact that det J(h) 6= 0 to prove the following Proposition. Recall that D denotes
a Saito derivation and that hi = Dxi.

Proposition 6.1. Let W ⊂ GL(V ) be a finite irreducible group generated by
reflections. Let ui = Qhi. Define an R-linear map d̂ : S → Ω1

S by

d̂f =
l∑

i=1

(∂if)dui (6.2)

for f ∈ Sl. Let f1, . . . , fl be basic invariants. Then

(Ω1
S)det = R d̂f1 ⊕ · · · ⊕R d̂fl .

Proof. Choose an orthonormal basis x1, . . . , xl for V ∗. By Corollary 3.32, h1, . . . , hl
are algebraically independent. By (2.10) we have Qhi ∈ S. Let u = [u1, . . . , ul] ∈
Sl. Since u = Qh it follows that u1, . . . , ul are algebraically independent. Thus
detJ(u) 6= 0. To show that d̂fi ∈ (Ω1

S)det we must check

w(d̂f) = det(w)d̂(wf) (6.3)

for all w ∈W and f ∈ S. Let x = [x1, . . . , xl]. Let ρ : W → GLl(R) be the matrix
representation of W defined in (3.2). If w ∈ W then w[x] = xρ(w−1)>. Since Q
is anti-invariant and u = Qh, it follows from (3.6) that w[u] = det(w) uρ(w−1)>.
Thus w(d̂xj) = det(w)d̂(wxj) for j = 1, . . . , l. This proves (6.3) for f = xj . Since
the map f 7→ d̂f is R-linear and d̂(fg) = f d̂g+ g d̂f, for all f, g ∈ S, the set of all
f ∈ S which satisfy (6.3) is an R-subalgebra of S which contains x1, . . . , xl and
is thus equal to S. This proves (6.3). Thus (Ω1

S)det ⊇ R d̂f1 + · · ·+R d̂fl .

Now argue as in [Sol2, Theorem 3] to show that d̂f1, . . . , d̂fl are linearly inde-
pendent over S. If not, then we have a relation

∑l
i=1 gi d̂fi = 0 where gi ∈ S and

g1, say, is not zero. Multiply the relation by d̂f1. This gives d̂f1 ∧ · · · ∧ d̂fl = 0.
Let f = [f1, . . . , fl]. It follows from (6.2) that

d̂f1 ∧ · · · ∧ d̂fl = det(J(f)) det(J(u)) dx1 ∧ · · · ∧ dxl ,

which is not zero since detJ(u) 6= 0. This contradiction proves the linear indepen-
dence. Thus the sum R d̂f1 + · · ·+R d̂fl is direct, so

(Ω1
S)det ⊇ R d̂f1 ⊕ · · · ⊕R d̂fl . (6.4)
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To prove equality in (6.4) we show that both graded vector spaces have the same
Poincaré series. Let n = deg(Q). By (2.11) we have deg(ui) = n−ml for 1 ≤ i ≤ l.
Thus deg(dui) = n − h where h is the Coxeter number. Since deg(dfi) = mi we
have

Poin(
l⊕

i=1

R d̂fi, t) = tn−h(
l∑

i=1

tmi) Poin(R, t) . (6.5)

Let Ωl−1
S be the space of differential l − 1 forms on V with coefficients in S.

Grade Ωl−1
S in the natural way. Define the star-operator ∗ : Ω1

S → Ωl−1
S by

∗(fdxi) = (−1)i−1f dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxl [Fla, p.15, p.82]. Then
∗(wθ) = det(w)w(∗θ) for w ∈W. Since ∗ : Ω1

S → Ωl−1
S is an isomorphism of graded

S-modules, it follows that the restriction of ∗ to (Ω1
S)det defines an isomorphism

(Ω1
S)det ' (Ωl−1

S )W (6.6)

of graded vector spaces. It is shown in [Sol1, Theorem] that (Ωl−1
S )W is a free

R-module with basis ψi = df1 ∧ · · · ∧ dfi−1 ∧ dfi+1 ∧ · · · ∧ dfl for 1 ≤ i ≤ l. Define
ϕi ∈ Ω1

S by ∗ϕi = ψi. It follows that ϕ1, . . . , ϕl is an R-module basis for (Ω1
S)det.

Since deg(ϕi) = n−mi we have

Poin((Ω1
S)det, t) = (

l∑
i=1

tn−mi) Poin(R, t) . (6.7)

Compare (6.5) and (6.7). By duality in the exponents we have n − h + mi =
n − ml−i+1 for 1 ≤ i ≤ l. Thus Poin(

⊕l
i=1 R d̂fi, t) = Poin((Ω1

S)det, t). This
completes the proof. �
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