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c© 1998 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

The structure of branching in Anosov flows of 3-manifolds
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Abstract. In this article we study the topology of Anosov flows in 3-manifolds. Specifically we
consider the lifts to the universal cover of the stable and unstable foliations and analyze the leaf
spaces of these foliations. We completely determine the structure of the non Hausdorff points in
these leaf spaces. There are many consequences: (1) when the leaf spaces are non Hausdorff, there
are closed orbits in the manifold which are freely homotopic, (2) suspension Anosov flows are, up
to topological conjugacy, the only Anosov flows without free homotopies between closed orbits,
(3) when there are infinitely many stable leaves (in the universal cover) which are non separated
from each other, then we produce a torus in the manifold which is transverse to the Anosov flow
and therefore is incompressible, (4) we produce non Hausdorff examples in hyperbolic manifolds
and derive important properties of the limit sets of the stable/unstable leaves in the universal
cover.
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1. Introduction

In this article we study the topological structure of the lifts to the universal cover
of the stable and unstable foliations of 3-dimensional Anosov flows. In particu-
lar we consider the case when these foliations do not have Hausdorff leaf space.
We completely determine the structure of the set of non separated leaves from a
given leaf in one of these foliations. We show that these leaves project to leaves
in the manifold containing periodic orbits of the flow and produce a non trivial
free homotopy between closed orbits of the flow. As a consequence suspensions
are characterized, up to topological conjugacy, as the only 3-dimensional Anosov
flows without freely homotopic closed orbits. Furthermore we establish a connec-
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tion with the topology of the manifold: if there are infinitely many leaves not
separated from each other then there is an incompressible torus transverse to the
flow. Transitivity is not assumed for these results. Finally we specialize to Anosov
flows in hyperbolic 3-manifolds: we produce many non Hausdorff examples and
then derive some important properties of the limit sets of leaves in the universal
cover.

The study of the topological structure of the lifted foliations of an Anosov
flow in a closed manifold was introduced in a remarkable paper of Verjovsky [Ve]
in order to study codimension one Anosov flows. If the lifted stable foliation has
Hausdorff leaf space, then the leaf space is homeomorphic to the set of real numbers
and we say that the stable foliation in the manifold is R-covered. An important
fact for 3-dimensional Anosov flows is that the stable foliation is R-covered if and
only if the unstable foliation is also R-covered [Fe3,Ba2], in which case the flow
is said to be R-covered. In this article we restrict to Anosov flows in (closed)
3-manifolds.

Two early uses of this technique were: (1) Ghys [Gh] showed that an Anosov
flow in a Seifert fibered space is R-covered. This was an essential step in showing
that the flow is, up to finite covers, topologically conjugate to the geodesic flow in
the unit tangent bundle of a closed surface of negative curvature (briefly, a geodesic
flow). (2) If the fundamental group of the manifold is solvable then the R-covered
property, proved by Barbot [Ba1,Ba2], is again an essential step in Plante’s proof
[Pl2,Pl3] that the flow is topologically conjugate to the suspension of an Anosov
diffeomorphism of the torus (a suspension). In fact this last result holds for any
codimension one Anosov flow. This highlights the importance of the topology of
the lifted foliations in order to understand the flow.

More recently, a lot of information has been gained by analysing not just the
individual leaf spaces, but rather the joint topological structure of the stable and
unstable foliations. Using this and Dehn surgery on closed orbits of suspensions
or geodesic flows [Fr,Go], a large family of examples was constructed where every
closed orbit of the flow is freely homotopic to infinitely many other closed orbits
[Fe3]. This never happens for suspensions or geodesic flows, and was thought to
be impossible for any Anosov flow.

Our initial motivation was to understand Anosov flows in hyperbolic 3-manifolds,
of which there are many examples [Go,Ch], but which are still fairly misterious.
Up to now, the only technique that yields any information when the manifold is
hyperbolic is the topological theory mentioned above. For instance the topological
theory gives information about metric properties of flow lines: a flow is said to
be quasigeodesic if flow lines are uniformly efficient (up to a bounded multiplica-
tive distortion) in measuring distances in relative homotopy classes. Suspensions
and geodesic flows are always quasigeodesic and there are many quasigeodesic
“pseudo-Anosov” flows in hyperbolic 3-manifolds [Ca-Th,Mos1,Mos2,Fe-Mo] (a
pseudo-Anosov flow is a generalization of an Anosov flow, where one allows finitely
many singular orbits, which have prong type singularities, see [Fe-Mo]). The quasi-
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geodesic property is extremely important in hyperbolic 3-manifolds [Th1,Mor] and
was used for instance in the proof of the geometrization conjecture for Haken man-
ifolds. Using the topological theory and the Dehn surgery construction mentioned
above, one produces a large family of Anosov flows in hyperbolic manifolds which
are not quasigeodesic [Fe3]. All these examples are R-covered Anosov flows. One
important question is to understand how such flows interact with the hyperbolic
structure and the ideal compactification of the universal cover. We will return to
this question later.

Barbot [Ba3,Ba4] also used this topological theory to study Anosov flows and
proved the following remarkable result: Assume that there is a Seifert fibered
piece in the torus decomposition of the manifold [Jo,Ja-Sh] and suppose that the
corresponding fiber is not freely homotopic to a closed orbit of the flow. First
isotopically adjust the boundary tori of the Seifert fibered piece to be as transverse
to the flow as possible [Ba3]. It follows that the flow restricted to that piece is
topologically conjugate to a (generalized) geodesic flow on the unit tangent bundle
of a compact surface with boundary. If the manifold is a graph manifold (that
is, all pieces of torus decomposition are Seifert fibered) and all fibers satisfy the
condition above, then the flow in M is, up to topological conjugay, obtained by
Dehn surgery on finitely many closed orbits of a geodesic flow [Ba4]. Using this
Barbot [Ba4] has obtained the first known examples of graph manifolds which are
neither torus bundles over the circle, nor Seifert fibered and which do not admit
Anosov flows.

The results above are in great part due to a complete characterization of the
possible joint topological structures of R-covered Anosov flows [Fe3,Ba2]. On the
other hand very little is known about the non R-covered case, for the simple reason
that their structure is not understood at all.

It is easy to show that intransitivity implies that the flow is not R-covered
[So,Ba1] and for many years there was a great effort in trying to prove that these
two properties are equivalent [Ve,Gh,Fe3,Ba2]. However in a surprising develop-
ment Bonatti and Langevin [Bo-La] have recently constructed a transitive, non
R-covered Anosov flow in dimension 3. Subsequently Brunella [Br] produced a
large class of examples by doing Dehn surgery on geodesic flows. The common
tool used to show that the flows are not R-covered is the existence of an embedded
torus transverse to the flow, which is then incompressible. Hence the underlying
manifolds are not hyperbolic.

One fundamental question which remained to be answered was whether the
manifold M being hyperbolic would imply that any Anosov flow in M has to be
R-covered. A positive answer would have enormous consequences: no Anosov flow
in a hyperbolic 3-manifold could be quasigeodesic [Fe3] and in such flows every
closed orbit would be freely homotopic to infinitely many other closed orbits [Fe3].
In this article we answer this question in the negative:

Theorem A. There is a large class of transitive, non R-covered Anosov flows
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where the underlying 3-manifold is hyperbolic. This includes all Anosov flows in
non orientable, hyperbolic 3-manifolds.

Therefore transitive non R-covered Anosov flows can occur in graph manifolds
[Bo-La], in hyperbolic 3-manifolds and in manifolds containing Seifert fibered and
hyperbolic pieces in their torus decomposition [Br]. This highlights the importance
of understanding the structure of non R-covered Anosov flows, which up to now are
completely mysterious. The main goal of this article is to start a systematic study
of Anosov flows which are not R-covered, where we then say the lifted foliations
have branching. We will not a priori assume that the manifold is hyperbolic or
that the flow is transitive.

This leads us to two basic and very important questions: (1) when can branch-
ing occur and (2) what are the possible structures of branching in Anosov flows
of 3-manifolds? In this article we address question (2) and completely determine
the local structure of branching. We then show that the branching structure is
strongly related to the dynamics of the flow, the topology of the manifold and the
metric behavior of the stable and unstable foliations.

Let then Φ be an Anosov flow in M3 with two dimensional stable and unstable
foliations Fs,Fu. Here M is always closed. Let F̃s, F̃u be the respective lifts
to the universal cover M̃ . Let Hs and Hu denote the leaf spaces of F̃s and F̃u
respectively. If Fs is not R-covered, Hs is not Hausdorff, and the branching leaves
of F̃s correspond to the non Hausdorff points in Hs. Two leaves F 6= F ′ of F̃s
form a branching pair if the corresponding points in Hs are not separated from
each other. Equivalently F, F ′ do not have disjoint saturated neighborhoods in
M̃ , where a saturated neighborhood of F̃s is an open set which is a union of leaves
of F̃s.

Since M̃ is simply connected, F̃s and F̃u are always transversely orientable
and an orientation is fixed. Then there is a notion of branching in the positive
or negative directions. The first important result was proved in [Fe5]: Suppose
that Φ is transitive. If there is branching in the positive direction of (say) the
stable foliation then this foliation also has branching in the negative direction.
This concerns the “global” structure of branching.

Here we analyse the “local” structure of branching. In general the local struc-
ture of branching in the lifted foliations can be very complicated [Im]. We show
that branching in Anosov foliations is of a simple type which is very rigid. For
simplicity the theorems are stated for F̃s but work equally well for F̃u.

A leaf of F̃s or F̃u is said to be periodic if it is left invariant by a non trivial
covering translation of the universal cover. Equivalently, its image in M contains
a closed orbit of Φ.

Theorem B. Let Φ be an Anosov flow in M3. If F is a branching leaf of F̃s,
then F is periodic.
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Figure 1. The set of non separated leaves from F ∈ F̃s and in the back of F . D is between E
and L.

Theorem B should be interpreted as a rigidity result in the sense that periodic
leaves are “rigid”, while non periodic leaves are non rigid. This is best seen in the
manifold M : if the stable leaf (in M) is periodic then it contains a closed orbit
of Φ and every orbit in the leaf is forward asymptotic to this closed orbit. The
nearby returns (in forward direction) are in the same local stable leaf. In case
the leaf is not periodic, then the orbits in the leaf limit in points of M , but the
nearby returns are always in distinct local stable leaves. This means that when
lifted to the universal cover one can slightly perturb the local structure, producing
a contradiction.

Our next goal is to understand the local structure of branching. Let F be a
leaf of F̃s which is a branching leaf. Let Eb(F ) be the set of leaves of F̃s which
are non separated from F and are either equal to F or are contained in the back
of F . Similarly define Ef (F ). We show there is a natural order in Eb(F ) given
by: if E 6= L ∈ Eb(F ) then we say that E < L if there are G,H ∈ F̃u with
G∩E 6= ∅,H ∩L 6= ∅ and G is in the negative side of H, see fig. 1. Using this we
can say that a branching leaf D ∈ Eb(F ) is between E and L if E < D < L.

One measure of the complexity of branching is the number of branching leaves
between any E,L ∈ Eb(F ). A priori there could be infinitely many in between
branching leaves producing a very complicated structure. However we prove:

Theorem C. Let Φ be an Anosov flow in M3. Let F be a branching leaf of F̃s
and Eb(F ) be the set of non separated leaves from F and in the back of F (F is
included in Eb(F )), with the order defined above. Then either

(1) Eb(F ) is finite, hence order isomorphic to {1, 2, ..., n} or,
(2) Eb(F ) if infinite and order isomorphic to the set of integers Z.

In particular given any E,L ∈ Eb(F ), there are only finitely many branching leaves
between them. Analogous results hold for Ef (F ).

Notice that there are examples where both Eb(F ) and Ef (F ) contain leaves
other than F . This is what happens in the intransitive examples created by Franks
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and Williams [Fr-Wi]. A careful analysis of those examples shows that for any
branching leaf F ∈ F̃s, then both Eb(F ) and Ef(F ) contain exactly two elements.

As in the case of theorem B, there is a rigidity proof of theorem C. However
the rigidity proof is quite long and complicated. Our tactic will be to first show
the following result:

Theorem D. Let Φ be an Anosov flow in M3 and let (F,L) be a branching pair
of F̃s. Let g be a non trivial covering translation with g(F ) = F and so that g
preserves transversal orientations to F̃s, F̃u. Then g(L) = L.

Using the important idea of lozenges (see definition in section 3) and a key
result from [Fe4], we show that theorem C follows easily from theorem D, except
that to rule out the case that Eb(F ) is order isomorphic to the natural numbers N
we need theorem F below. Section 4 contains a more detailed description of the
set Eb(F ).

Theorem D also implies that π(F ) and π(L) contain freely homotopic closed
orbits and highlights the pervasiviness of freely homotopic closed orbits. This
shows that the topological structure of F̃s, F̃u is intimately connected with the
dynamics of the flow:

Corollary E. Let Φ be an Anosov flow in M3. Then Φ is topologically conjugate
to a suspension of an Anosov diffeomorphism of the torus if and only if there are
no freely homotopic closed orbits of Φ (including non trivial free homotopies of a
closed orbit to itself).

Corollary E does not assume that Φ is not R-covered. Another consequence
of theorem D is the following:

Theorem F. Let Φ be a non R-covered Anosov flow in M3. Then up to the
action of covering translations, there are finitely many branching leaves in F̃s.
Equivalently there are finitely many distinguished closed orbits of Φ in M so that
their stable leaves lift to branching leaves in the universal cover.

We again stress that these results on the structure of branching are the most
general possible, because there is no assumption on the manifold nor on the flow.
In particular we do not assume that the flow is transitive. Theorems B,C,D and
F were previously proved under the assumption that M has negatively curved
fundamental group and furthermore that the flow is quasigeodesic [Fe4]. This last
hypothesis is a very strong assumption and made the proofs relatively easy. The
techniques used here are different because in general there are no metric properties
available to use. The proof only uses the topological structure of F̃s.

We also show that the structure of branching is strongly related to the topology
of the ambient manifold. We say that there is infinite branching in F̃s if there
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is an infinite collection of leaves of F̃s, all of which are non separated from each
other. Otherwise we say that F̃s has only finite branching.

Theorem G. Let Φ be an Anosov flow in M3 orientable so that there is infinite
branching in F̃s. Then there is associated infinite branching in F̃u and there is an
embedded torus T transverse to Φ. Hence T is incompressible. In particular M is
toroidal and cannot be hyperbolic and neither can π1(M) be negatively curved.

A big part of theorem G follows quickly from theorem D and 3-manifold topol-
ogy, namely the fact that M atoroidal implies there is no infinite branching (corol-
lary 4.8). However this “quick” proof uses 2 deep results: (1) The general torus
theorem [Ga] which in turn depends on the solution of the Seifert fibered conjec-
ture, and (2) The characterization of Anosov flows in Seifert fibered 3-manifolds
[Gh]. We give a proof of theorem G which depends only on the topological struc-
ture of F̃s and F̃u.

We remark that infinite branching does occur, for example in the Bonatti-
Langevin flow. Conversely theorem A yields many examples of non trivial finite
branching.

We also describe in detail the structure induced by infinite branching. This
uses “product regions” (see section 3), a tool which also has applications in [Fe8].

With the description of branching in general given by theorems B,C,D and
F , we can then specialize to Anosov flows in hyperbolic 3-manifolds. In that case
M̃ is compactified with a sphere at infinity S2

∞ and it is extremely important
to understand the asymptotic behavior of stable and unstable leaves in M̃ and in
particular to study their limit sets [Th1,Th2,Mor,Bon]. The intrinsic geometry of a
leaf F of F̃s or F̃u is always negatively curved in the large and there is an intrinsic
ideal boundary ∂∞F . We say that Φ̃ has the continuous extension property if the
embedding ϕ : F → M̃ extends continuously to ϕ : F ∪ ∂∞F → M̃ ∪ S2

∞, for any
leaf F in F̃s or F̃u. This property can be defined for any Reebless codimension
1 foliation in hyperbolic manifolds [Fe2] and it is true for fibrations [Ca-Th] and
many depth one foliations [Fe1,Fe10]. This property is weaker than quasigeodesic
behavior of Φ [Fe3]. Recall that the limit set of B is the set of accumulation points
of B in S2

∞. In this article we use the structure of branching to analyse limit sets
of leaves in connection with the continuous extension property:

Theorem H. Let Φ be a non R-covered Anosov flow in M3 hyperbolic. Suppose
that Φ̃ has the continuous extension property. Then the limit set ΛF of any leaf F
of F̃s or F̃u is a Sierpinski curve, that is, the complement of a countable, dense
union of open disks in S2

∞. In addition there is k < 2 so that ΛF has Hausdorff
dimension < k for any F ∈ F̃s or F̃u, so in particular ΛF has zero Lebesgue area.

This result (except for the last statement) also works under the assumption that
π1(M) is negatively curved. Theorem H is a significant improvement over results
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in [Fe4]: in [Fe4] we assumed the stronger hypothesis that Φ is quasigeodesic and
were only able to show that ΛF is neither S2

∞ nor a Jordan curve.
In a forthcoming paper [Fe8] we use the results of this article to study Anosov

flows in toroidal manifolds, specifically to study incompressible tori in such man-
ifolds. It is of great interest to find, in the isotopy class of the torus, the best
position with respect to the flow [Ba3,Ba4]. We prove:

Theorem. ([Fe8]) Let Φ be an Anosov flow in M3 and let T an incompressible
torus in M . Suppose that no loop in T is freely homotopic to a closed orbit of Φ.
Then Φ is topologically conjugate to a suspension Anosov flow. Furthermore T is
isotopic to a torus transverse to Φ.

This article is organized as follows: in the next section we develop background
material and in section 3 we prove that branching leaves are periodic (theorem
B). Section 4 is the core of the paper, where theorems D,C, F , corollary E and
part of theorem G are proved. Section 5 studies product regions and applies this
to completely describe infinite branching. For the sake of presentation we collect
the results concerning hyperbolic manifolds in the last two sections: In section 6
we produce non R-covered Anosov flows in hyperbolic 3-manifolds and in the final
section we study the continuous extension property.

We thank Bill Thurston for encouragement and many helpful conversations
relating to this work. We also thank Thierry Barbot for useful suggestions to a
first version of this article. Finally we thank the referee for an extremely careful
reading of the manuscript and for inumerous suggestions which greatly improved
the paper and also simplified some of the proofs.

2. Background

Let Φt : M3 → M3 be a nonsingular flow in a closed, connected Riemannian
manifold M . The flow Φ is Anosov if there is a continuous decomposition of the
tangent bundle TM as a Whitney sum TM = E0 ⊕ Es ⊕ Eu of continuous DΦt
invariant subbundles and there are constants µ0 ≥ 1, µ1 > 0 so that:

(i) E0 is one dimensional and tangent to the flow,
(ii) ||DΦt(v)|| ≤ µ0e

−µ1t||v|| for any v ∈ Es, t ≥ 0,
(iii) ||DΦ−t(v)|| ≤ µ0e

−µ1t||v|| for any v ∈ Eu, t ≥ 0.
The bundles Es, Eu integrate to one dimensional foliations Fss,Fuu: the strong

stable and strong unstable foliations of the flow [An]. The bundles E0 ⊕ Es and
E0⊕Eu are also integrable [An] producing 2-dimensional foliations Fs,Fu which
are the stable and unstable foliations of the flow.

The flow is said to be orientable if both Fs,Fu are transversely orientable.
There is always a regular cover of order ≤ 4 where the lifted Fs and Fu are
transversely orientable. Whenever possible we lift to such a cover.
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The leaves of Fs,Fu are either topological planes, annuli or Möebius bands.
The last two correspond exactly to leaves containing closed orbits of Φ. There is
at most one closed orbit in a leaf of Fs, in which case all other orbits are forward
asymptotic to it. Similarly for Fu.

The foliation Fs is Reebless, so Novikov’s theorem [No] implies that given any
closed orbit γ of Φ, γn is not null homotopic for any n 6= 0.

Let π : M̃ → M be the universal covering space of M . This notation will be
fixed throughout the article. The Anosov foliations Fs,Fu lift to foliations F̃s, F̃u
in M̃ . The leaves of F̃s, F̃u are topological planes, so M̃ is homeomorphic to R3

[Pa]. Therefore M is irreducible that is every embedded sphere in M bounds a
3-ball. The induced flow in M̃ is denoted by Φ̃.

Let O be the orbit space of Φ̃ obtained by collapsing flow lines to points and
let Θ : M̃ → O be the projection map. A fundamental result which will be used
throughout this article is that O is Hausdorff and hence homeomorphic to R2

[Fe3]. This is a significant simplification because now much of the analysis can be
done in dimension 2 instead of dimension 3. We stress thatO is only a topological
object - there is no natural metric in O since the flow direction contracts and
expands distances in M̃ . Therefore arguments that involve distances have to be
done in M̃ , while topological arguments (e.g. leaves Fi converge to F , or leaf F
intersects leaf G) can be done in O.

The foliations F̃s, F̃u induce two transverse 1-dimensional foliations in O,
which will also be denoted by F̃s, F̃u. By an abuse of notation we will many
times identify sets in M̃ or orbits of Φ̃ to their respective images in O.

The fundamental group π1(M) is isomorphic to the set of covering translations
of M̃ . We will usually assume one such identification is fixed. Given a covering
translation g, we will also denote by g its action on Hs,Hu (the leaves spaces of
F̃s, F̃u).

Let W s(x) be the leaf of Fs containing x and similarly define Wu(x), W ss(x),
Wuu(x), W̃ s(x), W̃u(x), W̃ ss(x) and W̃uu(x). In the same way if α is an orbit
of Φ we define W s(α), etc.. General references for Anosov flows are [An], [An-Si],
[Bow], [Sh] and [Sm].

An incompressible surface (6= S2) is an embedded surface in M3 which is in-
jective in the fundamental group level. A manifold is toroidal if it contains an
incompressible torus and atoroidal otherwise.

3. Periodic branching leaves

In this section we prove theorem B of the introduction. The following definitions
will be useful. If L is a leaf of F̃s or F̃u, then a half leaf of L is a connected
component A of L − γ, where γ is any full orbit in L. The closed half leaf is
A = A∪ γ and its boundary is ∂A = γ. A flow band B defined by orbits α 6= β in
L is the connected component of L−{α, β} which is not a half leaf of L. The closed
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flow band associated to it is B = B ∪ {α, β} and its boundary is ∂B = {α, β}.
Since M̃ is simply connected, F̃s and F̃u are transversely orientable. Choose

one such orientation. Notice that in general, covering translations may not preserve
transversal orientations.

For p ∈ M̃ , let W̃ s
+(p) be the half leaf of W̃ s(p) defined by Φ̃R(p) and the

positive transversal orientation to F̃u at p. It is called a positive half leaf of
W̃ s(p). Similarly define W̃ s

−(p) (a negative half leaf), and also define W̃u
+(p) and

W̃u
−(p).
A fundamental fact for us is that any leaf L in F̃s or F̃u separates M̃ . This

is a consequence of M̃ being simply connected and F̃s, F̃u being Reebless, which
together imply that L is properly embedded [No]. The front of L is the component
of M̃ −L defined by the positive transversal orientation to L We also call this the
positive side of L. Similarly define the back (or negative side) of L. For p ∈ M̃ let
W̃ ss

+ (p) = W̃ s
+(p) ∩ W̃ ss(p). Similarly define W̃ ss

− (p), W̃uu
+ (p) and W̃uu

− (p).
If F ∈ F̃s and G ∈ F̃u then F and G intersect in at most one orbit, since two

intersections would force a tangency of F̃s and F̃u. This is easiest seen in O, as
F̃s and F̃u are then 1-dimensional foliations of the plane.

We now describe four objects which are the main tools in this article.
We say that leaves F,L ∈ F̃s and G,H ∈ F̃u form a rectangle if F intersects

both G and H and so does L, see fig. 2 a. We also say that E intersects G between
F and L if E∩G is contained in the flow band in G defined by G∩F and G∩L. It is
easy to prove that if E ∈ F̃s intersects G between F and L then E also intersects
H between F and L. To see this just project to the plane O: then one sees a
true rectangle [0, 1]× [0, 1] foliated by horizontal (stable) and vertical (unstable)
segments – this last fact follows from index computations of foliations in the plane.
Hence there is a product structure of F̃s and F̃u in the region bounded by F,L,G
and H.

Definition 3.1. Given p ∈ M̃ (or p ∈ O), let

J u+(p) = {F ∈ F̃s | F ∩ W̃u
+(p) 6= ∅},

an open subset of Hs. Notice that the leaf W̃ s(p) 6∈ J u+(p). Similarly define J u−(p),
J s+(p) and J s−(p). Let also Lu+(p) = ∪ {p ∈ M̃ | p ∈ F ∈ J u+(p)}. Then Lu+(p)
is an open subset of M̃ and W̃ s(p) ⊂ ∂Lu+(p). Similarly define Lu−(p), Ls+(p) and
Ls−(p).

Definition 3.2. Two leaves F ∈ F̃s and G ∈ F̃u, form a perfect fit (F,G) if
F ∩ G = ∅ and there are half leaves F1 of F and G1 of G and also flow bands
L1 ⊂ L ∈ F̃s and H1 ⊂ H ∈ F̃u, so that:

L1 ∩G1 = ∂L1 ∩ ∂G1, L1 ∩H1 = ∂L1 ∩ ∂H1, H1 ∩ F 1 = ∂H1 ∩ ∂F1,
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Figure 2. a. Rectangles, b. Perfect fits in the universal cover.

∀ S ∈ F̃u, S ∩ L1 6= ∅ ⇒ S ∩ F1 6= ∅ (1) and

∀ E ∈ F̃s, E ∩H1 6= ∅ ⇒ E ∩G1 6= ∅ (2).

See figure 2 b. The flow bands L1,H1 (or the leaves L,H) are not uniquely deter-
mined by the perfect fit (F,G).

We claim that the implications (1), (2) in fact imply equivalences (that is S ∩
L1 6= ∅ ⇔ S ∩ F1 6= ∅ and the same for (2)). To see this let S ∈ F̃u with
S∩F1 6= ∅. Choose R ∈ F̃s near enough F , so that R∩H1 6= ∅ and R∩S 6= ∅. By
(2), R ∩G1 6= ∅. If S = G then G ∩ F 6= ∅, contradiction. If G separates H from
S, then G separates F from S, contradiction to F1 ∩ S 6= ∅. Hence S intersects R
between G and H. Since R,L,G,H form a rectangle, this implies that S intersects
L between G and H, that is, S intersects L1. This proves the stronger equivalence
in (1) and similarly for (2).

Perfect fits produce “ideal” rectangles, in the sense that even though F and G
do not intersect, there is a product structure (of F̃s and F̃u) in the interior of the
region bounded by F,L,G and H.

There is at most one leaf G ∈ F̃u making a perfect fit with a given half leaf of
F ∈ F̃s and in a given side of F [Fe5]. Therefore if (L,G) forms a perfect fit and
g is an orientation preserving covering translation with g(L) = L, then g(G) = G.
This follows from uniqueness of perfect fits and the fact that g takes perfect fits
to perfect fits, because it acts by homeomorphisms in the leaf spaces.

Definition 3.3. Lozenges - - Suppose p, q ∈ M̃ satisfy

J u+(p) ∩ J s+(p) = J u−(q) ∩ J s−(q) (i).
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Figure 3. a. A lozenge, b. A chain of lozenges.

Then we say that this intersection is a lozenge B in M̃ with (−,−) corner p (or
Φ̃R(p)) and (+,+) corner q. Notice that equation (i) implies that J u+(p) = J u−(q)
and J s+(p) = J s−(q). If on the other hand p and q satisfy

J s+(p) ∩ J u−(p) = J s−(q) ∩ J u+(q) (ii).

then this intersection is a lozenge B with (+,−) corner p and (−,+) corner q. In
any case it follows that W̃ s(p), W̃u(q) form a perfect fit and so do W̃ s(q), W̃u(p)
- this is an equivalent way to define a lozenge. The lozenge is an open region in
M̃ . The sides of the lozenge in case (i) are W̃ s

+(p), W̃u
+(p), W̃ s

−(q) and W̃u
−(q) and

are not contained in B, but rather are contained in ∂B. Similarly for case (ii).

Since given any four leaves there is at most one lozenge with sides in them we
also sometimes refer to the full leaves as the sides of the lozenge.

Two lozenges are adjacent if they share a corner and there is a stable or unstable
leaf intersecting both of them, see fig. 3 b. A chain of lozenges is a collection
{Bi}, i ∈ I, where I is an interval (finite or not) in Z; so that if i, i+ 1 ∈ I, then
Bi and Bi+1 share a corner see fig. 3 b. Consecutive lozenges may be adjacent or
not. The chain is finite if I is finite.

Definition 3.4. Suppose η ⊂ F ∈ F̃s is a (possibly infinite) strong stable segment
so that

∀ p, q ∈ η, J u+(p) = J u+(q). In that case let P =
⋃
p∈η

W̃u
+(p).
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Figure 4. a. A product region with bounded base segment, b. A product region with infinite
base segment. Horizontals are stable leaves and verticals are unstable leaves. Dots indicate an
infinite basis segment. Arrows indicate that unstable leaves extend indefinitely.

Then P ⊂ M̃ is called a positive unstable product region with base segment η,
see fig. 4. The basis segment is not uniquely determined by P. Similarly define
negative unstable product regions and stable product regions.

The main property of product regions is the following: for any F ∈ F̃s, G ∈ F̃u
so that (i) F ∩P 6= ∅ and (ii) G∩P 6= ∅, then F ∩G 6= ∅. To see this, first notice
that (ii) implies that ∅ 6= G ∩ η = p. By (i) let q ∈ η with F ∩ W̃u

+(q) 6= ∅. Then
F ∈ J u+(q) hence F ∈ J u+(p), that is F ∩G 6= ∅.

We will also denote by rectangles, perfect fits, lozenges and product regions
the projection of these regions to O. One good way to visualize these objects in
O is as follows. Consider proper embeddings ξ : U → O of sets U ⊂ R2 into
O, sending the horizontal and vertical foliations induced in U to the stable and
unstable foliations in ξ(U) ⊂ O. Then a proper embedding is associated to a
rectangle ξ(U) if U = [0, 1]× [0, 1]. A proper embedding is associated to a perfect
fit if U is a rectangle without a corner, that is, U = [0, 1] × [0, 1] − {(1, 1)}. A
lozenge is associated to the image of a rectangle without two opposite corners
U = [0, 1] × [0, 1] − {(1, 1), (0, 0)} (the lozenge is the interior of ξ(U)). A stable
product region is associated to the image of U = [a, b]× [0,∞) (or U = R× [0,∞)
when the base segment is infinite) and similarly for an unstable product region.

We say that an orbit γ of Φ̃ is periodic if it is left invariant by a non trivial
covering translation. Similarly we define periodic for F ∈ F̃s or F̃u.

If p, q are in the same strong stable leaf let [p, q]s denote the closed segment in
that leaf from p to q and let (p, q)s be the corresponding open segment. Similarly
define [p, q]u and (p, q)u.
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Figure 5. Branching in F̃s.

Theorem 3.5. Let Φ be an Anosov flow in M3 and let F be a branching leaf of
F̃s. Then there is a non trivial covering translation g with g(F ) = F , that is, F
is periodic.

Proof. By taking a finite cover if necessary, we may assume that Φ is orientable.
Let L ∈ F̃s, L 6= F , so that F,L form a branching pair of F̃s. Assume without loss
of generality that F and L are not separated on their negative sides, that is they
are associated to branching of F̃s in the positive direction (positive branching).

Let w0 ∈ F , w′ ∈ L. Since F and L are not separated in their negative sides
there are y0 ∈ W̃uu

− (w0) (y0 sufficiently near w0) and x0 = W̃u(w′) ∩ W̃ ss(y0) so
that if r0 = W̃uu

+ (x0) ∩ L, then for any E ∈ F̃s,

E ∩ (y0, w0)u 6= ∅ ⇐⇒ E ∩ (x0, r0)u 6= ∅. (∗)

This fact, which follows from the separation property of leaves of F̃s, will often
be implicitly used.

Switch F and L if necessary, so that W̃u(x0) is in the front of W̃u(y0). We
first find unique leaves associated to the branching, which form perfect fits with
F and L. As there are z ∈ [y0, x0]s with W̃u(z) ∩ F = ∅ (e.g. z = x0), let p0 be
the closest point to y0 in [y0, x0]s so that W̃u(p0) ∩ F = ∅.

Claim. The leaves F and W̃u(p0) form a perfect fit.

For flow bands let A = Φ̃R((y0, w0)u) and B = Φ̃R((y0, p0)s). Then A ∩B =
Φ̃R(y0), A ∩ F = Φ̃R(w0) and B ∩ W̃u(p0) = Φ̃R(p0).

Let E ∈ F̃s with E∩A 6= ∅. Then E∩W̃u(x0) 6= ∅. Since W̃u(p0) separates M
it follows that E ∩ W̃u(p0) 6= ∅. As E is in front of W̃ s(y0) then E ∩ W̃u

+(p0) 6= ∅.
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Let R ∈ F̃u with R∩B 6= ∅. If R∩F = ∅, then z = R∩[y0, p0]s is closer to y0 (in
W̃ ss(y0)) than p0, contradiction. Hence R∩F 6= ∅, in particular R∩W̃ s

+(w0) 6= ∅.
By definition it follows that W̃ s

+(w0) and W̃u
+(p0) form a perfect fit. This finishes

the proof of the claim.
In the same way there is a unique q0 ∈ [y0, x0]s with W̃u(q0) and L forming a

perfect fit. By uniqueness of perfect fits, the leaves W̃u(p0), W̃u(q0) depend only
on F and L. If follows from (∗) and the claim, that given E ∈ F̃s, E ∩ W̃u

+(p0) 6=
∅ ⇔ E ∩ W̃u

+(q0) 6= ∅. Equivalently J u+(p0) = J u+(q0).

Case 1. p0 = q0.
Let G = W̃u(p0) = W̃u(q0). If G is periodic there is g 6= id with g(G) = G.

By uniqueness of perfect fits and preservation of transversal orientations (Fs,Fu
are transversely orientable in the finite cover) it follows that g(F ) = F and we are
done. Hence assume from now on that G is not periodic.

Let c0 = π(p0). Since G is not periodic, ΦR(c0) is not a closed orbit, nor
is it backwards asymptotic to a closed orbit. Let c be a negative limit point of
ΦR(c0) and let ci = Φti(c0), ti → −∞, with ci → c. If ci and cj are in the same
local unstable leaf near c, then there is a closed path in Wu(ci) consisting of the
flow segment from ci to cj and a small arc from cj to ci in the local unstable leaf
through cj . This path is not null homotopic in Wu(ci), hence Wu(ci) contains
a closed orbit, contradiction to our assumption. This is the key fact used in the
proof of the theorem and it will imply that non periodic leaves in the universal
cover are not rigid .

Lift ci to pi ∈ M̃ with pi → p and π(p) = c. Then pi = gi(Φ̃ti(p0)), where
gi are covering translations. By the above argument W̃u(pi) 6= W̃u(pk) for any
i 6= k. This is the non rigid behavior we are looking for.

Let Fi = gi(F ), Li = gi(L), Ai = gi(A), Bi = gi(B) and Gi = gi(G). Let
yi = gi(Φ̃ti(y0)) and let xi = gi(Φ̃ti(x0)). Up to subsequence assume that all
pi and p are near enough, in a product neighborhood of F̃u of diameter << 1.
Assume also that for all i,

l(Φ̃ti([y0, p0]s)) > 1 and l(Φ̃ti([p0, x0]s)) > 1. (∗∗)

Choose indices i, k so that pi is in the back of W̃u(pk), see fig. 6. Since
d(pi, pk) << 1 it follows that W̃ s

−(pk)∩W̃u(pi) 6= ∅ and W̃ s
+(pi)∩W̃u(pk) 6= ∅. By

(∗∗), this implies that yk is in the back of W̃u(pi) and xi is in the front of W̃u(pk),
see fig. 6. Hence W̃u(yk) is in the back of W̃u(pi). Then W̃u(pi)∩Bk 6= ∅ and by
the defining property of perfect fits W̃u(pi) ∩ Fk 6= ∅. As Li makes a perfect fit
with W̃u(pi), then Li is in front of Fk, hence Li is in the back of W̃u(pk).

On the other hand, Li ∩ W̃u(xi) 6= ∅. Since W̃u(xi) is in front of W̃u(pk) then
W̃u(pk)∩ Φ̃R([pi, xi]s) 6= ∅. As Li and W̃u(pi) form a perfect fit, this implies that
W̃u(pk) ∩ Li 6= ∅. This contradicts the conclusion of the previous paragraph.
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Figure 6. Rigidity of branching leaves: the adjacent case

This shows that if p0 = q0, then G is periodic, left invariant by g, hence F and
L are periodic and both left invariant under g. This finishws the proof in case 1.

Remarks. (1) Applying this argument when G is periodic, we get W̃ s(pi) =
W̃ s(pk) ∀i, k. There is no small perturbation of the local picture which is then
rigid.

(2) It is tempting to try the following “intuitive” approach to the above proof:
as π(W̃u

+(p0)) is not compact, there are translates S1 and S2 of W̃u(p0) and points
ui ∈ Si arbitrarily near each other. The problem with this approach is that there
is no control of the rest of the picture. For instance we do not know a priori what
happens to the respective stable lengths. This is the reason why we fixed an orbit
ΦR(π(p0)) and flowed backwards in order to insure that stable lengths are as big
as we want. This is also why the proof is done in M̃ and not in O.

Case 2. p0 6= q0.
We use the same notation as in case 1. As q0 6= p0, let qi = gi(Φ̃ti(q0)). Choose

i, k with pi in the back of W̃u(pk). As in case 1, W̃u
+(pi) ∩ Fk 6= ∅. There is no a

priori contradiction because now Li does not form a perfect fit with W̃u(pi), and
in fact Li is probably in the front of W̃u(pk), see fig. 7. Let then

e1 = W̃u(pk) ∩ W̃ ss
+ (pi), e2 = W̃u(pi) ∩ W̃ ss

− (pk).

Notice that W̃u
+(pk) and Fk form a perfect fit and W̃u

+(e2)∩Fk 6= ∅. These two facts
imply that J u+(pk) < J u+(e2). In addition the local product structure of F̃s, F̃u
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Figure 7. Rigidity of branching: the separated case.

near p implies that J u+(pi) > J u+(e1), see fig. 7. Choose E ∈ J u+(pi) − J u+(e1).
By the above considerations it is clear that E ∩ W̃u(pk) = ∅. But

J u+(qi) = J u+(gi(Φ̃ti(q0))) = gi(J u+(Φ̃ti(q0))) = gi(J u+(Φ̃ti(p0))) = J u+(pi),

hence E ∈ J u+(qi). Then E ∩ W̃u
+(qi) 6= ∅. But W̃u(qi) is in the front of W̃u(pk)

and as W̃u(pk) separates M̃ , then E∩W̃u(pk) 6= ∅. This contradicts the conclusion
of the previous paragraph. As before we conclude that G is periodic, left invariant
by g 6= id, so F is also left invariant by g. �

Caution. The same arguments show that L and W̃u(q0) are also periodic. We
do not know at this point that the same covering translation leaves invariant both
F and L. This is a much stronger fact which will be proved in the next section.

4. Branching structure

In this section we show that if F and L are not separated, then not only they
are periodic, but there is a non trivial covering translation leaving both of them
invariant. As an immediate consequence, branching produces a non trivial free
homotopy between closed orbits of Φ in M and this leads to a homotopic char-
acterization of suspensions. We also show that the periodic orbits in F and L
are connected by a finite sequence of lozenges. This completely determines the
structure of the set of non separated leaves from F and implies that there are only
finitely many branching leaves up to covering translations. We then show that if
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there is infinite branching then there is an incompressible torus in M transverse
to the flow.

We say that two orbits γ, α of Φ̃ (or the leaves W̃ s(γ), W̃ s(α) and similarly for
unstable leaves) are connected by a finite chain of lozenges {Bi}, 1 ≤ i ≤ n, if γ is
a corner of B1 and α is a corner of Bn. The following theorem will be essential for
the results in this section:

Theorem 4.1. [Fe4] Let Φ be an Anosov flow in M3 and let F0 6= F1 ∈ F̃s.
Suppose that there is a non trivial covering translation g with g(Fi) = Fi, i = 0, 1.
Let αi, i = 0, 1 be the periodic orbits of Φ̃ in Fi so that g(αi) = αi. Then α0
and α1 are connected by a finite chain of lozenges {Bi}, 1 ≤ i ≤ n and g leaves
invariant each lozenge Bi as well as their corners.

Furthermore there is a unique chain that is minimal, in the sense that any
other chain from α0 to α1 contains this chain [Fe7]. For any chain {Bi}, 1 ≤ i ≤ n
from α0 to α1, let γ0 = α0 and inductively define γi, i > 0 to be the remaining
corner of Bi. The minimal chain from α0 to α1 is characterized by: Bi+1 is on
the same side of W̃ s(γi) and W̃u(γi) that α1 is [Fe7]. Equivalently the lozenges
{Bi}, 1 ≤ i ≤ n are all disjoint [Fe7].

A closed orbit of Φ traversed once is called an indivisible closed orbit.
The following result will be often used in this article:

Theorem 4.2. (Fe7) Let Φ be an orientable Anosov flow in M3. If γ is an
indivisible closed orbit of Φ, then γ represents an indivisible element in π1(M).
Equivalently if g is a covering translation and gn(F ) = F , where F ∈ F̃s or F̃u
with n 6= 0, then g(F ) = F .

There is a related result if Φ is not assumed to be orientable.
The stabilizer T (F ) of a leaf F of F̃s (or F̃u) is the subgroup of π1(M) of those

g with g(F ) = F . If π(F ) does not contain a periodic orbit, then T (F ) is trivial.
Otherwise let γ be the indivisible closed orbit in π(F ). Then T (F ) is infinite cyclic
and it has a generator conjugate to [γ] in π1(M).

The main technical result in this section is theorem D of the introduction:

Theorem 4.3. Let Φ be an Anosov flow in M3. Suppose that F,L form a branch-
ing pair of F̃s. Let g be a non trivial covering translation with g(F ) = F , so that
g preserves transversal orientations to F̃s, F̃u. Then g(L) = L. Similarly for F̃u.

Proof. Up to a cover of order ≤ 4, assume that Φ is orientable. As g preserves
transversal orientations, then g is still a covering translation of the the universal
cover of the finite cover. Assume that F and L are not separated on their negatives
sides and also assume that g generates T (F ).

As in theorem 3.5 there are unique leaves G,H ∈ F̃u making perfect fits with
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F and L respectively and so that: G separates F from L and so does H. Let
p ∈ G so that W̃ ss(p) intersects H and let q = W̃ ss(p)∩H. Recall from the proof
of theorem 3.5, that J u+(p) = J u+(q). Assume that H is in the front of G.

Since g preserves transversal orientations then g(G) = G. Our goal is to show
that g(L) = L. If G = H then this is clear. Suppose then that G 6= H and that
g(L) 6= L, therefore g(H) 6= H. Let γ ⊂ G be the periodic orbit of Φ̃ in G, so
g(γ) = γ.

Claim 1. There is R ∈ F̃u in the back of L making a perfect fit with a positive
half leaf of L, hence R is in the front of H.

We may assume that p ∈ W̃u
+(γ). Let E = W̃ s(p). By taking g−1 if necessary

assume that g(E) is in front of E. Hence g(E) ∈ J u+(p), therefore g(E) ∈ J u+(q).
Then H ∩ g(E) 6= ∅. There are 2 cases:

(1) g(H) is in front of H, see fig. 8.
Let Let e′ = W̃ ss(g(p))∩H. Since g(p) ∈ W̃u

+(p) then J u+(g(p)) = J u+(e′). But
also J u+(g(p)) = J u+(g(q)), so J u+(g(q)) = J u+(e′), where g(q) ∈ g(H) and e′ ∈ H.
Since L makes a perfect fit with H and g(L) makes a perfect fit with g(H) this
shows that g(L) is not separated from L. As in the proof of theorem 3.5, there is
a unique e0 ∈ (e′, g(q))s with W̃u(e0) making a perfect fit with L. In this case let
R = W̃u(e0).

(2) Suppose now that g(H) is in the back of H.
Notice that E, g(E),H and G form a rectangle. Since g(H) ∩ g(E) 6= ∅ and

g(H) is between G and H it follows that g(H) ∩E 6= ∅ and g(H) ∩E is an orbit
in E between E ∩G and E ∩H.

In this case let c = g(H)∩W̃ ss(p). Then c ∈ (p, q)s. Since J u+(p) = J u+(q) and
L 6∈ J u+(q), then g(L) 6∈ J u+(q), so g(L) ∩H = ∅. Hence g(L) is in the back of H.
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As in case (1), it follows that L and g(L) form a branching pair. Let c2 ∈ (c, q)s
with W̃u(c2) making a perfect fit with g(L) and with g(L) in the back of W̃u(c2).
Then R = g(W̃u(c2)) makes a perfect fit with L and L is in the back of W̃u(c2).
This finishes the proof of claim 1.

By theorem 3.5, H, L and R are periodic, so let α, α∗ and τ be the periodic
orbits in H,L and R respectively. Let h a generator of T (H). Since Φ is orientable,
h(H) = H, h(R) = R and h(L) = L.

Claim 2. W̃ s
−(α∗) ⊂ L and W̃u

+(α) ⊂ H are two sides of a lozenge N1 with other
sides in W̃ s

+(α) and W̃u
−(α∗), see fig. 9.

Let a ∈ α, b ∈ α∗ and Z ∈ F̃s with Z ∩ W̃u
−(α∗) 6= ∅. Assume that h

is a contraction in the set of orbits of W̃u(α∗). Then for n > 0 big enough
hn(Z)∩ W̃u

+(α) 6= ∅, because W̃u(α) and W̃ s(α∗) form a perfect fit. Since W̃u
+(α)

is h invariant then Z ∩ W̃u
+(α) 6= ∅. Using similar arguments one concludes that

J u+(a) = J u−(b) and J s+(a) = J s−(b). Consequently a and b are the corners of a
lozenge N1 as claimed.

Equivalently the claim says that if A1 ∈ F̃s and A2 ∈ F̃u form a perfect fit
and there is a non trivial covering translation g′ with g′(A1) = A1, then A1 and
A2 are two sides of a lozenge B. The corners of the lozenge are two periodic orbits
which are invariant under g′.

In the same way as in the claim above W̃ s
+(α∗) and W̃u

+(τ) are the 2 sides of a
lozenge N2. The lozenges N1,N2 are adjacent and intersect the stable leaf E. Let
N = N1 ∪N2 ∪ W̃u

−(α∗), an open connected set.
We now show that F also makes a perfect fit with U ∈ F̃u, U 6= G and F in

the front of U , hence G is in the front of U , see fig. 9. If h(G) = G then since g
generates T (G), it follows that h = gn for some n ∈ Z − {0}. Theorem 4.2 then
implies that g(H) = H contrary to assumption. Hence h(G) 6= G. Using claim 1
with the roles of F,L exchanged, we produce the required U ∈ F̃u. As shown in
claim 2, there are two adjacent lozenges D1 and D2 with (some) sides in U,F,G.
Both lozenges intersect a stable leaf which we may assume is E. Let σ be the
periodic orbit in F and D = D1 ∪ D2 ∪ W̃u

−(σ).
From now on the proof roughly goes as follows: We will show that W̃ s(γ)

intersects W̃u
+(α) and similarly that W̃ s(α) intersects W̃u

+(γ), producing a contra-
diction.

Taking g−1 if necessary, suppose that g(H) is in the back of H. Let Hi = gi(H).
Then as in case (2) of claim 1, Hi+1 is in the back of Hi, and Hi ∩E 6= ∅, ∀i ≥ 0.
Since Hi is always in front of G, then Hi → S with S ∩E 6= ∅ (and maybe Hi also
converges to other leaves of F̃u).

Let Vi be the front of Hi and let V = ∪i∈NVi. Then g(Vi) = Vi+1 so g(V) = V
and consequently g(∂V) = ∂V. Since S 6⊂ V it follows that ∂V is a non empty
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union of unstable leaves and furthermore S ⊂ ∂V. Notice that S is the unique
leaf which is either equal to G or separates G from V. In the second case since
g(V) = V and g(G) = G it follows that g(S) = S. In either case we have that
g(S) = S.

Then there is an orbit β of Φ̃ in S with g(β) = β. By theorem 4.1, β and γ are
connected by a minimal chain of lozenges {Bi}, 1 ≤ i ≤ n.

Furthermore

E ∩ S 6= ∅, E ∩G 6= ∅ ⇒ E ∩ Bi 6= ∅, ∀i.
Otherwise choose smallest i so that E ∩Bi 6= ∅. Then E ∩Bi−1 = ∅ and there is a
stable leaf, call it U , containing a stable side of Bi and a stable side of Bi−1, which
separates E from Bi. By the characterization of the minimal chain from γ to β, it
follows that U separates E from all Bj , j ≥ i. But E ∩Bn 6= ∅ because E ∩ S 6= ∅
and S contains a side of Bn, contradiction. Therefore consecutive lozenges in the
chain Bi are adjacent.

Claim 3. γ and all Bi are in the front of W̃ s(β).
Suppose not. Let r ∈ β and r′ ∈ γ. Notice that p ∈ W̃u

+(r′). Since γ and β are
connected by a chain of adjacent lozenges all intersecting E and γ is in the back
of W̃ s(β), it follows that J u−(r) = J u+(r′). For all i big enough W̃ s(r) ∩Hi 6= ∅.
Notice that gi(q) ∈ Hi. If gi(q) is in front of W̃ s(r) then W̃ s(gi(q)) is in front
of W̃ s(r), contradiction to W̃ s(gi(q)) = W̃ s(gi(p)) being in the back of W̃ s(r).
Clearly gi(q) ∈ W̃ s(r) is also disallowed. The third possible option is that gi(q) is
in the back of W̃ s(r). But then W̃ s(r) ∈ J u+(gi(q)) and hence W̃ s(r) ∈ J u+(gi(p)),
which is also a contradiction. This shows that W̃ s(r)∩Hi = ∅ is impossible. This
finishes the proof of claim 3.

Consequently γ is in front of W̃ s(β) and γ, β are connected by and even number
of adjacent lozenges. Therefore J u+(r) = J u+(r′).

Since Ri = gi(R) separates Hi from Hi−1, then W̃ s(β) ∩Ri 6= ∅ and W̃ s(β) ∩
Hi 6= ∅, for i big enough. But gi(W̃ s(β)) = W̃ s(β), therefore W̃ s(β) ∩R 6= ∅ and
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Figure 10. Impossible intersection of leaves: a. Case δ = α, b. Case δ 6= α.

W̃ s(β) ∩H 6= ∅. Consequently W̃ s(β)) ∩N 6= ∅ and as a result W̃ s(β) intersects
W̃u

+(α).

Conclusion. There is an orbit β of Φ̃ with g(β) = β, W̃ s(β) ∩ W̃u
+(α) 6= ∅ and

W̃ s(β) ∩R 6= ∅.
Because γ and β are connected by lozenges Bi all intersecting E ∈ F̃s, then

there is Z ∈ F̃s making a perfect fit with Y = W̃u(β) so that Z is in the back of Y
and Z and L are not separated, see fig. 10 a. Hence Z,L satisfy the hypothesis of
this theorem. As in claim 1 there is X ∈ F̃u, X 6= Y , X making a perfect fit with
Z and intersecting E, see fig. 10 a. Therefore we could have started the analysis
with Z instead of F and Y instead of G, considering the orbits β ⊂ Y and α ⊂ H.

Now switch the roles of Y and H and apply the same arguments as above.
Then as in the conclusion above we find an orbit δ of Φ̃ with h(δ) = δ and
W̃ s(δ) ∩ W̃u

+(β) 6= ∅, W̃ s(δ) ∩X 6= ∅. In addition δ is connected to α by an even
chain of lozenges all intersecting a common stable leaf. Hence if u ∈ δ, u′ ∈ α,
then J u+(u) = J u+(u′).

If δ = α this produces an immediate contradiction since W̃ s(β) intersects
W̃ s

+(α) and W̃ s(α) intersects W̃ s
+(β), see fig. 10 a.

Suppose that δ 6= α. As W̃ s(δ) ∩ W̃u
+(β) 6= ∅, then W̃ s(β) is in the back of

W̃ s(δ). In particular W̃ s(β) 6∈ J u+(u). Hence W̃ s(β) 6∈ J u+(u′), a contradiction to
the fact that W̃ s(β) intersects W̃u

+(α), see fig. 10 b.
This contradiction implies that the assumption g(H) 6= H is impossible to hold.

We conclude that g(H) = H and consequently that g(L) = L. This finishes the
proof of the theorem. �

Corollary 4.4. Let Φ be an Anosov flow in M3. Suppose Φ is not R-covered. Let
F,L ∈ F̃s which are not separated from each other. Then F and L are connected
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by an even chain of lozenges, all intersected by a common stable leaf. In particular
there are only finitely many branching leaves between F and L.

Proof. Up to finite covers we may assume that Φ is orientable. Suppose that F,L
are not separated in their negative sides.

Let g 6= id be a covering translation with g(F ) = F . By the previous theorem
g(L) = L. Let γ and δ be the respective periodic orbits in F and L. Furthermore
suppose W̃u(γ) is in the back of W̃u(δ).

By theorem 4.1, γ and δ are connected by a chain of lozenges {Bi}, 1 ≤ i ≤ n,
assumed to be the minimal chain from δ to γ. Let γ0 = γ and inductively define
γi to be the other corner of Bi. Since δ is in the back of W̃ s(γ) and in the front of
W̃u(γ) it follows that γ is the (+,−) corner of B1. Then δ is in front of W̃ s(γ1)
and in front of W̃u(γ1), hence B2 has (−,−) corner γ1. Hence B1,B2 are adjacent,
intersecting the same stable leaves and W̃ s(γ2) is non separated from W̃ s(γ0) and
W̃ s(δ). Induction then shows that γi−1 is the (+,−) corner of Bi if i is odd,
and the (−,−) corner of Bi otherwise. In addition W̃ s(γi) is non separated from
W̃ s(γ0) if and only if i is even, hence n = 2k.

Suppose now that E ∈ F̃s is not separated from F and is between F and L.
Let {Xk}, k ∈ N ⊂ F̃s, with Xk → F as k → ∞. Then Xk → E in Hs when
k → ∞. In addition for k big Xk ∩ Bi 6= ∅ for 1 ≤ i ≤ n. Therefore the only
possible leaves in the limit of Xk which are between F and L are those in the
stable boundary of the lozenges Bi. This completely characterizes such leaves and
hence there are finitely many in between leaves. �

An R-covered Anosov flow can only have one of two topological types (up to
isotopy in M̃) for the joint structure of F̃s, F̃u [Fe3]. They are characterized by:
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(1) Any leaf of F̃s intersects every leaf of F̃u. This is the product type.
(2) There is a leaf of F̃s which does not intersect every leaf of F̃u. This is the

skewed type, see detailed characterization in [Fe3].
Suspensions have product type and geodesic flows have skewed type.

Corollary 4.5. Let Φ be an Anosov flow in M3. Then Φ is topologically conjugate
to a suspension of an Anosov diffeomorphism of the torus if and only if there are no
free homotopies between closed orbits of Φ (including non trivial free homotopies
from an orbit to itself).

Proof. If Φ is not R-covered, theorem 4.3 produces F0 6= F1 ∈ F̃s and g a nontrivial
covering translation with g(Fi) = Fi. If αi is the periodic orbit in Fi, then g(αi) =
αi. Therefore π(α0), π(α1) are closed orbits of Φ (they may be the same orbit)
which are non trivially freely homotopic to each other. If π(α0), π(α1) are the
same orbit of Φ in M , then the free homotopy is non trivial because α0, α1 are
distinct orbits of Φ̃ in M̃ .

Suppose now that Φ is R-covered. If Φ has product type, then by theorem 2.8
of [Ba2] (see announcemment in [So]) Φ is topologically conjugate to a suspension.
Otherwise Φ has skewed type and theorem 3.4 of [Fe3] produces many non trivial
free homotopies between closed orbits of Φ. �

Given 2 adjacent lozenges B1 and B2 the pivot of their union is the common
corner of B1 and B2.

Corollary 4.6. Let Φ be an Anosov flow in M3. Then up to covering translations
there are only finitely many branching leaves.

Proof. Assume that there are infinitely many inequivalent stable branching leaves,
where the associated branching is in the positive direction. Given any two non
separated leaves F,L let γ, α be the respective periodic orbits which are connect-
ed by a chain of adjacent lozenges. For any two adjacent lozenges, the pivot is
uniquely determined, furthermore the pivots are always periodic orbits.

It follows that there are infinitely many inequivalent periodic pivots pi, i ∈ N.
Since π(pi) accumulates in M , assume up to covering translations that all pi are
in a very small product neighborhood of p ∈ M̃ , so let i 6= k with

W̃u(pi) ∩ W̃ s(pk) 6= ∅ and W̃ s(pi) ∩ W̃u(pk) 6= ∅.

An argument exactly as in case 1 of theorem 3.5 shows this is impossible. �

We can now completely characterize the structure of the set of non separated
leaves: Given F ∈ F̃s, let Eb(F ) be the set of leaves of F̃s non separated from F
and which are either equal to F or contained in the back of F . Similarly define
Ef (F ).
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Corollary 4.7. Let Φ be an Anosov flow in M3. Let F be a branching leaf of F̃s
and Eb(F ) be the set of leaves of F̃s which are non separated from F and which
are either equal to F or in the back of F . If E 6= L ∈ Eb(F ) we say that E < L in
Eb(F ) if there are G,H ∈ F̃u, with G ∩ E 6= ∅, H ∩ L 6= ∅ and G in the back of
H. Then < is a well defined relation in Eb(F ) which is a total order and with this
order either

(1) Eb(F ) is finite, hence order isomorphic to {1, 2, ..., n}, or
(2) Eb(F ) if infinite and order isomorphic to the set of integers Z.

Similarly for Ef (F ).

Proof. Up to finite cover if necessary assume that Φ is orientable. Given E 6= L ∈
Eb(F ), let G,H ∈ F̃u with G∩E 6= ∅ and H ∩L 6= ∅. Since E,L form a branching
pair, there is A ∈ F̃s intersecting both G and H. Therefore either G is in the
back of H and H is in the front of G or vice versa (for arbitrary leaves of F̃u, it
can happen that G is in the front of H and H is in the front of G). Consequently
either E < L in Eb(F ) or L < E in Eb(F ). It is easy to check that the outcome is
independent of the choices of G,H and A. Hence < is well defined and all distinct
points in Eb(F ) are related to each other. Finally it is easy to see that < is an
order relation. This shows that < is a total order in Eb(F ).

Since < is a total order in Eb(F ) then if Eb(F ) is finite case (1) holds. Hence
assume that Eb(F ) is infinite.

Since Eb(F ) is infinite corollary 4.6 implies that there are E′ 6= E∗ ∈ Eb(F ) and
f a covering translation with f(E′) = E∗. Assume that E′ < E∗ in the ordering of
Eb(F ). Corollary 4.4 implies that E′, E∗ are connected by a finite chain of adjacent
lozenges with positive stable boundaries in E0 = E′, E1, ..., En = f(E0) = E∗ ∈
F̃s. Then Ei ∈ Eb(F ), 0 ≤ i ≤ n. Clearly Ei < Ej if i < j. Since E0 is not
separated from En, then f(E0) = En is not separated from f(En). This produces
En+1, ..., E2n = f(En). Using f i, i ∈ Z, one constructs {Ei}i∈Z ⊂ Eb(F ). If
f i(E) = E for some i 6= 0, then f(E) = E contradiction. This easily implies that
the {Ei}i∈Z are all distinct.

Let now E ∈ Eb(F ). Then E and E0 are not separated, hence connected by a
minimal finite chain of adjacent lozenges Ci, 1 ≤ i ≤ 2m, all intersecting a common
stable leaf and having an even number 2m of lozenges. Suppose that E0 < E in
Eb(F ). Consider now the chain Bi, 1 ≤ i ≤ 2m as constructed in corollary 4.4.
Notice that the lozenges in a chain are completely determined by a corner plus a
direction. Since both chains Ci and Bi consist of consecutively adjacent lozenges,
all of which intersect a common stable leaf, it follows that Ci = Bi for all i.
Consequently E = Em. Hence Eb(F ) = {Ei}i∈Z and Eb(F ) is order isomorphic to
Z as desired. �

Notice that any covering translation f conjugates the stabilizers of F and f(F )
that is f ◦ (T (F )) ◦ f−1 = T (f(F )). Therefore conjugation by f takes a generator
of T (F ) to a generator of T (f(F )).
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Corollary 4.8. Let Φ be an Anosov flow in M3 orientable. Suppose that {Fi}i∈N ⊂
F̃s is a collection of distinct leaves, so that Fi is not separated from Fi+1 for all
i. Then M has an incompressible torus.

Proof. There is a finite cover M2 of M where the lifted flow is orientable. By
corollary 4.6 there is a covering translation f of M2 with f(Fi) = Fj and i < j.

Let g be a generator of T (Fi). Then fgf−1 generates T (Fj). Since Fi, Fi+1, ...,
Fj are not separated one from the next, then repeated application of theorem 4.3
shows that g(Fj) = Fj . By theorem 4.2, g is indivisible in π1(M2), so g also
generates T (Fj). Hence either fgf−1 = g or fgf−1 = g−1.

In the first case f and g generate an abelian subgroup of π1(M2). If fngm = 1,
then fngm(Fi) = Fi hence fn(Fi) = Fi. If n 6= 0 theorem 4.2 implies that
f(Fi) = Fi, contradiction to Fi 6= Fj . Hence n = 0. Since no multiple of a closed
orbit is null homotopic, them gm = id implies that m = 0 also. Hence there
is a Z ⊕ Z subgroup of π1(M2). If on the other hand fgf−1 = g−1, then f2

and g generate an abelian subroup of π1(M2) and the same argument produces
Z⊕ Z < π1(M2).

We conclude that there is a Z⊕ Z subgroup of π1(M). By the torus theorem
[Ga] (which uses M being orientable), either M is a Seifert fibered space or there
is an embedded incompressible torus. In the first case, Ghys [Gh] proved that Φ is
up to finite covers, topologically conjugate to a geodesic flow. But then Φ would
be R-covered, contrary to hypothesis. In the second case M is toroidal as desired.

�

Notice that corollary 4.8 does not assume that all {Fi} are non separated from
each other, which in fact may not be the case. Consider for instance the first set
of examples of intransitive Anosov flows constructed by Franks and Williams in
[Fr-Wi]. Then each such flow has a sequence of distinct leaves Fi so that Fi is not
separated from Fi+1 on their negative sides if i is even, otherwise non separated
on their positive sides, see description in the end of section 5. Therefore Fi is
separated from Fj if |i− j| ≥ 2.

If on the other hand one assumes that all {Fi}, i ∈ N are non separated from
each other (infinite branching), then we can prove a much stronger result, using
only the topological structure of F̃s, F̃u:

Theorem 4.9. Let Φ be an Anosov flow in M3 orientable. If there is infinite
branching in (say) F̃s then there is an embedded torus transverse to Φ.

Proof. Assume first that Φ is orientable. Let E = {Ei}i∈Z be an infinite, ordered
collection of non separated leaves, (say) not separated on their negative sides.
Let γi be the periodic orbit in Ei. By corollary 4.4, every Ei forms part of the
boundary of two lozenges: let B2i−1 be the lozenge with (+,+) corner γi and let
B2i be the lozenge with (+,−) corner γi. Let Fi ∈ F̃s be the other leaf in the
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Figure 12. Part of an infinite chain of lozenges.

boundary of B2i and B2i+1, where B2i and B2i+1 are in front of Fi. Let ζi be the
periodic orbit in Fi, see fig. 12. Let

S =
⋃
i∈Z

(
Bi ∪ W̃u

−(γi) ∪ W̃u
+(ζi)

)
and let F̃sS , F̃uS be the restrictions of F̃s, F̃u to S.

Then all of the following sets are equal: J u−(γi), i ∈ Z, J u+(ζj), j ∈ Z. This
shows that any leaf of F̃sS intersects W̃u

−(γ0), hence the leaf space of F̃sS is homeo-
morphic to R. Similarly every leaf of F̃uS either intersects one of the lozenges Bi or
is one of W̃u

−(γi) or W̃u
−(ζi). So the leaf space of F̃uS is also R. In addition any leaf

of F̃sS intersects every leaf of F̃uS and vice versa. We conclude that Θ(S) is home-
omorphic to a plane, and up to isotopy F̃sS , F̃uS are the foliations by horizontals
and verticals in this plane, see fig. 13.

We can now apply corollary 4.8 to produce non trivial commuting f, g, so that
g(γi) = γi,∀i ∈ Z and f(γ0) = γk for some k 6= 0. Clearly both f and g preserve
S. Let f∗, g∗ be the induced actions in Θ(S).

Let p ∈ Θ(W̃u
−(γ0)) and q = f∗(p) ∈ Θ(W̃u

−(γk)). Given the structure of Θ(F̃sS)
and Θ(F̃uS ) in Θ(S), it follows that we can connect p and q by a curve α in O, with
α always transverse to Θ(F̃sS) and Θ(F̃uS ). Let p1 ∈ M̃ with Θ(p1) = p and lift α
to α1 starting at p1 and ending at q1 = f(p1). We may assume that α1 is a smooth
curve. Let β1 be a curve in W̃u(γ0) from p1 to g(p1) and so that β1 is smooth and
transverse to Φ̃. Since f and g commute then ξ = α1 ∗ g(β1) ∗ (f(α1))−1 ∗ (β1)−1

is a closed loop in M̃ , which is transverse to Φ̃. Then Θ(ξ) is the boundary of a
“parallelogram” in Θ(S) and it is easy to produce an embedded smooth disk D1
in M̃ which is transverse to Φ̃ and so that ∂D1 = ξ.

Since the sides of D1 are β1, g(β1), α1, f(α1), it follows that after a small
perturbation of D1 we may assume that D = π(D1) is a smooth, immersed closed
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Figure 13. Producing a transverse torus.

surface transverse to Φ. Using cut and paste techniques [He,Ja], as explicit done
by Fried [Fr], one can eliminate all triple points of intersection and double curves
of intersection, transforming D into a union of embedded surfaces transverse to
Φ. Any such surface has induced stable and unstable foliations hence it has zero
Euler characteristic. It is transverse to the flow, hence it is two sided in M and as
M is orientable, then this transverse surface has to be a torus.

If Φ is not orientable, lift to a finite double cover M2 of M where the lifted
flow is orientable. The image in M of the transverse torus in M2 is an (immersed)
torus in M , so cut and paste techniques yield the result. �

5. Product regions, infinite branching and scalloped regions

In this section we first show that the existence of product regions implies that
the flow is R-covered. The main difficulty is that we do not assume that Φ is
transitive, in which case the proof is very simple [Fe5]. This result is used to give
a detailed description of the structure induced by infinite branching in F̃s or F̃u.

Theorem 5.1. Let Φ be an Anosov flow in M3. If there is a product region in
M̃ then Φ is topologically conjugate to a suspension Anosov flow.

Proof. We may assume that Φ is orientable. Suppose that there is a positive
unstable product region defined by η ⊂ W̃ ss(y1). If Ω is the nonwandering set of
Φ, then W s(Ω) = M [Pu-Sh], even if Φ is not transitive. As the periodic orbits
are dense in Ω [Sm,Pu-Sh], there is a periodic orbit γ of Φ̃ with W̃ s(γ) ∩ η 6= ∅.
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Let p ∈ γ. Let τ be an open segment in W̃ ss(p) with p ∈ τ , so that for any
z ∈ τ, W̃u(z) ∩ η 6= ∅. Hence τ is a basis segment of a product region. Let g be
a generator of T (W̃ s(p)). For any y2 ∈ τ , J u+(y2) = J u+(p). Since g(W̃u

+(p)) =
W̃u

+(p), then

J u+(gi(y2)) = gi(J u+(y2)) = J u+(p), ∀i ∈ Z, hence A =
⋃

y2∈W̃ss(p)

W̃u
+(y2)

is a product region with an infinite basis segment W̃ ss(p).

Claim. ∂A = W̃ s(p).
Suppose not and let a ∈ ∂A−W̃ s(p). Let ai ∈ A with ai → a and bi = W̃u(ai)∩

W̃ ss(p). Assume bi ∈ W̃ ss
+ (p). Notice that W̃u(a) ∩ W̃ s(p) = ∅ and in addition

W̃u(a) ⊂ ∂A. If bi 6→ ∞ in W̃ ss
+ (p), assume up to subsequence that bi → b0. Since

W̃ s(a) ∩A 6= ∅ and A is a product region then W̃ s(a) ∩ W̃u(q) 6= ∅,∀q ∈ W̃ ss(p).
But if q is in front of W̃u(b0) then W̃u(q) ∩ W̃ s(a) = ∅, contradiction. Hence
bi →∞ in W̃ ss

+ (p).
Let G = W̃u(a) and F = W̃ s(p). Notice that gn(G) 6= gm(G) for n 6= m ∈ Z.

Otherwise there is an orbit δ of Φ̃ in G with g(δ) = δ. But W̃ s(δ) ∩ W̃u(p) 6= ∅, a
contradiction to both left invariant under g.

Since gk(A) = A, then gk(G) ⊂ ∂A. As bi → +∞ in W̃ ss
+ (p), then the

gk(G), k ∈ Z are all not separated from each other. By theorem 4.3, gk(G) contains
a periodic orbit δk. Take inverse if needed so that W̃ s

−(δk) ∩ W̃uu
+ (p) = qk =

gk(q0)→ p as k → +∞, see fig. 14.
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Let f be a generator of T (G0). Then f(Gi) = Gi,∀i ∈ Z, so f(W̃ s(δi)) =
W̃ s(δi). As W̃ s(δi) → F as i → +∞, then f(F ) is not separated from F . The
case f(F ) = F is ruled out as above. If f(F ) 6= F assume that f(W̃u(p)) is in the
front of W̃u(p). Then f(W̃u(p)) ∩ W̃u(p) = ∅, hence f(W̃u(p)) ∩ A = ∅, which
implies that f(W̃u(p)) separates A from all Gi. This contradicts Gi ⊂ ∂A and
finishes the proof of the claim.

Let now D = { set of positive unstable product regions U with base segment
W̃ ss(z) and U ∩ A 6= ∅}. The above claim shows that this set is ordered by
inclusion. Let V ⊂ M̃ be the union of all U ∈ D. Then V is F̃s saturated. If
V 6= M̃ let E = Φ̃R(W̃ ss(w)) ⊂ ∂V. Since W ss(π(w)) is not compact, choose
a translate f(E) in the back of E with E, f(E) intersecting a common unstable
leaf R. Choose W̃ ss(v) basis of a product region and with v near enough E so
that f(W̃ ss(v)) intersects R between E and f(E). Then f(W̃ ss(v)) is the basis
segment of a product region intersecting A and not contained in V, contradiction.
Hence V = M̃ .

Therefore for any H ∈ F̃u, H ∩ A 6= ∅, hence H ∩ W̃ s(p) 6= ∅. This shows
that Fu is R-covered. Using similar arguments one shows that any leaf of F̃s
intersects every leaf of F̃u and vice versa. Theorem 2.8 of [Ba2] implies that Φ is
topologically conjugate to a suspension Anosov flow. This finishes the proof. �

Theorem 5.1 has applications here and also in [Fe8] and [Fe10].
We now show that infinite branching is associated to a particular type of struc-

ture, called a scalloped region in M̃ (or O).

Theorem 5.2. Let Φ be an Anosov flow in M3. If there is infinite branching in
F̃s, then there is associated infinite branching in F̃u.

Proof. We use the notation from theorem 4.9. Let E = {Ei}i∈Z ⊂ F̃s be an
ordered collection of leaves non separated on their negative sides. Let {Bi}, i ∈ Z
be the lozenges associated to E and let Fi be the leaves on the negative sides of
Bi. Let γi and ζi be the periodic orbits in Ei and Fi respectively. Let

S =
⋃
i∈Z

(Bi ∪ W̃u
−(γi) ∪ W̃u

+(ζi)).

Recall also that all of the following sets are equal J u−(γi), i ∈ Z,J u+(ζj), j ∈ Z.
Let Ci be the back of W̃u(γi) and let C = ∪i∈NCi. For any p, q ∈ W̃u

−(γ0)
and any i > 0, W̃u(γi) ∈ J s+(p) ∩ J s+(q). If C = M̃ , then the intersections of
W̃u(γi) with W̃ ss

+ (p) and W̃ ss
+ (q) are escaping to infinity in these leaves. Hence

J s+(p) = J s+(q) and W̃uu
− (γ0) is the basis segment of a positive stable product

region in M̃ . By theorem 5.1, Φ would be R-covered contrary to hypothesis. Hence
C 6= M̃ . This is the key fact which will show that S has the form of a scalloped
region, see fig. 15.
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Let then p ∈ ∂C, hence W̃u(p) ⊂ ∂C. For i big enough W̃ s
−(p) ∩ W̃u(γi) 6= ∅,

hence W̃ s
−(p) ∩ W̃u

−(γi) 6= ∅,∀i ∈ Z. As a result W̃u(p) ⊂ ∂S.
Since g(C) = C, then gn(W̃u(p)) ⊂ ∂S for any n ∈ Z. If gn(W̃u(p)) = W̃u(p)

for some n 6= 0, let β be the periodic orbit in W̃u(p). Then

gn(W̃ s(β)) = W̃ s(β), gn(W̃u(γi)) = W̃u(γi) and W̃ s(β) ∩ W̃u(γi) 6= ∅,

contradiction. Hence the leaves gn(W̃u(p)), n ∈ Z are all distinct and all non
separated from each other on their negative sides. By theorem 4.3, gn(W̃u(p)) are
all periodic and let h be the indivisible covering translation leaving all invariant
and acting as an expansion in the set of orbits in W̃u(p).

Notice that g(W̃ s(p)) is in front of W̃ s(p). Let H0 = W̃u(p),H1, ...,Hn =
g(W̃u(p)) be the chain of non separated leaves from W̃u(p) to g(W̃u(p)). Then
one constructs {Hk}k∈Z, all in ∂S. Let βk be the periodic orbits in Hk. Then
βk is the corner of two lozenges R2k−1 and R2k and all Rk intersect a common
unstable leaf.

Furthermore if q ∈ ∂C, then W̃u(q) is not separated from H0, so W̃u(q) is one
of Hk. Let {Gk}k∈Z be the sequence of leaves which form the negative unstable
boundary of the lozenges {Rk}k∈Z. Then h(Gk) = Gk for all k. Let δk be the
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periodic orbit in Gk and let

M =
⋃
k∈Z

(Rk ∪ W̃ s
−(βk) ∪ W̃ s

+(δk)).

Given l ∈ Z then for j > 0 big enough W̃u
−(γj) ∩ W̃ s

−(βl) 6= ∅. Since all
J s−(βk), k ∈ Z are all equal as are all J u−(γi) this implies that for any i, k ∈
Z, Bi ∩ Rk 6= ∅. As g(Bi) = Bi for any i ∈ Z and there is n0 ∈ Z so that
g(Rk) = Rk+n0 for any k ∈ Z, then for any i ∈ Z, Bi ⊂ M. In the same way
W̃u
−(γi), W̃u

+(βi) ⊂M.
In addition notice that gm(W̃ s(β0))→ ∪i∈ZEi = E asm→ +∞. As f(W̃ s(βk))

= W̃ s(βk),∀k ∈ Z then f leaves invariant the set E . Therefore there is j0 ∈ N
so that f(Ei) = Ei+j0 for all i ∈ Z. Since f(Rk) = Rk,∀k ∈ Z, then the same
argument as above implies that Rk ⊂ S , for any k ∈ Z. The important conclusion
is that S =M. The region S is called a scalloped region, see fig. 15. The region
is decomposed into two essentially different ways as an infinite union of disjoint
lozenges (plus some of the sides). Whenever there is infinite branching in one of
F̃s or F̃u, there is an associated scalloped region. �

Examples

As explained before the non R-covered property can occur for transitive and in-
transitive Anosov flows. We now consider infinite and finite branching.

The Anosov flow constructed by Bonatti and Langevin [Bo-La] is transitive and
has infinite branching. The scalloped region of thisflow was explained in detail
in [Ba3]. The Bonatti-Langevin flow is the simplest Anosov flow with infinite
branching in the sense that there is only one orbit ν of Φ which does not intersect
the transverse torus constructed by the infinite branching. In this case all the
periodic orbits in the boundary of the scalloped region are lifts of ν.

As for examples of finite branching we will produce in the next section a large
family of non R-covered Anosov flows in hyperbolic manifolds. These are transitive
and by corollary 4.8 they cannot have infinite branching. Hence they have only
finite branching.

As for intransitive examples with finite branching we consider the flows con-
structed by Franks and Williams [Fr-Wi]. The structure of F̃s near a branching
leaf is described in fig. 16. Notice that F1 is not separated from F2 on their nega-
tive sides, F2 not separated from F3 on their positive sides and so on. In fact the
only non separated leaf from F1 in the negative side of F1 is F2. Hence there is
only finite branching and Eb(Fi) has always two elements.
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Figure 16. The structure of non separated leaves of F̃s in the Franks-Williams example. Arrows
indicate positive transversal orientation to F̃s.

6. Non R-covered Anosov flows in hyperbolic 3-manifolds

In this section we produce examples of transitive, non R-covered Anosov flows in
hyperbolic 3-manifolds. Recall that any Anosov flow in a hyperbolic 3-manifold is
necessarily transitive [Fe4].

Theorem 6.1. There is a large class of transitive, non R-covered Anosov flows
in hyperbolic 3-manifolds, including all Anosov flows in non orientable hyperbolic
3-manifolds.

Proof. TheoremC of [Ba2] states that if Φ is an R-covered Anosov flow inM3, then
either Φ is topologically conjugate to a suspension Anosov flow or the underlying
manifold is orientable (notice that Barbot uses the term “product” instead of R-
covered). Since hyperbolic manifolds can never be the underlying manifolds of
suspension Anosov flows, it suffices to produce Anosov flows in non orientable
hyperbolic 3-manifolds.

Consider therefore the suspension of an orientation reversing Anosov diffeo-
morphism of the torus T 2. Let M be the underlying manifold of the suspension
and let α be an orientation preserving closed orbit of the flow. As described by
Goodman [Go] and Fried [Fr], (n, 1) Dehn surgery along α yields an Anosov flow
in the surgered manifold M(n,1).

It is well known that (M − α) is irreducible, atoroidal and homeomorphic
to the interior of a compact 3-manifold with boundary [Th1]. By Thurston’s
hyperbolization theorem [Th2,Mor] it follows that (M − α) admits a complete
hyperbolic structure of finite volume. By the hyperbolic Dehn surgery theorem
[Th1], most Dehn fillings on (M −α) yield closed, hyperbolic manifolds. Since M
was non orientable, all of these manifolds are non orientable. Whenever the Dehn
surgery coefficient is of the form (n, 1), the surgered manifold admits an Anosov
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Figure 17. Intrinsic ideal points.

flow. This produces a large class of Anosov flows in non orientable hyperbolic
3-manifolds and finishes the proof. �

7. Continuous extension of Anosov foliations

In this section we study the asymptotic behavior of leaves of F̃s and F̃u when
π1(M) is negatively curved.

If Φ is an Anosov flow in M3, Sullivan [Su] showed that the intrinsic geometry
of leaves of F̃s and F̃u is negatively curved in the large as defined by Gromov [Gr].
Then any leaf F ∈ F̃s ∪ F̃u has a canonical compactification with an intrinsic
ideal boundary ∂∞F [Gr] and ∂∞F is always homeomorphic to a circle [Fe2]. All
of this works without any assumption on M or Φ.

If F ∈ F̃s then the intrinsic ideal points are the (distinct) negative limit points
of flow lines in F and the common positive limit point of all flow lines [Fe3]. The
intrinsic geometry of F ∈ F̃s is similar to the hyperbolic plane H2 where the flow
lines correspond to the geodesics in H2 which have a common limit point in the
ideal boundary of H2, see fig. 17.

If p ∈ F ∈ F̃s, let p− be the intrinsic negative ideal point of the flow line
through p, that is,

p− = lim
t→−∞

Φ̃t(p) ∈ ∂∞F,

where the limit is taken in F ∪ ∂∞F , see fig. 17. Similarly define p+. For any
p, q ∈ F ∈ F̃s, p+ = q+ ∈ ∂∞F and this is also denoted by F+. Furthermore if
pi ∈ W̃ ss(p) and pi → ∞ in W̃ ss(p), then (pi)− → p+ as points in ∂∞F [Fe3].
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This can be clearly seen in the model of H2. If p, q are in the same flow line α of
Φ̃, then p− = q−, which is also denoted by (α)− ∈ ∂∞F . Similarly (α)+ = F+.

From now on we assume that π1(M3) is negatively curved as defined by Gromov
[Gr], who constructed a canonical compactification of M̃ with an ideal boundary
∂M̃ . Since M is irreducible [Ro], Bestvina and Mess [Be-Me] showed that ∂M̃ is
homeomorphic to a sphere, denoted by S2

∞. Furthermore M̃∪S2
∞ is homeomorphic

to a closed 3-ball.
We say that Φ̃ has the continuous extension property if for any leaf F ∈ F̃s∪F̃u,

the embedding ϕF : F → M̃ , extends continuously to ϕF : F ∪ ∂∞F → M̃ ∪ S2
∞.

This gives a continuous parametrization of the limit sets ΛF = ϕF (∂∞F ). This
also implies that there is a continuous function

η− : M̃ → S2
∞, η−(x) = lim

t→−∞
Φ̃t(x),

where the limit is computed in M̃ ∪ S2
∞. The function η− is constant along an

orbit α of Φ̃, with value η−(α) = ϕ
W̃ s(α)

(α−). Furthermore for any G ∈ F̃u, η−

is a constant function in G with value ϕG(G−). Similarly define η+ : M̃ → S2
∞.

Given any set
X ⊂ M̃, let η−(X) =

⋃
x∈X

η−(x).

The continuous extension property implies that for any F ∈ F̃s and any p ∈ F ,
then

ΛF = ϕF (∂∞F ) = η−(W̃ ss(p)) ∪ η+(p).

In [Fe6] we study the continuous extension property for R-covered flows.
Recall that the limit set of a subset B of M̃ is ΛB = B∩S2

∞, where the closure is
taken in M̃ ∪S2

∞. Also recall that F̃s, F̃u are transversely oriented. Given F ∈ F̃s
or F̃u and p ∈ S2

∞ −ΛF , we say that p is above F if there is a neighborhood U of
p in M̃ ∪ S2

∞ so that U ∩ M̃ is in front of F . Otherwise we say that p is below F .
Given a connected component of S2

∞−ΛF either all of its points are above F and
we say this component is above F , otherwise we say the component is below F .

Theorem 7.1. Let Φ be a non R-covered Anosov flow in M3 with negatively
curved π1(M). Suppose that Φ̃ has the continuous extension property. Then for
any leaf C ∈ F̃s∪F̃u, the limit set ΛC is a Sierpinski curve, that is the complement
of a countable, dense union of open disks in the sphere S2

∞. In addition if M is
hyperbolic, then there is k < 2 so that the union of all limit sets,

N =
⋃

F∈F̃s∪F̃u
ΛF
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Figure 18. Sequence of lozenges.

has Hausdorff dimension < k. In particular every limit set ΛF has zero Lebesgue
measure in the sphere at infinity.

Proof. We first prove that ΛC 6= S2
∞ and then use part of this proof to show that

limit sets of leaves are Sierpinski curves. The first part is similar to the proof of
theorem 5.5 of [Fe4], except that in [Fe4] we assumed the very strong hypothesis of
quasigeodesic behavior of Φ, which is not assumed here. The continuous extension
property is a much weaker property than quasigeodesic behavior.

Since Φ is transitive, F̃s has branching in the positive and negative directions
[Fe5]. Using theorem 4.7 we produce ∆, a union of two adjacent lozenges in M̃ and
a common side, all intersecting a common stable leaf so that: (1) the boundary of
∆ has unstable sides in G,S ∈ F̃u, and stable sides in E,F,L ∈ F̃s (2) E,L are
not separated on their negative sides, (3) G is in the back of S and (4) E ∩G 6= ∅,
L ∩ S 6= ∅, see fig. 18. By G we mean the half leaf in the boundary of ∆. Then
π(G) is dense in M [Fe3].

Let C ∈ F̃s be a leaf intersecting both G and S, hence C intersects ∆. Choose
a covering translation g1 so that

g1(G) ∩ F 6= ∅, g1(G) ∩ L 6= ∅.

As g1(F ), g1(G) form a perfect fit, then g1(F ) is in the back of F . As g1(L), g1(E)
form a perfect fit, then both are in the front of L. Since g1(S) ∩ g1(L) 6= ∅ and
g1(S), g1(F ) form a perfect fit, it follows that g1(S) is in the front of g1(G), in the
back of S and intersects both L and F . Inductively choose covering translations
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gi so that gi(G) is in the back of S,
gi(G) ∩ F 6= ∅, gi(G) ∩ L 6= ∅, gi(G)→ S as i→∞,

and gi(G) is in the front of gi−1(S), see fig. 18. Let Gi = gi(G) and similarly
define Fi, Li, Si and Ei.

Let Ci = C ∩ gi(∆). For any flow line γ ∈ Fi, W̃u(γ) intersects Ci and vice
versa. Hence η−(Ci) = η−(Fi). Let q ∈ C ∩ S. By continuity of η−, there is a
neighborhood Y of q in M̃ so that η−(Y ) is contained in a small neighborhood
Y ′ of η−(q) in S2

∞. As Ci ∩ W̃ ss(q) → q, then η−(Ci) ⊂ Y ′ for i big enough.
Therefore η−(Fi) ⊂ Y ′ and as a result ΛFi is contained in the closure of Y ′ and is
not S2

∞. This shows that ΛF = Λ
g−1
i

(Fi) = g−1
i (ΛFi) 6= S2

∞.

Since F̃s has branching in the positive and negative directions and ΛF 6= S2
∞,

then theorem 3.3 of [Fe9] shows that, for any L′ ∈ F̃s, there are components of
S2
∞ −ΛL′ above L′ and components of S2

∞ −ΛL′ below L′. For each i let Zi be a
component of S2

∞ − ΛFi below Fi. Since C is in front of Fi, Zi ∩ ΛC = ∅. Hence
Zi is contained in a component Z∗i of S2

∞ − ΛC which is below C. The argument
above used to prove that ΛFi 6= S2

∞ shows that ΛFi ⊂ ΛC , hence the component
Z∗i of S2

∞ − ΛC is equal to Zi.
For each i, Zi is below Fi. In addition for each i 6= j, Fi is in the front of Fj

and Fj is in the front Fi. This implies that Zi ∩ Zj = ∅. Hence {Zi}, i ∈ N is an
infinite family of distinct components of S2

∞−ΛC below C. Using branching of F̃s
in the negative direction, one constructs countably many components of S2

∞−ΛC
above C.

Since Φ is transitive, then for any C′ ∈ F̃s there is a covering translation f so
that f(C′) ∩∆ 6= ∅. The argument above shows that S2

∞ − Λf(C′) has infinitely
many components above and below f(C′). Translation by f−1 yields the same
result for C′. By theorem 4.4 of [Fe9], ΛC′ has empty interior, hence ΛC′ is a
Sierpinski curve.

Suppose now that M is hyperbolic. Again since F̃s, F̃u have branching in the
positive and negative directions, corollary 3.9 of [Fe9] shows that there is k < 2 so
that for any F ∈ F̃s or F̃u, the Hausdorff dimension of ΛF is < k. In particular
ΛF has zero Lebesgue measure.

Let {Wi}i∈N, be a collection of 2-dimensional disks in M̃ transverse to Φ̃,so
that each Wi projects to a rectangle in O and so that any flow line of Φ̃ intersects
at least one of the Wi. Then

N =
⋃

F∈F̃s∪F̃u
ΛF =

⋃
z∈M̃

(η−(z) ∪ η+(z)) =
⋃
i∈N

(η−(Wi) ∪ η+(Wi)).

Let Fi be a stable leaf intersecting Wi. Since Wi projects to a rectangle in O then
η−(Wi) = η−(Wi ∩Fi) ⊂ ΛFi . Since ΛFi has Hausdorff dimension less than k and
N is a countable union of such sets, then N also has Hausdorff dimension < k.
This finishes the proof. �
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Math. Helv. 70 (1995), 113–160.

[Ba4] T. Barbot, Flots d’Anosov sur les variétés graphées au sens de Waldhausen, Ann. Inst.
Fourier Grenoble 46 (1996), 1451–1517.

[Be-Me] M. Bestvina and G. Mess, The boundary of negatively curved groups, Jour. Amer. Math.
Soc. 4 (1991), 469–481.

[Bon] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986),
71–158.

[Bo-La] C. Bonatti and R. Langevin, Un example de flot D’Anosov transitif transverse a un tore
et non conjugue a une suspension, Erg. Th. Dyn. Sys. 14 (1994), 633–643.

[Bow] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphims, Lecture
Notes in Mathematics 470, Springer Verlag, 1975.

[Br] M. Brunella, On the discrete Godbillon-Vey invariant and Dehn surgery on geodesic
flows, preprint, 1994.

[Ca-Th] J. Cannon and W. Thurston, Group invariant Peano curves, to appear.
[Ch] J. Christy, Intransitive Anosov flows on 3-manifolds, to appear in C.B.M.S. lecture

series.
[Fe1] S. Fenley, Asymptotic properties of depth one foliations in hyperbolic 3-manifolds, Jour.

Diff. Geom. 36 (1992), 269–313.
[Fe2] S. Fenley, Quasi-isometric foliations, Topology 31 (1992), 667–676.
[Fe3] S. Fenley, Anosov flows in 3-manifolds, Ann. of Math. 139 (1994), 79–115.
[Fe4] S. Fenley, Quasigeodesic Anosov flows and homotopic properties of closed orbits, Jour.

Diff. Geo. 41 (1995), 479–514.
[Fe5] S. Fenley, One sided branching in Anosov foliations, Comm. Math. Helv. 70 (1995),

248–266.
[Fe6] S. Fenley, Continuous extension of Anosov foliations in 3-manifolds with negatively curved

fundamental group, to appear in Pac. Jour. Math.
[Fe7] S. Fenley, Homotopic indivisibility of closed orbits of Anosov flows, Math. Zeit 225

(1997), 289–294.
[Fe8] S. Fenley, Incompressible tori transverse to Anosov flows in 3-manifolds, Erg. Th. Dyn.

Sys. 17 (1997), 105–121.
[Fe9] S. Fenley, Limit sets of foliations in hyperbolic 3-manifolds, Topology 37 (1998), 875–894.

[Fe10] S. Fenley, Foliations with good geometry, preprint, 1997.
[Fe-Mo] S. Fenley and L. Mosher, Quasigeodesic flows in hyperbolic 3-manifolds, to appear.
[Fr-Wi] J. Franks and R. Williams, Anomalous Anosov flows, Global theory of Dyn. Systems,

Lecture Notes in Math. 819, Springer, 1980.
[Fr] D. Fried, Transitive Anosov flows and pseudo-Anosov maps, Topology 22 (1983), 299–303.

[Ga] D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992), 447–510.
[Ga-Oe] D. Gabai and U. Oertel, Essential laminations and 3-manifolds, Ann. of Math. 130

(1989), 41–73.
[Gh] E. Ghys, Flots d’Anosov sur les 3-variétés fibrés en cercles, Ergod. Th. Dyn. Sys. 4

(1984), 67–80.



Vol. 73 (1998) The structure of branching in Anosov flows of 3-manifolds 297

[Go] S. Goodman, Dehn surgery and Anosov flows, in Proceedings of the geometric dynamics
conference, Lecture Notes in Mathematics 1007, Springer, 1983.

[Gr] M. Gromov, Hyperbolic groups. In: Essays on group theory , 75–263, Springer, 1987.
[He] J. Hempel, 3-manifolds, Ann. of Math. Studies 86, Princeton University Press, 1976.
[Im] H. Imanishi, On the theorem of Denjoy-Sacksteder for codimension one foliations without

holonomy, J. Math. Kyoto U. 14 (1974), 607–634.
[Ja] W. Jaco, Lectures on 3-manifold topology, C.B.M.S. lecture series 43 (1980).

[Ja-Sh] W. Jaco and P. Shalen, Seifert fibered spaces in 3-manifolds, Memoirs of the A. M. S.
21 (220) (1979).

[Jo] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in
Math. 761, Springer, 1979.

[Mor] J. Morgan, On Thurston’s uniformization theorem for 3-dimensional manifolds. In: The
Smith Conjecture, J. Morgan and H. Bass, eds., Academic Press, New York, 1984, pp.
37–125.

[Mos1] L. Mosher, Examples of quasigeodesic flows on hyperbolic 3-manifolds. In: Proceedings
of the Ohio State University Research Semester on Low dimensional topology , W. de
Gruyter, 1992.

[Mos2] L. Mosher, Dynamical systems and the homology norm of a 3-manifold, I. Efficient in-
tersection of surfaces and flows, Duke Math. Jour. 65 (1992), 449–500.

[No] S. P. Novikov, Topology of foliations, Trans. Moscow Math. Soc. 14 (1963), 268–305.
[Pa] F. Palmeira, Open manifolds foliated by planes, Ann. of Math. 107 (1978), 109–131.

[Pl1] J. Plante, Anosov flows, Amer. Jour. Math. 94 (1972), 729–754.
[Pl2] J. Plante, Anosov flows, transversely affine foliations and a conjecture of Verjovsky, J.

London Math. Soc. 23 (2) (1981), 359–362.
[Pl3] J. Plante, Solvable groups acting on the line, Trans. Amer. Math. Soc. 278 (1983),

401–414.
[Pu-Sh] C. Pugh and M. Shub, The Ω-stability theorem for flows, Invent. Math. 11 (1970),

150–158.
[Ro] H. Rosenberg, Foliations by planes, Topology 7 (1968), 131–138.
[Sh] M. Shub, Global stability of dynamical systems, Springer Verlag, 1987.

[Sm] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–
817.

[So] V. V. Solodov, On the universal cover of Anosov flows, Research announcemment, 1991.
[Su] D. Sullivan, Cycles for the study of foliated manifolds and complex manifolds, Invent.

Math. 36 (1976), 225–255.
[Th1] W. Thurston, The geometry and topology of 3-manifolds, Princeton University Lecture

Notes, 1982.
[Th2] W. Thurston, 3-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull.

A.M.S. 6 (new series) (1982), 357–381.
[Ve] A. Verjovsky, Codimension one Anosov flows, Bol. Soc. Mat. Mex. 19 (1977), 49–77.

Sérgio R. Fenley
Washington University and
Princeton University
St. Louis, MO 63130, USA

(Received: March 13, 1997 )


