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An example of an immersed complete genus one minimal
surface in R3 with two convex ends
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Abstract. We prove the existence of a compact genus one immersed minimal surface M, whose
boundary is the union of two immersed locally convex curves lying in parallel planes. M is a
part of a complete minimal surface with two finite total curvature ends.
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1. Introduction

In 1978 Meeks conjectured that a connected minimal surface bounded by two
convex curves in two parallel planes is topologically an annulus; hence it has genus
zero. The conjecture has never been proved and the most general result, due to
Schoen, is the following.

Let Γ = Γ1 ∪ Γ2 be any boundary consisting of two Jordan curves in parallel
planes; assume that Γ is invariant by reflection through two planes P1, P2 orthog-
onal to the planes of the Γi and that both P1 and P2 divide Γ into pieces which
are graphs with locally bounded slope over the dividing plane. Then any minimal
surface spanning Γ is topologically an annulus and is an embedded surface meeting
each parallel plane between the planes of the Γi in smooth Jordan curves.

In particular, if Γ1 and Γ2 are circles such that the line joining their centers is
perpendicular to the planes in which they lie, then M is a catenoid (cf. [Sc]).

In 1991, Meeks and White studied the space of minimal annuli bounded by
convex curves in parallel planes (cf. [MW]).

In this paper we prove the existence of a compact genus one immersed minimal
surface M, whose boundary is the union of two immersed locally convex curves
lying in parallel planes. In fact M is a part of a complete minimal surface with
two finite total curvature ends.

The method we use to construct our surface is the following.
It is well known that a minimal surface of genus g and k ends can be described
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by its Weierstrass representation, that is a triple {R \ [p1, . . . , pk], ω = fdz, g},
where R is a compact Riemann surface of genus g, p1, . . . , pk are points in R, ω is
a holomorphic differential on R and g is a meromorphic function on R.

In our setting R is a torus, so we can choose f and g to be elliptic functions.
For references about the use of elliptic functions in the Weierstrass representation,
see [A], [A1], [C], [C1], [R]).

I would like to thank Professor Harold Rosenberg for his continual encourage-
ment and advice.

2. Statement of results

Consider the lattice L(1, i) on C generated by 1 and i and let T 2 be the torus
C/L(1, i). Let π : C−→T 2 be the standard projection to the quotient and set
po = π(0), p1 = π(1

2 ), p2 = π(1+i
2 ) and p3 = π( i2 ). Finally, let ℘ be the Weierstrass

function associated to the lattice L(1, i) and ℘′ its derivative.

Theorem 2.1. Let f, g : T 2 \ {po, p2}−→C be the two meromorphic functions
defined by

f = ℘2 g =
α℘′

℘3

where α is a real constant depending only on L(1, i) and ℘.
Then {T 2\[po, p2], fdz, g} is the Weierstrass representation of a complete genus

one immersed minimal surface M with finite total curvature.

Remark 2.2. The ends of M cannot be embedded. In fact, if a complete finite
total curvature minimal surface has two embedded ends, it is a catenoid (cf. [Sc]).

The functions f and g extend meromorphically to T 2 and we have g(po) = 0
and g(p2) =∞. Hence the limit normal vector at both ends of M is vertical. Then
we have the following result.

Theorem 2.3. There exists a positive constant c ∈ R such that M ∩{|x3| ≤ c} is
a compact genus one immersed minimal surface having the property that each of
the boundary curves M ∩ {x3 = ±c} is a compact locally convex immersed curve.

3. Proof of the theorems

We list some useful classical properties of the function ℘ (cf. [B], [WW]).
By abuse of notation, we often identify points of C with points of T 2. Let ′ be

the differentiation with respect to the variable z ∈ C.
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(i) ℘ is even and ℘′ is odd. We have ℘(z), ℘′(z) ∈ R when z ∈ R, ℘(p1) = e1 ∈ R∗+,
℘(p2) = 0 and ℘(p3) = −e1.

The following identities hold:
(ii) (℘′)2 = 4℘(℘2 − e2

1), ℘′′ = 2(3℘2 − e2
1).

(iii) ℘(z + p1) =
e1(℘(z) + e1)
℘(z)− e1

, ℘(z + p3) =
e1(℘(z)− e1)
℘(z) + e1

, ℘(z + p2) = − e2
1

℘(z)
.

(iv) ℘′(z + p2) = e2
1
℘′(z)
℘(z)2 .

(v) ℘(iz) = −℘(z), ℘′(iz) = i℘′(z).
(vi) The local expansion of ℘ and ℘′ around po is

℘(z) =
1
z2 +

e2
1
5
z2 +O(z6),

℘′(z) = − 2
z3 +

2e2
1

5
z +O(z5).

Proof of Theorem 2.1. It is sufficient to prove that the following conditions are
satisfied.
(A) z is a pole of order m of g ⇐⇒ z is a zero of order 2m of f.
(B)

∫
γ(1 + |g|2)|f | =∞ for every divergent path γ in M.

(C) Re
∫
γ
fg = 0 and

∫
γ
fg2 =

∫
γ
f for every closed path in M.

Zeros and poles of f, g, fg, fg2 in a fundamental region are as in figure 1.
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Figure 1.

The function g does not have poles in T 2 \ {po, p2}, hence condition (A) is
satisfied.
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The expression of the metric on M in terms of ℘ is

ds =
(

1 + α2 |℘′|2
|℘|6

)
|℘|2

hence the metric is complete at the ends and condition (B) is satisfied.
We must verify (C) on paths that are not homologous to 0 in T 2 \{po, p2}, i.e.

paths around po and p2 and paths that generate the homology of T 2. Denote by
α(po) and α(p2) any closed path around po and p2 respectively, and by γ1 and γ2
the following paths generating the homology of T 2 :

γ1(t) =
i

4
+ t t ∈ [0, 1]

γ2(t) =
1
4

+ it t ∈ [0, 1]

The functions f and fg2 are even, so they have no residue at po, i.e.∫
α(po)

fg2 =
∫
α(po)

f = 0

Furthermore

Re
∫
α(po)

fg = Re
∫
α(po)

α℘′

℘
= Re

[
Respo(2πiα

℘′

℘
)
]

By the local expansion of ℘ and ℘′ around 0 we have that Respo(2πiα
℘′

℘ ) = −4πiα,
hence for α ∈ R we have

Re
∫
α(po)

fg = 0

By (iii) and (iv) we have

f(z + p2) =
e4
1

℘2(z)
,

fg2(z + p2) =
α2

e4
1

(℘′(z))2.

Hence f(z + p2) and fg2(z + p2) are even functions of z and this gives∫
α(p2)

fg2 =
∫
α(p2)

f = 0.
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By (iii) and (iv) we have

fg(z + p2) = −α℘
′(z)
℘(z)

.

Hence, by the computation above, for α ∈ R we have

Re
∫
α(p2)

fg = 0.

Now we verify (C) over γ1 and γ2. We have

Re
∫
γi

fg = Re
∫
γi

α
℘′

℘
= α[ln |℘|]γi(1)

γi(0) = 0

by periodicity of ℘, as α is real.
Integral of f over γ1 : by Cauchy theorem and periodicity we can move γ1 up

to the segment from p3 to p3 + 1, hence∫
γ1

f =
∫ 1

0
f(p3 + t)dt =

∫ 1

0
e2
1

(℘(t)− e1)2

(℘(t) + e1)2 dt

where the last equality is given by (iii).
Integral of f over γ2 : we can move γ2 to the vertical segment from p1 to p1 + i,

hence by (iii) and (iv)∫
γ2

f =
∫ 1

0
f(p1 + t)idt = i

∫ 1

0
e2
1

(℘(t)− e1)2

(℘(t) + e1)2 dt.

Integral of fg2 over γ1 : we can move γ1 down to the real segment from po to
po + 1, hence ∫

γ1

fg2 =
∫ 1

0
f(t)g2(t)dt =

∫ 1

0
α2℘

′(t)2

℘(t)4 dt.

Integral of fg2 over γ2 : we can move γ2 to the vertical segment from po to
po + i, hence ∫

γ2

fg2 =
∫ 1

0
f(it)g2(it)idt = −i

∫ 1

0
α2℘

′(t)2

℘(t)4 dt.

Then α must satisfy

α2
∫ 1

0

℘′(t)2

℘(t)4 dt =
∫ 1

0
e2
1

(℘(t)− e1)2

(℘(t) + e1)2 dt.



Vol. 73 (1998) Minimal surface in R3 with two convex ends 303

If t ∈ R we have ℘(t), ℘′(t) ∈ R, hence the two integrals involved in the
definition of α are positive real numbers. Furthermore they are convergent, so
α ∈ R.

Since g and f extend meromorphically to T 2, M has finite total curvature. �

Before proving Theorem 2.3 we need the following lemma.

Lemma 3.1. Consider a minimal surface M with Weierstrass representation giv-
en by {fdz, g} such that the vector corresponding to g(0) is parallel to the x3-axis.
Then the planar curvature of the intersection curves of M with the horizontal
planes is

k =
1

|f2g|(1 + |g|2)
Re
(
fg
g′

g

)
.

Proof. Let θ = arg g and s be the arc length of the curve M ∩ {x3 = c}; then

k(s) =
dθ

ds
. As arg g = Im(ln g), we have

k(s) =
dIm ln g
ds

= Im(
d ln g
dz

dz

ds
) = Im(

g′

g

dz

ds
).

By the Weierstrass representation we have

x3 = Re
∫
fg.

Hence, on the curve M ∩ {x3 = c}, dz
ds

must satisfy

0 =
d

ds
Re
∫
fg =

1
2

Re(fg
dz

ds
).

By a straightforward computation we obtain

dz

ds
=

i

(1 + |g|2)|f |
fg

|fg| .

Then

k = Im(
i

(1 + |g|2)|f |
fg

|fg|
g′

g
) =

1
|f2g|(1 + |g|2)

Re
(
fg
g′

g

)
.

�

Proof of Theorem 2.3. The third coordinate of M is given by

x3 = Re
∫
fg = Re

∫
α
℘′

℘
= α ln |℘|,
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since α is real. Then, any level curve is given by |℘| = c and next to the ends this
is a compact immersed curve with only one component.

By a straightforward computation, we obtain

g′(z) = 2α
[

5e2
1 − 3℘(z)2

℘(z)3

]
,

g′(z)
g(z)

=
2(5e2

1 − 3℘(z)2)
℘′(z)

,

f(z)g(z) = α
℘′(z)
℘(z)

.

By using the expansion of ℘ and ℘′ at po we have

f(z)g(z) ∼ −2
α

z
,

g′(z)
g(z)

∼ 3
z
,

where ∼ denotes equality between the principal parts of the functions in a neigh-
borhood of zero. Hence the sign of the curvature of the level curve next to the end
po is the same as the sign of

Re(
−6α
zz

) = − 6α
|z|2 ,

α being real.
We use the equality

f(z + p2)g(z + p2) = −f(z)g(z)

and the fact that in a neighborhood of zero we have

g′(z + p2)
g(z + p2)

=
2(5℘(z)2 − 3e2

1)
℘′(z)

∼ −5
z
,

to conclude that the sign of the curvature of the level curve next to the end p2 is
the same as the sign of

Re(
−10α
zz

) = −10α
|z|2

since α is real.
Thus, if we choose a negative α, the level curves are locally convex next to the

two ends of M. �
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