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c© 1998 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

The spectrum of the Chern subring

David J. Green and Ian J. Leary

Dedicated to Charles Thomas, on the occasion of his 60th birthday

Abstract. For certain subrings of the mod-p-cohomology of a compact Lie group, we give a
description of the spectrum, analogous to Quillen’s description of the spectrum of the whole
cohomology ring. Subrings to which our theorem applies include the Chern subring. Corollaries
include a characterization of those groups for which the Chern subring is F-isomorphic to the
cohomology ring.

Mathematics Subject Classification (1991). 20J06 (20D30, 22E99, 55R40).

Keywords. Cohomology rings of finite groups, Chern classes, compact Lie groups, group char-
acters.

1. Introduction

LetG be a compact Lie group (e.g., a finite group) and letH∗(G) = H∗(BG;Fp) be
its mod-p cohomology ring. This ring is a finitely generated graded-commutative
Fp-algebra. In [16], D. Quillen studied this ring from the viewpoint of commutative
algebra. His results may be stated in terms of the prime ideal spectrum ofH∗(G),
but the cleanest statement concerns the variety,XG(k), of algebra homomorphisms
from H∗(G) to an algebraically closed field k of characteristic p. The Chern
subring, Ch(G) ⊆ H∗(G), is the subring generated by Chern classes of unitary
representations of G. We give a description of X ′G(k), the variety of algebra
homomorphisms from Ch(G) to k, analogous to Quillen’s description of XG(k).
As corollaries of this result, we classify the minimal prime ideals of Ch(G), and
characterize those groups G for which the natural map from XG(k) to X ′G(k) is a
homeomorphism.

In the case when G = E is an elementary abelian p-group, i.e., a direct product
of copies of the cyclic group of order p, XE(k) is naturally isomorphic to E ⊗ k,
where E is viewed as a vector space over Fp and the tensor product is taken over
Fp. For general G, Quillen describes XG(k) as the colimit of the functor (−)⊗ k
over a category A = A(G) with objects the elementary abelian subgroups of G,
and morphisms those group homomorphisms that are induced by conjugation in
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G. Our description of X ′G(k) is as the colimit of the same functor over a category
A′. This category has the same objects as Quillen’s category, but a morphism
in A′ is a group homomorphism that merely preserves conjugacy in G. In other
words, a group homomorphism f :E1 → E2 satisfies:

f ∈ A ⇔ ∃g ∀e, f(e) = g−1eg,

f ∈ A′ ⇔ ∀e ∃g, f(e) = g−1eg.

This theorem is a corollary of a more general colimit theorem, which says, roughly,
that the variety for any subring of H∗(G) that is both ‘large’ and ‘natural’ may
be expressed as such a colimit. Other corollaries of this theorem, in the case when
G is finite, include a description of the variety for the subring of Ch(G) generated
by Chern classes of representations realizable over any subfield of C, and a slight
variation on the usual proof of Quillen’s theorem in which transfers of Chern classes
are used instead of the Evens norm map.

2. Representations and the Chern subring

First we recall some facts concerning Chern classes [3,21]. Let U(n) be the group
of n × n unitary matrices, and T (n) its subgroup of diagonal matrices. Then
H∗(T (n)) is a free polynomial algebra Fp[x1, . . . , xn] on n generators of degree two.
H∗(U(n)) is isomorphic to Fp[c1, . . . , cn], where ci has degree 2i. The map from
H∗(U(n)) to H∗(T (n)) is injective and sends ci to the ith elementary symmetric
function in the xi.

Let G be a compact Lie group. G has faithful finite-dimensional complex
representations, and any finite-dimensional representation is equivalent to a uni-
tary representation. If ρ:G → U(n) is a unitary representation of G, write
ρ:BG → BU(n) for the induced map of classifying spaces, whose homotopy
class depends only on the equivalence class of ρ. The ith Chern class of ρ is
defined by ci(ρ) = ρ∗(ci) ∈ H2i(G). Define c·(ρ), the total Chern class of ρ, to
be 1 + c1(ρ) + · · ·+ cn(ρ). Chern classes enjoy the following properties (‘Whitney
sum formula’ and ‘naturality’), for any θ:G→ U(m) and any f :H → G:

c·(ρ⊕ θ) = c·(ρ)c·(θ) c·(ρ ◦ f) = f∗c·(ρ).

There is a unique way to define Chern classes for virtual representations so that
they continue to enjoy the above properties. Let c′· = 1+c′1+c′2+· · · be the unique
power series in Fp[[c1, . . . , cn]] satisfying c′·c· = 1, and define ci(−ρ) = ρ∗(c′i). In
general infinitely many of the ci(−ρ) will be non-zero, but note that they are all
expressible in terms of the ci(ρ).

Definition. The Chern subring Ch(G) of H∗(G) is the subring generated by the
ci(ρ) for all i and all virtual representations ρ.
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By the above remarks, the ci(ρ) as ρ ranges over the irreducible representations
of G suffice to generate Ch(G). In the case when G is finite, it follows that
Ch(G) is finitely generated, since G has only finitely many inequivalent irreducible
representations. For general G it is also true that Ch(G) is finitely generated. This
is a special case of the following proposition.

Proposition 2.1. Let G be a compact Lie group, and ρ:G → U(n) a faithful
unitary representation of G. If R is a subring of H∗(G) containing each ci(ρ),
then R is finitely generated.

Proof. Venkov showed that H∗(G) is finitely generated by showing that H∗(G)
is finite over (i.e., is a finitely generated module for) H∗(U(n)) [22,16,5]. Now R
is an H∗(U(n))-submodule of H∗(G), so is finitely generated since H∗(U(n)) is
Noetherian. �

Remark. For G finite, the finite-generation of H∗(G) is due independently to
Evens and to Venkov by completely different proofs [9,22]. There is another proof
(closer to Evens’ than to Venkov’s) in [8].

Definition. A virtual representation ρ of G is said to be p-regular if the virtual
dimension of ρ is strictly positive and for every elementary abelian subgroup E ∼=
(Z/p)n of G, the restriction to E of ρ is a direct sum of copies of the regular
representation of E.

Proposition 2.2. For each prime p, every compact Lie group G has a p-regular
representation.

Proof. G has a faithful representation in U(n) for some n, and every elementary
abelian subgroup of U(n) is conjugate to a subgroup of T (n), the torus consisting of
diagonal matrices. Thus it suffices to show that U(n) has a virtual representation
whose restriction to (Z/p)n ⊆ T (n) is the regular representation.

Recall that the representation ring R(T (n)) of T (n) is isomorphic to the Lau-
rent polynomial ring Z[τ1, τ−1

1 , . . . , τn, τ
−1
n ], where τi is the 1-dimensional repre-

sentation
τi: diag(ξ1, . . . , ξn) 7→ ξi.

R(U(n)) maps injectively to R(T (n)) with image the subring Z[σ1, σ2, . . . , σn, σ
−1
n ],

where σi is the ith elementary symmetric function in the τj .
The polynomial

P =
n∏
i=1

(1 + τi + · · ·+ τp−1
i )

is a symmetric polynomial in the τj , and so is expressible in terms of σ1, . . . , σn.
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The corresponding (pn-dimensional) representation of U(n) restricts to (Z/p)n ⊆
T (n) as the regular representation. �

Remark. For G finite, the regular representation of G is of course p-regular.

Using Quillen’s result that we state as Theorem 5.1, it may be shown that
H∗(G) is finite over the subring generated by the Chern classes of any p-regular
representation. For genuine (as opposed to virtual) representations, this can be
deduced from Venkov’s result: If ρ:G → U(n) is a p-regular representation of G,
the kernel of ρ contains no elements of order p, and is therefore a finite group
of order coprime to p. It follows that H∗(ρ(G)) ∼= H∗(G) (consider the spectral
sequence for the extension ker(ρ) → G → ρ(G)), and hence H∗(G) is finite over
the image of ρ∗. When p = 2, the representation constructed in the proof of
Proposition 2.2 is a genuine representation. David Kirby has shown us an argument
to prove that U(n) has a p-regular genuine representation if and only if either p = 2,
or n = 1, or (p, n) = (3, 2).

3. Varieties for cohomology

Let k be an algebraically closed field of characteristic p, and let R be a finitely
generated commutative Fp-algebra. Define VR(k), the variety for R, to be the set
of ring homomorphisms from R to k, with the Zariski topology, i.e., the smallest
topology in which the set

FI = {φ:R→ k | ker(φ) ⊇ I}
is closed for each ideal I of R. A ring homomorphism f :R → S gives rise to a
continuous map f∗:VS(k) → VR(k). If S is finite over f(R) (i.e., S is a finitely
generated f(R)-module) then f∗ is a closed mapping and has finite fibres, by the
‘going up’ or ‘lying over’ theorem [4,6]. If S is finite over f(R) and ker(f) is
nilpotent, then f∗ is surjective.

There is a continuous map from VR(k) to Spec(R), the prime ideal spectrum of
R, that sends the map φ:R→ k to the ideal ker(φ). If the transcendence degree of
k over Fp is sufficiently large (as large as a generating set for R will suffice), then
this map is surjective. Thus information about VR(k) gives rise to information
about Spec(R).

We shall also require the following:

Proposition 3.1. (a) Let S be a subring of R containing Rp, the subring of
pth powers of elements of R. Then the natural map from VR(k) to VS(k) is a
homeomorphism.
(b) Let a finite group G act on R, with fixed point subring S = RG. Then the
natural map VR(k)→ VS(k) induces a homeomorphism VR(k)/G→ VS(k).
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Proof. Each of these claims may be proved by showing that R is finite over S,
and deducing that the map given is continuous, closed, and a bijection. See for
example [4,6,16]. �

For p = 2, the ring H∗(G) is commutative. For p an odd prime, elements
of H∗(G) of odd degree are nilpotent, so although H∗(G) is not commutative,
the quotient of H∗(G) by its radical, h∗(G) = H∗(G)/

√
0, is commutative. Any

homomorphism from H∗(G) to k factors through h∗(G). Define XG(k) to be the
variety VR(k) for R = h∗(G). By the above remark, points of XG(k) may be viewed
as homomorphisms from H∗(G) to k. Let S be the subring of elements of H∗(G)
of even degree. A homomorphism φ:S → k extends uniquely to a homomorphism
from H∗(G) to k (if x is in odd degree, then either p is odd, and x2 = 0, or
p = char(k) = 2, so in either case φ(x) is the unique square root of φ(x2)). It
follows that the natural map XG(k) → VS(k) is a homeomorphism, since it is a
closed, continuous bijection. Hence XG(k) could equally be defined in terms of S.

Note that a group homomorphism f :H → G induces a map f∗:XH(k) →
XG(k). We write ιGH for f∗ in the case when f is the inclusion of a subgroup H in
G. A theorem of Evens and Venkov [9,22] states that in this case H∗(H) is finite
overH∗(G). (To deduce this from the result quoted in the proof of Proposition 2.1,
note that a faithful representation of G restricts to a faithful representation of H.)
It follows that ιGH is closed and has finite fibres.

Define X ′G(k) to be VCh(G)(k). By Proposition 2.1 the natural map from XG(k)
to X ′G(k) is surjective, closed, and has finite fibres.

Proposition 3.2. Let ρ be a representation of G, and let R(n) be the subring of
H∗(G) generated by the Chern classes of nρ = ρ⊕n = ρ⊕· · ·⊕ρ. Then the natural
map VR(1)(k)→ VR(n)(k) is a homeomorphism.

Proof. If p does not divide n, then

ci(nρ) = nci(ρ) + P (i, n),

for some expression P (i, n) in the cj(ρ) for j < i. So in this case R(n) = R(1).
On the other hand, if n = pm then

c·(nρ) = c·(mρ)p = 1 + c1(mρ)p + c2(mρ)p + · · · ,

so in this case R(n) = R(m)p, the subring of pth powers of elements of R(m), and
the map VR(k)→ VRp(k) is a homeomorphism. �

The methods that we shall use to study the Chern subring apply equally to
the Stiefel-Whitney subring, defined analogously, in the case when p = 2. (For
information concerning Stiefel-Whitney classes see [21]). As an alternative, the
following proposition may be applied.
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Proposition 3.3. Let p = 2 and let S be the subring of H∗(G) generated by
Stiefel-Whitney classes of real representations of G. Then

S2 ⊆ Ch(G) ⊆ S,

and the natural map from VS(k) to X ′G(k) is a homeomorphism.

Proof. If θ is an n-dimensional real representation of G, then θC, the complexifi-
cation of θ, is an n-dimensional complex representation of G with ci(θC) = w2

i (θ).
Conversely, if ψ is an n-dimensional complex representation of G and ψR is the
same representation viewed as a 2n-dimensional real representation, then wi(ψR) =
0 for i odd and w2i(ψR) = ci(ψ). This proves the claimed inclusions. The claimed
homeomorphism follows from Proposition 3.1(a). �

4. Examples

In this section we discuss the case of an elementary abelian p-group, and also give
an example to show that the map XG(k) → X ′G(k) is not always a homeomor-
phism. This example was the starting point for the work of this paper.

Let E be an elementary abelian p-group of rank n, E ∼= (Z/p)n. Then E may
be viewed as a vector space over Fp. Write E∗ for Hom(E,Fp). There is a natural
isomorphism E∗ ∼= H1(E). For p = 2, H∗(E) is isomorphic to the symmetric
algebra on H1(E), or equivalently, the ring of polynomial functions on E viewed
as a vector space:

H∗(E) ∼= S(E∗) ∼= Fp[E].

For p > 2, the Bockstein β:H1(E)→ H2(E) is injective, and H∗(E) is isomorphic
to the tensor product of the exterior algebra onH1(E) tensored with the symmetric
algebra on B = β(H1(E)):

H∗(E) ∼= Λ(E∗)⊗ S(B) ∼= Λ(E∗)⊗ Fp[E].

In any case, h∗(E) is naturally isomorphic to Fp[E], generated in degree one for
p = 2 and in degree two for odd p. It follows that XE(k) is naturally isomorphic
to E ⊗ k, where E is viewed as a vector space over Fp and the tensor product is
over Fp, so that E ⊗ k ∼= kn.

Irreducible representations of E are 1-dimensional, and the map ρ 7→ c1(ρ) is
a natural bijection between the set of irreducible representations of E and B =
β(H1(E)). (When p = 2, β = Sq1, and so β(x) = x2.) The Chern subring Ch(E)
of H∗(E) is the subalgebra of H∗(E) generated by B. For p > 2 this subring maps
onto h∗(E), and for p = 2 it maps onto h∗(E)2, the subring of squares of elements
of h∗(E). In any case, the map from XE(k) to X ′E(k) is a homeomorphism.

Proposition 4.1. Let ρ be a direct sum of copies of the regular representation of
E, and let R be the subring of H∗(E) generated by the Chern classes of ρ. Then
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the natural map from XE(k) to VR(k) factors through a homeomorphism

kn/GLn(Fp) ∼= XE(k)/GL(E)→ VR(k).

Proof. By Proposition 3.2 it suffices to consider the case when ρ is the regular
representation. Identify Ch(E) with Fp[E], generated in degree two. The total
Chern class of ρ is

c·(ρ) =
∏
x∈E∗

(1 + x).

This is invariant under the full automorphism group, GL(E), of E. By a theorem
of Dickson, the only i > 0 for which ci(ρ) is non-zero are i = pn − pj , where
0 ≤ j < n = dimFp(E). Moreover, these ci(ρ) freely generate a polynomial
subring of Fp[E], and this is the complete ring of GL(E)-invariants in Fp[E] [6,23].
The claim follows by part (b) of Proposition 3.1. �

Remark. Let A be a non-identity element of GLn(Fp), and let v be an element
of kn fixed by A. Then v is in the kernel of I −A, a non-zero matrix with entries
in Fp, and so v lies in a proper subspace of kn defined over Fp (i.e., a subspace of
the form V ⊗ k for some proper Fp-subspace V of Fnp ). It follows that GLn(Fp)
acts freely on the complement of all such subspaces. For an elementary abelian
group E, let

X+
E (k) = XE(k) \

⋃
F<E

ιEF (XF (k)).

By the above argument, GL(E) acts freely on X+
E (k).

Example. Let q = pn for some n ≥ 2. LetG be the affine transformation group of
the line over Fq. Then G is expressible as an extension with kernel E = (Fq,+), an
elementary abelian p-group of rank n, and quotient Q = GL1(Fq), cyclic of order
q−1. The conjugation action of Q on E is transitive on non-identity elements of E.
One example of such a group is the alternating group A4 (p = 2, n = 2). An easy
transfer argument shows that H∗(G) maps isomorphically to the ring of invariants,
H∗(E)Q, and it follows from Proposition 3.1 that XG(k) is homeomorphic to
XE(k)/Q = kn/Q, where Q = GL1(Fq) ≤ GLn(Fp) ≤ GLn(k).

It is easy to check that G has exactly q distinct irreducible representations.
All but one of these are 1-dimensional and restrict to E as the trivial represen-
tation. The other one is (q − 1)-dimensional and restricts to E as the regular
representation minus the trivial representation. Hence by Proposition 4.1, X ′G(k)
is homeomorphic to XE(k)/GL(E) = kn/GLn(Fp). Thus the map from XG(k) to
X ′G(k) is not a homeomorphism.
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5. Quillen’s colimit theorem

In [16], Quillen showed that for general G, XG(k) is determined by the elementary
abelian subgroups of G. Roughly speaking, he showed that XG(k) is equal to the
union of the images of the XE(k), where E ranges over the elementary abelian
subgroups of G, and that as little identification takes place between the points
of the XE(k) as is consistent with the fact that inner automorphisms of G act
trivially on H∗(G). More precisely, let f :E1 → E2 be a homomorphism between
elementary abelian subgroups of G that is induced by an inner automorphism of
G. Then the following diagram commutes.

H∗(G) Id←− H∗(G)yRes
yRes

H∗(E1)
f∗←− H∗(E2)

Consequently the following diagram commutes.

XG(k) Id−→ XG(k)xι xι
XE1(k)

f∗−→ XE2(k)

This fact motivates the following definition.

Definition. The Quillen category A for a compact Lie group G and a prime p
is the category whose objects are the elementary abelian p-subgroups of G, with
morphisms from E1 to E2 being those group homomorphisms that are induced by
conjugation in G. Any such group homomorphism is of course injective.

In general G will have infinitely many elementary abelian p-subgroups. These
subgroups form finitely many conjugacy classes though ([16], lemma 6.3). Thus
although the Quillen category for G is infinite in general, it contains only finitely
many isomorphism types of object (or is ‘skeletally finite’).

The morphisms f :E1 → E2 in the Quillen category are precisely the maps for
which the diagram above commutes. It follows that the natural map∐

E≤G
E el. ab.

XE(k) −→ XG(k)

factors through a map α: colimAXE(k)→ XG(k).

Theorem 5.1. (Quillen [16]) The map α: colimAXE(k) → XG(k) is a homeo-
morphism.

The map α is continuous and is closed because A is skeletally finite. Thus the
main content of the theorem is that α is a bijection. We shall use only half of this
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theorem, the statement that α is surjective, in our main theorem. The surjectivity
of α is equivalent to the statement ‘an element of H∗(G) is nilpotent if and only
if its image in each H∗(E) is nilpotent’.

6. A new colimit theorem

Motivated by the Quillen category, we define:

Definition. A category of elementary abelian subgroups of G is a category whose
objects are (all of) the elementary abelian p-subgroups of G, and whose morphisms
from E1 to E2 are injective group homomorphisms.

The Quillen category, A(G), is of course a category of elementary abelian sub-
groups of G. Another example is the category Creg(G), with the morphism set
Creg(E1, E2) equal to the set of all 1-1 group homomorphisms from E1 to E2. Any
category of elementary abelian subgroups of G is a subcategory of Creg(G).

Any subring R of H∗(G) gives rise to a category C(R) of elementary abelian
subgroups of G, where f :E1 → E2 is a morphism in C(R) if and only if

R
Id←− RyRes

yRes

h∗(E1)
f∗←− h∗(E2)

commutes. Note that we use h∗(Ei), the cohomology ring modulo its radical,
rather than H∗(Ei). Note that if f is an isomorphism of groups and is a morphism
in C(R), f−1 is also in C(R). Each C(R) contains the Quillen category, and hence is
skeletally finite. By the argument given in Section 5, the map α: colimAXE(k)→
XG(k) induces a map γ = γ(R): colimC(R)XE(k)→ VR(k).

Definition. Say that a subring of H∗(G) is large if it contains the Chern classes
of some p-regular representation of G. Say that a subring of H∗(G) is natural
if it is generated by homogeneous elements and is closed under the action of the
Steenrod algebra.

The new colimit theorem of the title of this section is:

Theorem 6.1. Let G be a compact Lie group, and let R be a subring of H∗(G)
that is both large and natural. Then the map

γ: colimC(R)XE(k)→ VR(k)

is a homeomorphism.
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It is possible that this theorem could be proved using more general colimit
theorems due to S. P. Lam, to D. Rector, and to H.-W. Henn, J. Lannes and L.
Schwartz [14,18,12]. These theorems say, roughly speaking, that the variety for any
Noetherian algebra over the Steenrod algebra should be expressible as a similar
sort of colimit. Even with these theorems, Quillen’s description of XG(k) would
still be needed to identify the categories that arise with categories of elementary
abelian subgroups of G. The proof given below is more elementary, in that it relies
on no work that is more recent than that of Quillen.

The proof of the theorem uses the following lemma.

Lemma 6.2. Let S be the subring of H∗(G) generated by the Chern classes of
some p-regular representation of G. Then C(S) is equal to the category Creg defined
above, and the map γ(S) is a homeomorphism.

Proof. Let F be a maximal elementary abelian subgroup of G. Note that the
natural map fromXF (k) (mapping the category with one object and one morphism
to Creg) induces a homeomorphism

XF (k)/GL(F ) ∼= colimCregXE(k).

By Proposition 4.1, the image of ιGF :XF (k) → VS(k) is homeomorphic to
XF (k)/GL(F ). If E is any elementary abelian subgroup of G and f :E ↪→ F
is any injective group homomorphism, then ResGE(ρ) and f∗ResGF (ρ) are equal to
a sum of (the same number of) copies of the regular representation of E. Hence
C(S) is equal to Creg, and Im(γ) = Im(ιGF ). It follows that γ is a homeomorphism
onto its image. Finally, by Theorem 5.1, this image is the whole of VS(k). �

Proof of the theorem. Since R is large, it contains a subring S satisfying the condi-
tions of Lemma 6.2. Let E, F be two elementary abelian subgroups of G, suppose
that the rank of E is less than or equal to that of F , and suppose that φ ∈ XE(k)
and ψ ∈ XF (k) define the same point of VR(k). A fortiori φ and ψ define the same
point of VS(k), and so by Lemma 6.2 there is an injective group homomorphism
f :E ↪→ F such that ψ = φ ◦ f∗ = f∗(φ). It suffices to show that such an f is in
C(R).

For any such f :E ↪→ F , let S be the set of subgroups of E such that f restricted
to E is a morphism in C(R):

S = {E′ ≤ E | (f |E′ :E′ → F ) ∈ C(R)},

and define a subset X(f) of XE(k) by

X(f) = {φ ∈ XE(k) | f∗(φ) ◦ResGE′ |R = ψ ◦ResGF |R}.

From the definitions,
X(f) ⊇

⋃
E′∈S

ιEE′XE′(k),
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and it suffices to show that equality holds. Note that a subgroup E′ ≤ E is in S
if and only if ιXE′(k) is a subset of X(f). Hence it suffices to show that X(f)
is equal to some union of sets of the form ιXE′(k). Now let I(f) be the ideal of
H∗(E) generated by all elements of the form ResGE(r) − f∗ResGF (r), where r ∈ R.
The subvariety of XE(k) defined by I(f) is the set X(f) defined above. Since R is
natural (in the sense defined above the statement), the ideal I(f) is homogeneous
and closed under the action of the Steenrod algebra. But by a theorem of Serre
[19,16], the variety corresponding to any such ideal of H∗(E) has the required
form. �

Minimal prime ideals of a commutative Fp-algebra R correspond to irreducible
components of VR(k). Hence one obtains:

Corollary 6.3. Let R be a large, natural subring of H∗(G). The minimal prime
ideals of R are in bijective correspondence with the isomorphism types of maximal
objects in C(R).

An object of a category is called maximal if every map from it is an isomor-
phism. An isomorphism class of maximal objects in the Quillen category is a
conjugacy class of maximal elementary abelian subgroups of G.

Corollary 6.4. Let R and S be large natural subrings of H∗(G), and suppose that
R is a subring of S. The natural map VS(k)→ VR(k) is a homeomorphism if and
only if the categories C(R) and C(S) are equal.

Proof. A direct proof could be given at this stage, but it is easier to apply Propo-
sition 9.1, which implies that no subcategory of Creg that strictly contains C(S)
gives rise to the same variety. �

7. Applications to rings of Chern classes

We start by defining some categories of elementary abelian subgroups of G.

Definition. Define categories of elementary abelian subgroups of G, A′, A′R, A′P,
and for each d dividing p− 1, Ad, by stipulating that an injective homomorphism
f :E → F is in:

A′ if ∀e, f(e) is conjugate (in G) to e;
A′R if ∀e, f(e) is conjugate to e or to e−1;
A′P if ∀e, the subgroups 〈e〉 and 〈f(e)〉 are conjugate;
A′d if ∀e, f(e) is conjugate to ξ(e) for some ξ in the order d subgroup of Aut(〈e〉).

Note that for p = 2, A′ = A′R = A′P, and for odd p, A′R = A′2, and A′P =
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A′p−1. Note also that the difference between A′ and the Quillen category A is the
difference between ‘∀e ∃gf(e) = g−1eg’ and ‘∃g ∀ef(e) = g−1eg’. The reason for
introducing these categories is the following proposition.

Proposition 7.1. Let K be a subfield of C and let |K(ζp):K| = d, where ζp is a
primitive pth root of 1. Let G be a compact Lie group, and in cases (c) and (d)
suppose that G is finite. Let R be the subring of H∗(G) generated by Chern classes
of:

(a) All representations of G;
(b) Representations of G realisable over the reals;
(c) Permutation representations of G;
(d) Representations of G realisable over K.
In each case, the variety VR(k) is homeomorphic to colimC(R)XE(k). The

category C(R) is:
(a) A′, (b) A′R, (c) A′P, (d) A′d.

Proof. In each case, the morphisms in the category given are precisely those
group homomorphisms for which χ(e) = χ(f(e)) for all characters χ coming from
representations of the given type. (See [20] Chapter 12 for case (d), and for case
(c) note that if e, e′ are elements of G of order p, then the permutation action of e
on G/〈e′〉 has a fixed point if and only if 〈e〉 is conjugate to 〈e′〉.) The proposition
therefore follows from the lemma below. �

Lemma 7.2. Let A be an additive subgroup of the representation ring of G, gen-
erated by genuine representations, and containing a p-regular representation. Let
R be the subring of H∗(G) generated by the Chern classes of all elements of A.
Then R is large and natural, and hence by Theorem 6.1

γ: colimC(R)XE(k)→ VR(k)

is a homeomorphism. Furthermore, f :E ↪→ F is a morphism in C(R) if and only
if for all e ∈ E, and all characters χ of elements of A, χ(e) = χ(f(e)).

Proof. First, suppose that A is generated by a single representation ρ. The image
of ρ∗:H∗(U(n)) → H∗(G) is natural since H∗(U(n)) is graded and acted upon
by the Steenrod algebra. The general case follows from the Cartan formula. By
hypothesis, R is large. The claimed homeomorphism follows from Theorem 6.1,
and it only remains to describe C(R).

A representation is determined up to equivalence by its character. Hence for
any f as in the statement and ρ a generator of A, f∗ResGF c·(ρ) = ResGEc·(ρ), and
so any such f is in C(R). For the converse, note that since Ch(E) is a unique
factorization domain, a representation of E is determined up to equivalence by its
dimension and its total Chern class. Thus if f :E ↪→ F is a homomorphism for
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which there exists e and χ with χ(f(e)) 6= χ(e), there exists i and ρ, a generator
of A, such that ResGE(ci(ρ))− f∗ResGF (ci(ρ)) 6= 0. Hence f is not in C(R). �

Quillen’s description of XG(k) (Theorem 5.1, and Theorem 8.1), Corollary 6.4
and Proposition 7.1 together yield:

Corollary 7.3. The natural map XG(k) → X ′G(k) is a homeomorphism if and
only if the categories A(G) and A′(G) are equal. �

Example. (A p-group G for which the map XG(k)→ X ′G(k) is not a homeomor-
phism.) Let E be the additive group Fnp for some n > 2, and let U ≤ GL(E) =
GLn(Fp) be the Sylow p-subgroup of GL(E) consisting of upper triangular matri-
ces. Let Q be the subgroup of U consisting of all matrices (ai,j) that are constant
along diagonals, i.e., ai,j = ai+1,j+1 whenever 1 ≤ i < m and 1 ≤ j < m. Finally,
let G be the split extension with kernel E and quotient Q. The group E is a
maximal elementary abelian subgroup of G. Easy matrix calculations show that
the orbits of the action of Q on elements of E are equal to the orbits of the action
of U , and that any element of GL(E) that preserves the U -orbits in E is fact an
element of U . It follows that the image of XE(k) in X ′G(k) is XE(k)/U , whereas
the image of XE(k) in XG(k) is of course XE(k)/Q. Thus G is a p-group such
that the fibres of the map XG(k)→ X ′G(k) above general points of one irreducible
component have order |U :Q| = p(n−1)(n−2)/2.

Example. (A group G for which X ′G(k) has fewer irreducible components than
XG(k).) Let G be GL3(Fp). There are two distinct Jordan forms for elements of
order p in G (resp. one if p = 2), and hence G has two conjugacy classes (resp. one
conjugacy class if p = 2) of elements of order p. All maximal elementary abelian
subgroups of G have rank two. The subgroups

E1 =

 1 ∗ ∗
0 1 0
0 0 1

 and E2 =

 1 0 ∗
0 1 ∗
0 0 1


are maximal elementary abelian subgroups, and are not conjugate, although every
non-identity element of E1 is conjugate to every non-identity element of E2. It
follows that the images of XE1(k) and XE2(k) in XG(k) are distinct irreducible
components of XG(k), whereas their images in X ′G(k) are equal.

8. Transfers of Chern classes

Throughout this section, G shall be a finite group. Following Moselle [15], we con-
sider the ‘Mackey closure’ of Ch(G), or in other words the smallest natural subring
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of H∗(G) that contains Ch(G) and is closed under transfers. More formally, we
make the following:

Definition. Let G be a finite group. Define Ch(G) recursively as the subring of
H∗(G) generated by Ch(G) and the image of Ch(H) under the transfer CorGH for
each proper subgroup H < G.

We shall prove:

Theorem 8.1. Let G be a finite group, with Quillen category A, and let R =
Ch(G). The map α induces a homeomorphism α: colimAXE(k)→ VR(k).

We do not use the injectivity of Quillen’s map in proving Theorem 8.1, so two
immediate corollaries of Theorem 8.1 are:

Corollary 8.2. (Quillen) For a finite group G, the map α: colimAXE(k)→ XG(k)
is injective. �

Corollary 8.3. For a finite group G, the inclusion of Ch(G) in H∗(G) induces a
homeomorphism of varieties. �

Proof of the theorem. The transfer map CorGH commutes with the action of the
Steenrod algebra, by either a topological argument [1] or an algebraic one [10]. It
follows that R = Ch(G) is a large natural subring of H∗(G). By Theorem 6.1, it
suffices to show that C(R) = A.

First we show that if E, F are elementary abelian subgroups of G such that
E is not conjugate to a subgroup of F , then there is no map in C(R) from E to
F . Since any map is the composite of an isomorphism followed by the inclusion
of a subgroup, it suffices to consider the case when E and F have the same rank.
(Note that if f is any map in C(R) that is an isomorphism of elementary abelian
groups, then the inverse of f is also in C(R), so f is an isomorphism in C(R).)

Let N = NG(F ) be the normalizer of F in G, let θ = CF − 1 be the (|F | − 1)-
dimensional representation of F given by the difference of the regular representa-
tion and the trivial representation, and let ρ = IndNF (θ) be the induced representa-
tion ofN . Equivalently, ρ is the regular representation of N minus the permutation
representation on the cosets N/F of F . Note that ρ is a genuine representation of
N of dimension |N | − |N :F |. Now let F ′ be any elementary abelian subgroup of
N . The regular representation of N restricts to F ′ as a sum of |N :F ′| copies of
the regular representation of F ′. The number of orbits of F ′ on the cosets N/F ,
or equivalently the number of trivial F ′-summands of the permutation module
CN/F , is equal to |N :F ′F |. It follows that ResNF ′(ρ), the restriction to F ′ of ρ,
contains the trivial F ′-module as a direct summand if and only if F ′F 6= F ′, i.e.,
if and only if F is not a subgroup of F ′.
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Let n be the dimension of ρ, so that n = |N |(1 − 1/|F |), and note that since
the restriction to F of ρ does not contain the trivial representation, ResNF (cn(ρ))
is non-zero. Let xF = CorGN (cn(ρ)). For E an elementary abelian subgroup of G
of the same rank as F , the Mackey formula affords a calculation of ResGE(xF ):

ResGE(xF ) =
∑
EgN

CorEE∩gNg−1c
∗
gResNg−1Eg∩N (cn(ρ)),

where for any subgroup K of G, cg is the homomorphism k 7→ g−1kg, and the
sum is over a set of double coset representatives for E\G/N . The restriction map
from E to any subgroup is surjective in cohomology, and CorEE′ResEE′ is equal to
multiplication by |E:E′|. Hence the transfer CorEE′ is zero for any proper subgroup
E′ of E. Thus the only non-zero contributions to the above sum come from terms in
which g−1Eg ≤ N . On the other hand, we know that the restriction of cn(ρ) to an
elementary abelian subgroup of N is non-zero if and only if that subgroup contains
F . Since we are assuming that E has the same rank as F , it follows that the only
non-zero terms will come from g such that F = g−1Eg. If F = g−1Eg = h−1Eh,
then g−1hFh−1g = F , so g−1h ∈ N , and so EgN = EhN . It follows that, for E
and F of the same rank, ResGE(xF ) = c∗g(cn(ρ)) for any g such that g−1Eg = F ,
and is zero if there is no such g, i.e., if E and F are not conjugate in G. Since
ResNF cn(ρ) is non-zero in h∗(F ), it follows that when E and F have the same rank,
there are morphisms from E to F in C(R) only if E is conjugate to F .

It remains to show that the automorphisms of F in the category C(R) are
precisely the maps induced by conjugation in G. Let C = CG(F ) be the centralizer
of F in G, and suppose that |C:F | = pmr, for some r coprime to p. For any
representation λ of F , ResCF IndCF (λ) = pmrλ. It follows that the image of Ch(C)
in Ch(F ) contains the subring of pmth powers. In Fp[F ] = Ch(F ), there is a
homogeneous element y1 such that the FpGL(F )-submodule generated by y1 is
free (see [2], pp. 45–46). The element y2 = yp

m

1 also has this property, and
y2 = ResCF (y′2) for some y′2 ∈ Ch(C). Now let y′ = y′2ResNC (cn(ρ)), where ρ and n
are as in the previous paragraph. Then y′ is an element of Ch(C) whose restriction
to an elementary abelian subgroup of C is non-zero only if that subgroup contains
F . Moreover, the restriction to F of the representation ρ is invariant under GL(F ),
and so y = ResCF (y′) generates a free FpGL(F )-submodule of Ch(F ). Now define
zF ∈ H∗(G) by zF = CorGC(y′). The Mackey formula gives

ResGF (zF ) =
∑
FgC

CorFF∩gCg−1c
∗
gResCg−1Fg∩C(y′).

Now ResCF ′(y
′) = 0 unless F ′ contains F , and so only those terms for which

g−1Fg = F can be non-zero. Thus

ResGF (zF ) =
∑

g∈N/C
c∗g(y),
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where the sum is over cosets of C = CG(F ) in N = NG(F ). Since y generates a free
FpGL(F )-summand of Ch(F ), an automorphism f of F satisfies f∗ResGF (zF ) =
ResGF (zF ) if and only if f is equal to conjugation by some element of N . �

Remark. The first part of this proof is very similar to Quillen’s second proof
of this statement, using the Evens norm map [17,11,5]. The second part is less
similar however. Our argument is complicated by the weaker technique that we
are using to construct elements, but is simplified by our use of Theorem 6.1 which
means that we do not need to construct as many elements as are needed in [17].

Corollary 8.3 seems to be fairly well-known, although we have been unable to
find it stated in the literature. Our first proof of Corollary 8.3 was essentially
independent of the rest of this paper, but used a comparatively recent theorem
of Carlson ([7], or theorem 10.2.1 of [11]): For G a p-group, with centre Z, the
radical of ker(ResGZ ) is equal to the radical of the ideal generated by the images of
CorGH , where H ranges over all proper subgroups of G.

To prove Corollary 8.3 directly, note that if Gp is a Sylow p-subgroup of G, the
transfer from H∗(Gp) to H∗(G) is surjective. Thus it suffices to consider the case
when G is a p-group. Let G be a p-group, with centre Z. Using representations
induced from Z up to G it may be shown that the image of Ch(G) in H∗(Z)
contains the subring of pmth powers for sufficiently large m (as in the proof of
Theorem 8.1). Thus if y ∈ H∗(G), there exists m and x1 ∈ Ch(G) such that
y1 = yp

m − x1 is in the kernel of ResGZ . By Carlson’s theorem, there exists n,
subgroups H(1), . . . ,H(l) of G and x′i ∈ H∗(H(i)) such that

y2 = yp
n

1 =
∑
i

CorGH(i)(x
′
i).

By induction on the order of G, there exists N such that, for each i, (x′i)
pN ∈

Ch(H(i)). Noting that for x of degree 2i,

CorGH(xp) = CorGH(P ix) = P iCorGH(x) = CorGH(x)p,

it follows that

yp
N

2 =
∑
i

CorGH(i)((x
′
i))

pN =
∑
i

CorGH(i)((x′i)
pN ) ∈ Ch(G).
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9. A closure operation

Definition. Let C be a category of elementary abelian subgroups of a group G.
Define C, the closure of C, to be the smallest subcategory of Creg such that:
1. C is contained in C;
2. if f : E1 → E2 is in C, and Fi ≤ Ei with f(F1) ≤ F2, then f : F1 → F2 is in C;
3. if f : E1 → E2 is in C and is an isomorphism of groups, then f−1 : E2 → E1 is

in C.

Say that C is closed if C = C. Note that the categories A, A′, and C(R) for any
R ≤ H∗(G) are closed.

Proposition 9.1. For any C containing the Quillen category A, the category C is
the unique largest subcategory of Creg such that the natural map

colimCXE(k)→ colimCXE(k)

is a homeomorphism.

Proof. Let D be the subcategory of Creg whose morphisms f : E → F are those
group homomorphisms that make the diagram

XE(k)
f−→ XF (k)yι yι

colimCXE(k) Id−→ colimCXE(k)

commute. Then D has the property claimed, and it suffices to show that C = D.
Note also that C is contained in D and that D is closed. Let f :E1 → E2 be a
morphism in D. Since f :E1 → E2 is in D (resp. in C) if and only if f :E1 → f(E1)
is, it may be assumed that f is a group isomorphism. Let φ be an element of
X+
E1

(k), i.e., an element ofXE1(k) not contained in XF (k) for any proper subgroup
F of E1. Since GL(E1) acts freely on X+

E1
(k), it follows that f :E1 → E2 is

uniquely determined by ψ = f∗(φ).
By definition of D, ψ and φ have the same image in colimCXE(k). Since C is

skeletally finite (because it contains A), there are chains (F0, . . . , Fm) of objects
of C and (f1, . . . , fm) of morphisms in C, where

fi:Fi−1+ε(i) → Fi−ε(i)

for some ε(i) ∈ {0, 1}, and (ψ0, . . . , ψm), ψi ∈ XFi(k), with

F0 = E1, Fm = E2, ψ0 = φ, ψm = ψ, fi∗(ψi−1+ε(i)) = ψi−ε(i).
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Let F ′i be the unique subgroup of Fi such that ψi ∈ X+
F ′
i
(k). Then F ′i has the same

rank as E1 and fi restricts to an isomorphism f ′i from F ′
i−1+ε(i) to F ′

i−ε(i). Letting

δ(i) = 1− 2ε(i), f ′δ(i)i is a morphism in C from F ′i−1 to F ′i , and the composite

f ′ = f
′δ(m)
m ◦ · · · ◦ f ′δ(1)

1

is a morphism in C from E1 to E2 such that f ′(φ) = ψ. Hence f ′ = f , and f is a
morphism in C as claimed. �

For any category C of elementary abelian subgroups of a group G, one may
define a subring R(C) of H∗(G) as the inverse image of limC H∗(E). This subring
is large and is natural because limC H∗(E) is.

Proposition 9.2. For C any category of elementary abelian subgroups of G con-
taining the Quillen category A, C(R(C)) = C.

Proof. Clearly, C(R(C)) contains C, and is closed. Hence it suffices to show that
the induced map of varieties is a homeomorphism. Quillen showed that the map
from H∗(G) to limAH∗(E) contains the subring of pnth powers for some n (in
fact this is equivalent to the injectivity of the map colimAXE(k) → XG(k)) [16].
Let S = limC H∗(E), and note that if x is any element of S, the pnth power of
x is in the image of R = R(C). It follows that the map VS(k) → VR(k) is a
homeomorphism, and it suffices to show that the natural map

colimCXE(k)→ VS(k)

is a homeomorphism. But this is a special case of lemma 8.11 of [16]. �

The proposition shows that there is a sort of ‘Galois correspondence’ between
large natural subrings of H∗(G) and categories of elementary abelian subgroups
of G.

10. Some other categories

For each n ≥ 0, define a category A(n) of elementary abelian subgroups of a group
G by declaring that the morphism f :E ↪→ F is in A(n) if and only if for all
e1, . . . , en ∈ E, there exists g ∈ G such that f(ei) = g−1eg.

Note that A(0) is the category Creg of Section 6, and A(1) is the category A′.
For each n, A(n) ⊇ A(n+1), and when n is greater than or equal to the p-rank
of G, A(n) is equal to Quillen’s category A. This suggests that A(∞) should be
defined to be A. Each of the categories A(n) is closed in the sense of section 9,
and the subrings R(n) = R(A(n)) form a natural filtration of H∗(G) = R(∞).
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The categories A(n)(G) are related to the generalized characters of G due to
Hopkins, Kuhn and Ravenel [13] in the same way that the category A′ is related
to ordinary characters. It seems possible that there should be a description of the
variety for the subring of elements of H∗(G) coming from E0(BG), where E is
a generalized cohomology theory to which Hopkins-Kuhn-Ravenel’s work applies,
in the same way that Chern classes are elements of H∗(G) coming from K0(BG).
We shall not make a precise conjecture, but shall give examples to show that the
categories A(n) can be distinct from each other.

Proposition 10.1. For each n ≥ 0 and each prime p, there is a p-group G for
which A(n)(G) 6= A(n+1)(G).

Proof. For n = 0, the cyclic group of order p (for p odd), or the elementary abelian
group of order four (for p = 2), will suffice. Hence we may assume that n > 0. Let
C be a cyclic group of order p, let E be a faithful FpC-module of Fp-dimension
n+ 1, and let c ∈ GL(E) represent the action on E of a generator for C. Now let
Z be a vector space over Fp with basis {zM} indexed by the maximal Fp-subspaces
of E, so that Z has dimension (pn+1 − 1)/(p− 1).

For each maximal subspace M of E, pick a linear map ψM :E → Z, with kernel
M and image generated by zM . For each M , define bM ∈ GL(E ⊕ Z) by the
equation

bM(e, z) = (c(e), z + ψM(e)).

Let A be the subgroup of GL(E ⊕ Z) generated by the bM , and let G be the
semidirect product (E ⊕ Z):A.

The subgroup Z is left invariant by A, so is central in G. Let φ be the ho-
momorphism sending A ≤ GL(E ⊕ Z) to GL((E ⊕ Z)/Z) ∼= GL(E), and let
B = ker(φ) ≤ A. Note that elements of B act trivially on Z and on (E ⊕ Z)/Z,
and so B may be identified with a subgroup of the elementary abelian p-group
Hom(E,Z).

We claim that the automorphism c of E is a morphism in A(n)(G), but is not
a morphism in A(n+1)(G). If M is any rank-n subgroup of E, then the element
bM ∈ G acts on M in the same way as c. On the other hand, if c were a morphism
in A(n+1)(G), there would have to be an element d of G, acting on E ⊕ Z as
d(e, z) = (c(e), z). But then, for any M , d′ = d−1bM would be an element of
(E ⊕ Z) : B acting as d′(e, z) = (e, z + ψM (e)). To complete the proof, it suffices
to show that there can be no such element d′.

Let R be the image of FpC in the ring End(E). Since FpC is a commutative
local ring, it follows that R is too. In particular, the non-units in R form an ideal.
Fix M , a maximal subgroup of E. The group B ≤ A ≤ GL(E) is generated as a
normal subgroup by the elements bpM , and b−1

M bN , where N ranges over all other
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maximal subgroups of E. The action of these generators on E ⊕ Z is given by:

bpM (e, z) =

(
cp(e), z +

p−1∑
i=0

ψM(ci(e))

)
= (e, ψM (r̄e) + z),

where r̄ is the image of c̄ =
∑p−1
i=0 c

i in R = End(E), and

b−1
M bN (e, z) = (e, z + ψN (e)− ψM (e)).

We therefore have to show that the element d′ described above does not lie in the
subgroup of GL(E ⊕ Z) generated by

(e, z) 7→ (e, z + ψM(r̄e)) and (e, z) 7→ (e, z + ψN (cie)− ψM (cie)),

for all N 6= M and 0 ≤ i ≤ p− 1.
If d′: (e, z) 7→ (e, z+ψM(e)) is in the subgroupB, there are µ, λN ∈ R ≤ End(E)

such that
ImλN ⊆ ker(ψN ) = N for all N 6= M , and

Im

1− µr̄ +
∑
N 6=M

λN

 ⊆ ker(ψM ) = M.

From the first family of equations, it follows that each λN is a non-unit in R, and of
course r̄ is a non-unit. But then 1−µr̄+

∑
λN must be a unit in R, contradicting

the second equation. �

Remark. We exhibit p-group examples above because p-groups control the be-
haviour of mod-p cohomology, and hence p-group examples tend to be harder to
find. Similar examples can be constructed for other cyclic groups C. One inter-
esting example is the case when C = GL1(Fq) for q = pn+1 > 2 and E is the
additive group of Fq. In this case FpC is not a local ring, but its image in End(E)
is isomorphic to Fq, and r̄ = 0, so the argument used above still applies.
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