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1. Introduction

Let p be a prime or 0. A map f : X −→ Y between topological spaces is called a
p-equivalence if the induced homomorphism

f∗ : H∗(Y ;Z/pZ) −→ H∗(X ;Z/pZ)

is an isomorphism. A p-equivalence, however, is not an equivalence relation; in
particular, the symmetricity does not hold in general. In [MT] Mimura and Toda
introduced a class of spaces in which a p-equivalence is an equivalence relation.
They called such spaces p-universal. About 20 years ago the first and the fourth
authors observed in the unpublished draft [BS] that the p-universality does not
depend on a particular prime p but on its rational homotopy type, although they
gave only the outline of the proof. The purpose of the present note is to give
a detailed proof of it and to show that the class of p-universal spaces coincides
exactly with that of spaces whose rational homotopy type has ”positive weights” in
the sense of Morgan and Sullivan. That is, our main theorem is stated as follows.

Theorem A. Let X be a simply connected finite CW-complex. Then the following
statements are equivalent:

(1) X is p-universal for a prime p or 0;
(2) the rational homotopy type of X has positive weights;
(3) X is p-universal for any prime p and 0.

We also prove
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Theorem B. Let X be a simply connected CW-complex such that
∞∑
i=2

dimQ πi(X)⊗Q <∞.

Then there is a p-universal space K for any prime p having the same rational
homotopy type as X if and only if X has positive weights.

Theorem A does not hold for infinite complexes (see Remark 3.6). In §2 we
study a space whose rational homotopy type has positive weights. In Theorem
2.7 we give a various characterization of it and show that it is independent of the
ground field. In fact, the characterization (1) in Theorem 2.7 is stated in [BS].
The method there is to show that the closure of Q-split torus of the group of
automorphisms of minimal model in the space of endomorphisms contains a zero
homomorphism. The detailed proof, however, was not given in [BS]. We give here
its proof by using the Galois group action on one parameter subgroups. In §3 we
prove (1) =⇒ (2) in Theorem A by using (1) in Theorem 2.7. Then following the
idea of [BS], we realize the one parameter subgroup λ(q), where q is a positive
integer, by a self map of K which has the same rational homotopy type as a given
complex. From this, we prove Theorem B as well as (2) =⇒ (3) of Theorem A.
Finally we show in Proposition 3.7 that homogeneous spaces of compact Lie groups
are p-universal for any prime p and 0.

The authors would like to thank T. Maeda, T.Tasaka and M. Tezuka for the
useful discussions about algebraic groups.

2. Positive weights

Let V = ⊕
n≥2

V n be a graded vector space and denote by m = Λ(V ) a minimal

differential graded-commutative algebra (minimal DGA for short) over Q ([H] and
[Su1]). Let K be a field such that Q ⊆ K ⊆ C. We take a basis {x(n)

1 , . . . , x
(n)
kn
} for

V n ⊗K and assign a positive integer w(x(n)
j ) to each x(n)

j . The integer w(x(n)
j ) is

called the weight of x(n)
j . Let Uns be a subspace of V n⊗K spanned by the elements

with weight s. We extend the definition of the weight by

w(x(n)
i · x(m)

j ) = w(x(n)
i ) + w(x(m)

j ).

Then for m+ the ideal of positive elements, we have the weight decomposition

m+ = ⊕
s≥1

Us, where Us = ⊕
n≥2

Uns .

Let X be a CW -complex and denote by m(X) = Λ( ⊕
n≥2

V n) its minimal model

with a differential operator d.
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Definition 2.1. The K-homotopy type of a CW-complex X , m(X) ⊗ K, is said
to have K-positive weights if we can choose a basis {x(n)

1 , . . . , x
(n)
kn
} of V n ⊗K for

n ≥ 2 and give weight w(x(n)
i ) for each x(n)

i such that it satisfies

w(dx(n)
i ) = w(x(n)

i ) (i = 1, . . . , kn;n ≥ 2). (1)

In this case we simply say that X has K-positive weights.

We denote by m(X)(n) the sub DGA of m(X) generated by the elements of
degree ≤ n and by m(X)(n)i the subspace spanned by the elements of degree
i. We also denote by Gn(Q) the group of Q-DGA automorphisms of m(X)(n).
If we fix a Q-basis of m(X)(n)i for i = 2, . . . , 2n, then Gn(Q) is represented by
the subgroup of GL(N,Q) defined by polynomial equations with coefficients in Q,

where N =
2n∑
i=2

dimQm(X)(n)i. Let Gn be the subgroup of GL(N,C) defined by

the same equations. Then Gn is an algebraic group defined over Q and Gn(Q) is
the set of Q-rational points of Gn.

For any field K ⊇ Q, there is a maximal torus TK of the connected component
of Gn defined over K by Theorem 18.2 of [B]. Then by Proposition of [B;p.121] we
have a decomposition over K

TK = TKa · TKd , TKa ∩ TKd = finite, (2)

where TKa is the largest anisotropic subtorus defined over K and TKd is the largest
split (i.e., diagonalizable over K) subtorus of TK.

Let C∗ be the multiplicative group of C.

Definition 2.2. A group homomorphism λ : C∗ −→ Gn is called a one parameter
subgroup of Gn defined over K if it is represented by

λ(t) =


 ta1 0

. . .
0 taN

∣∣∣∣∣ t ∈ C∗


with respect to some K-basis of
2n
⊕
i=2

m(X)(n)i⊗K, where a1, . . . , aN are integers.

Proposition 2.3. Let K be a field such that Q ⊆ K ⊆ C. A CW-complex X has
K-positive weights if and only if, for each n, there is a one parameter subgroup
λ(t) of TKd defined over K such that lim

t→0
λ(t) = 0, where the topology of Gn is the

metric one induced from CN2
.
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Proof. If X has K-positive weights, then the correspondence

λ(t) : x 7−→ tsx (x ∈ Us, t ∈ K∗)

defines a one parameter subgroup of TKd satisfying the required property. In fact,
one can take s positive by the assumption that X has K-positive weights. Con-
versely, if there is a one parameter subgroup λ(t) of TKd defined over K such that

lim
t→0

λ(t) = 0, one can choose a basis for
2n
⊕
i=2

m(X)(n)i ⊗ K and positive integers

a1, . . . , aN so that λ(t) is represented by

λ(t) =


 ta1

. . .
taN

 ∣∣∣∣∣ t ∈ K∗
 . (3)

Then one obtains a weight decomposition of m(X)(n)⊗K by putting

Uai = {x ∈ m(X)(n)⊗K | λ(t)x = taix} for i = 1, . . . , N. �

Let En and Gn be the set of C-DGA endomorphisms and the set of C-DGA
automorphisms of m(X)(n)⊗C respectively. Then En is an algebraic set defined
over Q and Gn is a Zariski open set of En. Recall that the Zariski closure of Gn
in En coincides with the metric closure of Gn in En (see for example [M]), which
we denote by Gn

E
.

Lemma 2.4. Let B be a Borel subgroup of Gn. If the zero homomorphism is
contained in Gn

E
, then so is in the metric closure of B .

Proof. Let M be a compact maximal subgroup of Gn. Then M acts on the
complete variety Gn/B transitively, and hence we have

Gn = M ·B.

Let {xn} be a sequence of the points in M ·B such that lim
n→∞

xn = 0. Then each
xn can be expressed as

xn = un · bn,
where un ∈ M and bn ∈ B. There is an accumulation point α of {un} such that
α ∈M , since M is compact. Then

lim
n→∞

α · bn = 0.

Hence by multiplying α−1 we have

lim
n→∞

bn = 0 . �
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By (4) of Theorem 10.6 of [B] we have a semi-direct product decomposition

B = T1 · U,

where T1 is a maximal torus of Gn and U is a unipotent subgroup of Gn by
Corollary 11.3 of [B], since B is solvable by definition.

Lemma 2.5. If the closure (metric) of B contains 0, so does the closure of T1.

Proof. Let {xn} be a sequence of B such that lim
n→∞

xn = 0. We can express xn by
an upper triangular matrix

xn =

β11 · · · β1N
. . .

...
0 βNN

 .

Since lim
n→∞

βii = 0 for i = 1, 2, . . . , N and since

β11 0
. . .

0 βNN

 ∈ T1,

we have the lemma. �

There exists a maximal torus TQ of Gn defined over Q. Then, if Gn
E

contains
0, so does the metric closure of TQ by Lemmas 2.4 and 2.5, since maximal tori of
Gn are conjugate. By Corollary 18.8 of [B], TQ splits over a finite normal extension
K of Q so that the elements of the K-rational points TQ(K) are diagonalizable over
K. That is, with respect to some K-basis for m(X)(n)⊗K, TQ can be represented
as 

 t
a1

1
1 · · · · · t

a1
m
m 0

. . .
0 t

aN1
1 · · · · · ta

N
m
m


∣∣∣∣∣ t1, . . . , tm ∈ K∗

 , (4)

where K∗ is the multiplicative group of K, m is the dimension of TQ and aji are
integers for 1 ≤ i ≤ m, 1 ≤ j ≤ N .

Lemma 2.6. If the closure (metric) of TQ contains 0, there is a one parameter
subgroup λ(t) of TQ defined over K such that

lim
t→0

λ(t) = 0.
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In particular the metric closure of the K-rational points TQ(K) contains 0.

Proof. We denote a matrix in (4) by M(t1, . . . , tm). By the assumption there is a
sequence {M(x(k)

1 , . . . , x
(k)
m )}∞k=1 such that

lim
k→∞

|(x(k)
1 )a

j

1 · · · (x(k)
m )a

j
m | = 0 for j = 1, . . . ,m. (5)

We choose a positive number t < 1 such that x(k)
` = tα

k
` eiθ

k
` , where αk` and θk` are

real numbers. Then

|(x(k)
1 )a

j

1 · · · (x(k)
m )a

j
m | = t

∑m
`=1 α

k
`a
j
` .

By (5) for large k, the numbers
m∑
`=1

αk` · aj` for j = 1, . . . , N are simultaneous-

ly positive. Then from the density of Q in R, we can choose rational numbers
β1, . . . , βm so that

m∑
`=1

β`a
j
` > 0 for j = 1, . . . , N.

Hence we have integers P1, . . . , Pm such that

m∑
`=1

P`a
j
` > 0 for j = 1, . . . , N.

Then the one parameter subgroup defined by

λ(t) = {M(tP1 , . . . , tPm)
∣∣ t ∈ C∗}

satisfies
lim
t→0

λ(t) = 0. �

Thus we have proved, by virtue of Proposition 2.3 together with Lemmas 2.4,
2.5 and 2.6, that m(X)(n) has K-positive weights, if Gn

E
contains 0, where K is

a finite normal extension of Q.
The one parameter subgroup λ(t) defined over K in Lemma 2.6 is represented

by matrices S(t) with respect to some (Q-) basis of
2n
⊕
i=2

m(X)(n)i such that each

entry bij of S(t) = (bij) is in K if t ∈ K∗. For an element σ of the Galois group
G(K/Q), we set

S(t)σ = (bσij).
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Then the entries of the matrix

A(t) =
∏

σ∈G(K/Q)

S(t)σ

are in Q if t ∈ K∗. Hence A(t) defines elements of TQ(Q), the Q-rational points

of TQ. For t ∈ Q∗ we decompose
2n
⊕
i=2

m(X)(n)i into A(t)-invariant, irreducible

Q-subspaces
2n
⊕
i=2

m(X)(n)i =
`
⊕
j=1

Vj .

The restriction of λ(t) for t ∈ Q∗ on Vj is represented by a matrix Aj(t) whose
entries are in Q. The matrix Aj(t) is diagonalizable over K; there is an invertible
matrix Pj with entries in K such that

Bj(t) = P−1
j Aj(t)Pj =

 k1(t) 0
. . .

0 knj (t)

 ,

where k1(t), . . . , knj (t) are eigenvalues of Aj(t) which are conjugate over Q if
t ∈ Q∗. For an element σ of the Galois group G(K/Q) we set

Bσj (t) =

 k1(t)σ
. . .

knj (t)σ

 .

Then we have

Cj(t) =
∏

σ∈G(K/Q)

Bσj (t) =

 rj(t)
. . .

rj(t)

 ,

where rj(t) is in Q∗ if t ∈ Q∗. Hence if we set

D(t) =

P1
. . .

P`


C1(t)

. . .
C`(t)


P−1

1
. . .

P−1
`

 ,
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then it is of the form

D(t) =



r1(t)
. . .

r1(t)
. . .

r`(t)
. . .

r`(t)


.

Then the matrix D(t) defines a one parameter subgroup µ(t) of TQ defined over
Q such that lim

t→0
µ(t) = 0.

Then we have the following:

Theorem 2.7. The following conditions are equivalent:
(1) The Zariski closure of Gn in En contains the zero homomorphism for

each n,
(2) X has C-positive weights,
(3) X has Q-positive weights.

Proof. [(1) ⇒ (2)] The metric closure of Gn in En contains 0 for n ≥ 2. Then
by Lemmas 2.4, 2.5 and 2.6 there is a one parameter subgroup λ(t) of TQ defined
over K such that lim

t→0
λ(t) = 0. Hence by Proposition 2.3 X has K-positive weights,

where [K : Q] <∞. In particular, we have (2).
[(2)⇒ (3)] If X has K-positive weights for such a field K that [K : Q] <∞, then

from the above argument we have a one parameter subgroup µ(t) of TQ defined
over Q such that lim

t→0
µ(t) = 0. Hence by Proposition 2.3 we have (3).

[(3) ⇒ (1)] This is obvious by Proposition 2.3. �

If X is a formal space, then one can see that it has Q-positive weights by
grading automorphisms (see [Su 1] and [Shi]). Thus, the property “having positive
weights” does not depend on the ground field, as does in the case of formal spaces
([Su 1]).

3. p-universal spaces

In this section, we will prove that the rational homotopy type of a p-universal
space has positive weights. Among the various definitions of the p-universality
([MOT]), we adopt the following for the sake of our convenience:
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Definition 3.1. A simply connected CW-complex X is called p-universal if for
any prime q different from p, there exists a map f : X −→ X such that

(1) f∗ : H∗(X ;Z/pZ) −→ H∗(X ;Z/pZ) is isomorphic,
(2) f] ⊗ 1 : π∗(X)⊗ Z/qZ −→ π∗(X)⊗ Z/qZ is trivial.
Let m(X) = Λ( ⊕

n≥2
V n) be a minimal model of X . Then we have a diagram

V n−̃→
ϕ

Hom(πn(X),Q)
∪

Hom(πn(X),Z),

where ϕ is a linear isomorphism of Q-vector spaces ([Su], [H]). Let Ln be the free
abelian subgroup of V n which is mapped isomorphically by ϕ onto Hom(πn(X),Z).
We form a multiplicative lattice:

L̂(X) = Λ( ⊕
n≥2

Ln).

Then L̂(X) is a free graded commutative algebra over Z. Denote by L̂(X)〈n〉 the
sub Z-module of the elements of degrees ≤ n.

Suppose that X is p-universal. Then the map f : X −→ X in Definition 3.1
induces an automorphism f̂ : m(X) −→ m(X) such that f̂ preserves L̂(X). Let
{e1, . . . , es, h1, . . . , ht} be a basis for L̂(X)〈n〉 such that

ei ∈
n
⊕
j=2

Li (i = 1, . . . , s)

and
hj ∈ L̂(X)+ · L̂(X)+ (j = 1, . . . , t),

where L̂(X)+ is the set of the elements of positive degrees. Then by (2) of Defi-
nition 3.1 with respect to this basis, the restriction f̂ |L̂(X)〈n〉 is represented by a
matrix with integer entries

C =

(
A ∗
0 B

)
such that each entry of A and B is divisible by q. Let K be a finite field extension
of Q containing all the eigenvalues of C. Let νq be a normal valuation of Q defined
by

νq
(aqs
b

)
= q−s,

where a, b are integers prime to q. We extend νq to K, which is also denoted νq by
abuse of notation. All the coefficients except the highest degree of the equation

det(tI − C) = t` + a`−1t
`−1 + · · ·+ a0 = 0 (6)
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are divisible by q, where ` = s+ t is the dimension of L̂(X)〈n〉.
Let λ be one of eigenvalues of C. Then we have

νq(λ`) = νq(−(a`−1λ
`−1 + · · ·+ a0)).

Since λ is an algebraic integer, we have

νq(λ) ≤ 1.

Hence we have

νq(−(a`−1λ
`−1 + · · ·+ a0)) ≤ max(νq(a`−1), . . . , νq(a0)) ≤ q−1,

from which we have
νq(λ`) ≤ q−1. (7)

Let Gn be the set of K-DGA automorphisms of L̂(X)〈n〉 ⊗K. We choose a basis
of L̂(X)〈n〉 ⊗K so that C is represented by an upper triangular matrix

C′ =

λ1 ∗
. . .

0 λ`

 =

λ1 0
. . .

0 λ`

 1 ∗
. . .

0 1

 ,

where λ1, . . . , λ` are the eigenvalues of C. Then the matrix

Cs =

λ1 0
. . .

0 λ`


is the semi-simple part of C′. By the Jordan decomposition, one can see that Cs
is also an element of Gn(K), the set of K-rational points of Gn.

Let α(X11, X12, . . . , Xnn) be a polynomial with coefficients in Q such that

α(g) = 0 for all g ∈ AutC(m(X)(n)⊗ C).

Then after multiplying some integer, the equation

α(Cks ) = 0 (k = 1, 2, . . . )

will become ∑
t≥1

∑
i1+···+i`=t

ai1···i`λ
ki1
1 · · ·λki`` + d = 0,

where ai1...i` and d, the constant term of α, are all integers. Then by using (7) we
have

νq(
∑
t≥1

∑
i1+···+i`=t

ai1...i`λ
ki1
1 · · ·λki`` ) ≤ q−ψ(k),
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where ψ(k) is an integer such that

lim
k→∞

ψ(k) =∞.

As k can be arbitrarily large, the constant term d must be zero. This implies that
the Zariski closure of Gn in En contains 0.

Thus by Theorem 2.7, we have proved the following:

Proposition 3.2. If X is p-universal for a prime p, the rational homotopy type
of X has Q-positive weights.

Let X be a CW-complex such that πi(X)⊗Q = 0 for i ≥ n0, where n0 is some
positive integer.

Proposition 3.3. If there is a one parameter subgroup λ(t) of Aut (m(X)) such
that lim

t→0
λ(t) = 0, then there is a CW-complex K satisfying the following condi-

tions:
(a) there is a 0-equivalence g : X −→ K,
(b) for any two distinct primes p, q, there is a p-equivalence fq : K −→ K

inducing fq] ⊗ 1 = 0 : π∗(K)⊗ Z/qZ −→ π∗(K)⊗ Z/qZ.

Proposition 3.3 follows from Lemma 3.4 below.
We can represent λ(t) by

λ(t) =


 ta1

. . .
tam

 ∣∣∣∣∣ t ∈ Q∗


with respect to some Z-basis for L(X)〈n〉, where a1, . . . , am are positive integers.
In particular, λ(s) preserves L̂(X) for a positive integer s.

Lemma 3.4. For each positive integer n, there is a complex Kn such that the
following conditions are satisfied:

(a) there is a DGA isomorphism

ρn : m(X)(n) −→ m(Kn);

(b)

πi(Kn) =
{

torsion free for i ≤ n
0 for i > n

;

(c) for any distinct primes p and q, there is a p-equivalence

fq : Kn −→ Kn



438 R. Body et al. CMH

satisfying the following conditions:
(1) the induced homomorphism

fq] ⊗ 1 : π∗(Kn)⊗ Z/qZ −→ π∗(Kn)⊗ Z/qZ

is trivial;
(2) the following diagram is commutative:

m(X)(n)
λ(q)n−→m(X)(n)yρn yρn

m(Kn)
f̂q−→ m(Kn),

where f̂q is a map induced by fq and λ(q)n is the restriction of λ(q) on m(X)(n).

Proof. We will prove the lemma by induction on n. As an inductive hypothesis
we assume that there is a complex Kn satisfying the conditions (a) ∼ (c). We can
choose a basis {e1, . . . , es} for Ln+1 (' HomZ(πn+1(X),Z)) such that each ei is
an eigenvector of λ(q)n+1. Then dei ∈ m(X)(n) is an either an eigenvector or 0.
Let N be a positive integer such that Ndei (i = 1, . . . , s) represents an element of
Hn+2(Kn;Z) via ρn. Then (de1, . . . , des) represents an element

χ ∈ [Kn,K(Zs/N, n+ 2)],

where [ , ] denotes the set of homotopy classes. Since Ln+1 ' Zs/N as Z-modules,
λq induces a map

λq : K(Zs/N, n+ 2) −→ K(Zs/N, n+ 2)

so that the diagram

Kn
fq−→ Kn

↓ χ ↓ χ
K(Zs/N, n+ 2)

λq−→K(Zs/N, n+ 2)

is homotopy commutative. Let

ΩK(Zs/N, n+ 2) −→ P
π−→K(Zs/N, n+ 2) (7)

be the path fibration. Let λ̂q : P −→ P be a map defined by λ̂q(`)(t) = λq(`(t)),
where ` ∈ P and t ∈ [0, 1]. Set

Kn+1 = {(x, `) ∈ Kn × P
∣∣ χ(x) = π(`)},

Cn+1 = {(x, `) ∈ Kn × P
∣∣ λqχ(x) = π(`)},

En+1 = {(x, `) ∈ Kn × P
∣∣ χfq(x) = π(`)}.
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Then we define a map
λ̃q : Kn+1 −→ Cn+1

by λ̃q(x, `) = (x, λ̂q(`)). Since λq ◦ χ is homotopic to χ ◦ fq, there is a homotopy
equivalence h : Cn+1 −→ En+1 so that the diagram

Cn+1−→
h
En+1

↓ ↓
Kn −→

Id
Kn

is commutative, where the vertical maps are the restrictions of the projection
Kn × P −→ Kn respectively. We define a map

f̃q : En+1 −→ Kn+1

by f̃q(x, `) = (fq(x), `). Then the diagram

En+1−→̃
fq

Kn+1

↓ ↓
Kn −→

fq
Kn

is commutative. By setting fq = f̃q ◦ h ◦ λ̃q, we have a commutative diagram

Kn+1
f̄q−→Kn+1

↓ ↓
Kn −→

fq
Kn

We will show that the map f̄q : Kn+1 −→ Kn+1 satisfies (a) ∼ (c). First of all,
(a) is easy to show from the construction. The other part is easily obtained from
the following homotopy commutative diagram:

K(Zs/N, n+ 1)−→Kn+1−→Kn

↓ λq ↓ f̄q ↓ fq
K(Zs/N, n+ 1)−→Kn+1−→Kn, (8)

and the fact that λq is represented on πn+1(K(Zs/N, n+ 1)) by a diagonal matrix
whose entries are positive integer power of q. �

Now we will complete the proof of Theorem A.
LetX be a finite complex whose rational homotopy type hasQ-positive weights.

Then by Lemma 3.4 and Proposition 2.2 we obtain a complex Kn satisfying the
following two conditions for any two distinct primes p and q:
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(1) Kn has the same rational homotopy type as the n-th stage of the Postnikov
tower of X ;

(2) for any distinct primes p and q, there is a p-equivalence fq such that

fq] ⊗ 1 = 0 : π∗(Kn)⊗ Z/qZ −→ π∗(Kn)⊗ Z/qZ.

Let n be the dimension of X and Ki
n+1 be the i-skeleton of Kn+1. Then Ki

n+1 has
the homotopy type of a finite CW-complex. The homomorphism in∗ : Hn(Kn

n+1;Z)
−→ Hn(Kn+1;Z) induced by the inclusion in : Kn

n+1 −→ Kn+1 is surjective. From
the homology sequence of the pair (Kn+1,K

n
n+1) we have an exact sequence

Hn+1(Kn+1;Z)−→
j∗

Hn+1(Kn+1,K
n
n+1;Z)−→

∂∗
Hn(Kn

n+1;Z)−→
i∗n

Hn(Kn+1;Z).

Since Hn(Kn
n+1;Z) is free, we have a direct sum decomposition of a free Z-module

Hn+1(Kn+1,K
n
n+1;Z) = Im j∗ ⊕ A,

where A is isomorphic to ker i∗n by ∂∗. We may assume that the map fq : Kn+1 −→
Kn+1 is cellular; let fnq : Kn

n+1 −→ Kn
n+1be the restriction. Then A is fq∗-

invariant. We may regard A as a free submodule of πn+1(Kn+1,K
n
n+1). Let

{α1, . . . , αm} be a basis of A. Let K be a complex obtained from Kn
n+1 by

attaching m cells of dimension n+ 1 via ∂]αi (i = 1, . . . ,m), where

∂] : πn+1(Kn+1,K
n
n+1) −→ πn(Kn

n+1)

is the boundary operator. From the construction we may regardK as a subcomplex
of Kn+1 such that

Hi(K;Z) ' Hi(Kn+1;Z) for i ≤ n,
Hi(K;Z) = 0 for i > n.

The map fnq can be extended to f̃q : K −→ K so that the diagram

Kn
n+1↪→K↪→Kn+1yfnq yf̃q yfq

Kn
n+1↪→K↪→Kn+1

is homotopy commutative. Then f̃q is a p-equivalence such that the induced
homomorphism

f
∗
q : H∗(K;Z/qZ) −→ H∗(K;Z/qZ)

is trivial. Hence by (b) of Theorem 2.1 in [MOT], K is p-universal for all p. Finally
we construct a 0-equivalence g : X −→ K. Since DGAs m(X)(n+1) and m(Kn+1)
are isomorphic, there is a homotopy equivalence between localized spaces at zero:

h : (Xn+1)(0) −→ (Kn+1)(0),
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where Xn+1 is the (n+ 1)-st stage of the Postnikov tower of X . Composing with
the natural map and the localization map, we obtain a map

φn+1 : X −→ (Kn+1)(0).

Since (Kn+1)(0) is obtained from (Kn
n+1)(0) by attaching ’local cells’ (cone over the

local sphere) of dimension ≤ n+1 ([Su 2]). By the cellular approximation theorem
we obtain a map X −→ (Kn

n+1)(0). By composing with the inclusion we have a
map φ : X −→ K(0) such that φ∗ induces isomorphisms on rational cohomology.

Since K is p-universal for every p and 0, the map φ factors as X
g−→K

`−→K(0).
Then by Theorem 1.3 in [MT], X is also p-universal, and we have the desired
result.

Remark 3.6. Theorem A does not hold for infinite complexes. Recall that the
infinite quaternionic projective space HP∞ has the same rational homotopy type
as the Eilenberg-MacLane space K(Z, 4), which is formal. As is well known, the
degree of the induced map on H4(HP∞;Z) of a self map is odd square. Hence
HP∞ is not p-universal (p 6= 2) in the sense of Definition 3.1. However K(Z, 4) is
p-universal for any prime p.

As an application of Theorem A, we will show that homogeneous spaces of
compact Lie groups are p-universal for any prime p.

Let G be a compact connected Lie group and H a closed connected subgroup of
G. Let S∗(G) be the ring of polynomial function with value in R on the Lie algebra
L(G). Then S∗(G) is a symmetric algebra of L(G)∗ = HomR(L(G),R). The degree
of the elements of L(G)∗ is defined to be 2. Let S∗(G)G be the invariant subalgebra
under the adjoint action of G. Then S(G)G is isomorphic to a graded polynomial
algebra. Let A(G) be the exterior algebra of L(G)∗, and A(G)G the invariant
subalgebra under the adjoint action of G. Then A(G)G is the exterior algebra of
the primitive space P (G). We have the transgression τ : P (G) −→ S(G)G. Let
γ : S(G)G −→ S(H)H be the restriction of polynomial functions. Then we have a
free DGA

A(G/H) = S(H)H ⊗A(G)G,

where the differential dr is defined as follows:

dr(x⊗ 1) = 0, for x ∈ S(H)H ,
dr(1⊗ y) = γτ(y)⊗ 1, for y ∈ P (G).

The minimal model ofG/H overR is isomorphic to that ofA(G/H). Letm(G/H)⊗
R be the minimal model of A(G/H).

Proposition 3.7. Let G be a compact connected Lie group and H a closed
connected subgroup. Then G/H is p-universal for any prime p.
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Proof. By Theorem A, it is sufficient to show that the rational homotopy type
of G/H has positive weights. For any t ∈ R∗, there is a one parameter subgroup
λ(t) of DGA automorphisms of A(G/H) defined by

λ(t)(x⊗ 1) = t|x|x⊗ 1,

λ(t)(1⊗ y) = t|y|+1(1⊗ y),

where |z| denotes the degree of z. The lifting ψ(t) of λ(t) on m(G/H) gives
elements of Aut R(m(G/H)⊗R) such that lim

t→0
ψ(t) = 0. Then by Theorem 2.7 it

has Q-positive weights. �
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