
Comment. Math. Helv. 73 (1998) 353–378
0010-2571/98/030353-26 $ 1.50+0.20/0
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The representation ring of a compact Lie group revisited
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Abstract. We describe a new construction of the induction homomorphism for representation
rings of compact Lie groups: a homomorphism first defined by Graeme Segal. The idea is to
first define the induction homomorphism for class functions, and then show that this map sends
characters to characters. This requires a detection theorem — a class function of G is a character
if its restrictions to certain subgroups of G are characters — which in turn requires a review of
the representation theory for nonconnected compact Lie groups.
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In his 1968 paper, Segal [Seg] used elliptic operators to construct induction
homomorphisms R(H) −→ R(G) for an arbitrary pair H ⊆ G of compact Lie
groups, and then applied this to prove (among other things) a detection result for
when a class function on G is a character. In this paper, we give new proofs of
these results, but in the reverse order. We begin in Section 1 by showing that a
class function on G is a character if its restrictions to all finite subgroups of G are
characters. Then, in Section 2, we first define induction homomorphisms Cl(H) −→
Cl(G) for class functions, and afterwards apply the results of Section 1 to show that
they send characters to characters and hence define induction maps between the
representation rings. This gives a construction of the induction homomorphisms
which is more elementary than that of Segal (though also less elegant), in that it
only assumes the standard theory of representations of a compact connected Lie
group.

It is the results in Section 3 which, while more technical, provided the original
motivation for this work. Let SP(G) be the family of all p-toral subgroups of G
(for all primes p), where a group is called p-toral if it is an extension of a torus by a
finite p-group. Let RP(G) be the inverse limit of the representation rings R(P ) for
all P ∈ SP(G), where the limit is taken with respect to restriction and conjugation
in G. This group RP(G) was shown in [JO, Theorem 1.8] to be isomorphic to the
Grothendieck group K(BG) of the monoid of vector bundles over BG; and the
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“restriction” homomorphism

rsG : R(G) −−−−−−−→ RP(G) = lim←−
P∈SP(G)

R(P )

is isomorphic to the natural homomorphism R(G) −→ K(BG) which sends a rep-
resentation V to the bundle (EG×GV )↓BG.

The main result of Section 3 is a description, for arbitrary G, of the cokernel
of the homomorphism rsG. In particular, we show that it is onto whenever G
is finite or π0(G) is a p-group; but that it is not surjective in general. Precise
necessary and sufficient conditions for rsG to be onto are given in Theorem 3.10,
and several simpler sufficient conditions are given in Corollary 3.11. Note that rsG
is surjective if and only if bundles over BG have the following property: for each
ξ↓BG there exist G-representations V, V ′ such that ξ ⊕ (EG×GV ′) ∼= (EG×GV )
(since by [JO, Theorem 1.8], every bundle over BG is a summand of a bundle
coming from a G-representation).

In the above discussion, we have for simplicity dealt only with the complex
representation rings. But most of the results are shown below for real as well as
complex representations.

I would like to thank in particular Stefan Jackowski for his comments and
suggestions about this work. Originally, Sections 1 and 3 were intended to go
into our joint paper [JO], but then they grew to the point where we decided to
publish them separately. I would also like to thank the colleague who, at the
1996 summer research institute in Seattle, showed me the references [Ta] and
[Vo] on representation theory for nonconnected compact Lie groups. (After that
conference, I asked several people if they were the ones who had done so, but they
all denied it.)

Section 1. Detection of characters

The main results of this section are Propositions 1.2 and 1.5: on detecting char-
acters among class functions. They follow from Proposition 1.4, which describes
the representation theory of nonconnected compact Lie groups. The first part of
Proposition 1.4 — the bijection between irreducible G-representations and certain
irreducible representations of NG(T,C) — was proven by Takeuchi [Ta, Theorem
4], and is also stated in [Vo, Theorem 1.17]. Since their notation is very different
from that used here, we have found it simplest to keep our proof, rather than just
refer to [Ta]. Note that the group which we call N = NG(T,C) is denoted T in
[Ta] and [Vo] (and called the Cartan subgroup in [Vo]).

Throughout this section, G denotes a fixed compact Lie group, and G0 is its
identity connected component. Fix a maximal torus T ⊆ G, let WG = NG(T )/T
denote its Weyl group, and let t ⊆ g denote the Lie algebras of T and G. For any
Weyl chamber C ⊆ t, define

NG(T,C) =
{
g ∈ NG(T )

∣∣ Ad(g)(C) = C
}
,
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and
NG(T,±C) =

{
g ∈ NG(T )

∣∣ Ad(g)(±C) = (±C)
}
.

Here, Ad(g) denotes the adjoint (conjugation) action of g on t and g. We will see
in Proposition 1.1 that NG(T,C) has exactly one connected component for each
connected component of G, and that every element of G is conjugate to an element
of NG(T,C). Then, in Proposition 1.2 below, we show that a (continuous) class
function f ∈ Cl(G) is a character of G if and only if f |NG(T,C) is a character, and
that f is a real character of G (i.e., the character of a virtual RG-representation)
if and only if f |NG(T,±C) is a real character. At the same time, we construct
(Proposition 1.4) a one-to-one correspondence between the irreducible represen-
tations of G, and those irreducible representations of NG(T,C) whose weights lie
in the dual Weyl chamber C∗. This generalizes the standard relationship, for a
connected compact Lie group G, between the irreducible representations of G and
those of T .

Afterwards, the detection result is extended to show that an element f ∈ Cl(G)
is a character (real character) if and only if f |H is a character (real character) of
H for each finite subgroup H ⊆ G. The classical theorem of Brauer for detecting
characters on finite groups can then be applied to further restrict the class of finite
subgroups of G which have to be considered.

We first recall the definition and basic properties of the Weyl chambers of
a compact connected Lie group G. The set of irreducible representations (or

irreducible characters) of T will be identified here with T ∗
def= Hom(T, S1); which

will in turn be regarded as a lattice in t∗ = Hom(t,R).
The roots of G (or of G0) are the characters of the nontrivial irreducible sum-

mands of the adjoint representation of T on C⊗Rg. They occur in pairs ±θ. Let
R ⊆ T ∗ ⊆ t∗ denote the set of roots of G. Any element x0 ∈ t such that θ(x0) 6= 0
for all θ ∈ R determines a choice of positive roots

R+ = {θ ∈ R | θ(x0) > 0}.

And this in turn determines a Weyl chamber

C = {x ∈ t | θ(x) ≥ 0 ∀θ ∈ R+} ⊆ t

and a dual Weyl chamber

C∗ = {x ∈ t∗ | 〈θ, x〉 ≥ 0 ∀θ ∈ R+} ⊆ t∗.

Here, in the definition of C∗, 〈−,−〉 denotes any G-invariant inner product on g∗.
Note that C∗ is independent of the choice of inner product, since a G-invariant
inner product is uniquely defined up to scalar on each simple component of G.

Proposition 1.1. Fix a maximal torus T ⊆ G and a Weyl chamber C ⊆ t, and
set N = NG(T,C). Then N ∩ G0 = T , N ·G0 = G, and hence N/T ∼= G/G0.
Also, any element of G is conjugate to an element of N .
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Proof. Recall that the Weyl group WG0 = NG0(T )/T of G0 permutes the Weyl
chambers of T simply and transitively (cf. [Ad, Lemma 5.13]). Hence each coset
of NG0(T ) in NG(T ) contains exactly one connected component of N = NG(T,C);
and so N ∩G0 = T , N ·G0 = G, and N/T ∼= G/G0.

By [Bo, §5.3, Theorem 1(b)], any automorphism of G0 leaves invariant some
maximal torus and some Weyl chamber in G0. Hence, any element g∈G is con-
tained in NG(T ′, C′) for some maximal torus T ′ and some Weyl chamber C′ ⊆ T ′;
and T ′ and T are conjugate in G0 (cf. [Ad, Corollary 4.23]). Since NG0(T )/T per-
mutes the Weyl chambers for T transitively, there is a ∈ G0 such that T = aT ′a−1

and C = aC′a−1; and aga−1 ∈ N = NG(T,C). �

When dealing with real representations, we need to distinguish between the
different types of irreducible representations and characters. As usual, we say that
a G-representation V (over C) has real type if it has the form V ∼= C⊗RV ′ for
some RG-representation V ′; and that V has quaternion type if it is the restriction
of an HG-representation. If V is irreducible and its character is real-valued, then
V has real or quaternion type, but not both [Ad, Proposition 3.56]. By a real
character will be meant the character of a virtual representation of real type (i.e.,
the difference of two representations of real type).

Proposition 1.2. Fix a maximal torus T ⊆ G and a Weyl chamber C ⊆ t. Then a
continuous class function f : G −→ C is a character of G if and only if f

∣∣NG(T,C)
is a character of NG(T,C). And a continuous class function f : G −→ R is a real
character of G if and only if f

∣∣NG(T,±C) is a real character.

The proof of Proposition 1.2 will be given after that of Proposition 1.4 below.
We first note some elementary conditions for f to be a character or a real character.
In the following lemma, we write as usual 〈ϕ,ψ〉 =

∫
G
ϕ(g)ψ(g) for any pair of

continuous functions ϕ,ψ : G → C (where the integral is the Haar integral on G
with measure 1).

Lemma 1.3. (a) A class function f ∈ Cl(G) is a character of G if and only if
〈f, χ〉 ∈ Z for each character χ of G.

(b) A class function f : G → R is a real character of G if and only if f is a
character, and 〈f, χV 〉 ∈ 2Z for each G-representation V of quaternion type.

(c) A class function f : G→ R is a real character of G if f is a character, and
f |H is a real character of H for some H C G of finite odd index.

Proof. For any pair W,V of complex G-representations,

〈χW , χV 〉 = dimC
(
(W ∗ ⊗C V )G

)
= dimC

(
HomCG(W,V )

)
∈ Z.

(Recall that χW∗(g) = χW (g) for all g ∈ G.) Also, if W has real type and V
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has quaternion type, then HomCG(W,V ) is a quaternion vector space, and so its
complex dimension is even. This proves the “only if” parts of points (a) and (b).

Conversely, assume that f ∈ Cl(G) is such that 〈f, χ〉 ∈ Z for each character
χ of G. Since the irreducible characters form an orthonormal set, we know that
〈f, f〉 ≥

∑k
i=1 〈f, χi〉

2 for any set χ1, . . ., χk of distinct irreducible characters.
Since each 〈f, χ〉 ∈ Z, this shows that 〈f, χ〉 = 0 for all but finitely many irreducible
chararcters χ; and so f =

∑
χ 〈f, χ〉·χ is a character of G by the Peter-Weyl

theorem (cf. [Ad, Theorem 3.47]).
We now consider conditions for a real valued character to be a real character;

or equivalently for a self-adjoint representation to be of real type. An irreducible
G-representation (over C) is of complex type if its character is not real valued;
i.e., if V 6∼= V ∗. It follows from [Ad, Theorem 3.57] that a G-representation V
(over C) is of real type if and only if it is a sum of irreducible representations
of real type, of representations C⊗RW ∼= W⊕W ∗ for W irreducible of complex
type, and of representations C⊗RW ∼= W⊕W for W irreducible of quaternion
type. If v =

∑k
i=1 ni[Vi] ∈ R(G) has real valued character, where the Vi are

distinct irreducible G-representations, then
∑k
i=1 ni[Vi] =

∑k
i=1 ni[(Vi)

∗], and so
each pair Vi, (Vi)∗ occurs with the same multiplicity. Hence v has real type if 2|ni
for each i such that Vi has quaternion type. Since ni = 〈χv, χVi〉, this proves point
(b).

It remains to prove point (c): that an element v ∈ R(G) with real valued
character has real type if v|H has real type for some normal subgroup H C G of
finite odd index; we may assume that v is the class of an actual C[G]-representation
V . Since all irreducible C[G/H]-representations, aside from the trivial one, have
complex type (cf. [Ser, Exercise 13.12]), we can write C[G/H] ∼= C⊕W⊕W ∗ for
some representation W . Since by assumption, V |H has real type and V ∗ ∼= V , the
isomorphism

IndGH(V |H) ∼= C[G/H]⊗C V ∼= V ⊕ (W⊗CV )⊕ (W⊗CV )∗ ∼= V ⊕ C⊗R(W⊗CV )

shows that V has real type. �

By a weight of the compact Lie group G is meant an element of the lattice
T ∗ ⊆ t∗, regarded as an irreducible character of T . If V is any representation of
G, then the set of “weights of V ” is defined to be the set of characters of irre-
ducible components of V |T . Consider the partial ordering of the weights of G,
where φ1 ≤ φ2 if φ1 is contained in the convex hull of the WG-orbit of φ2 (cf. [Ad,
Definition 6.23]). One of the basic theorems of representation theory says that if
G is connected, then any irreducible G-representation V has a unique WG-orbit of
highest (maximal) weights, each of which occurs with multiplicity one. Further-
more, distinct irreducible representations have distinct orbits of higher weights,
and every weight of G can be realized as the highest weight of some irreducible
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G-representation. Thus, the irreducible representations of any connected G are in
one-to-one correspondence with the WG-orbits of weights of G. And since any giv-
en dual Weyl chamber C∗ ⊆ t∗ contains exactly one element in each WG orbit in
t∗ (cf. [Ad, Corollary 5.16]), the irreducible representations of G are in one-to-one
correspondence with the weights in C∗. For more detail, see, e.g., [Ad, Theorem
6.33] or [BtD, Section VI.2].

Now assume that G is not connected. If V is an irreducible G-representation,
and if V0 is any irreducible component of V |G0, then V is an irreducible summand
of IndGG0

(V0). Hence each irreducible summand of V |G0 is obtained from V0 by
conjugation by some element of π0(G); and there is still a uniquely defined WG-
orbit of highest weights for V . In this case, however, the highest weights can
occur with multiplicity greater than one; and there can be several irreducible G-
representations with the same orbit of highest weights.

In the next proposition, Irr(G) will denote the set of irreducible representations
of G. Also, if N = NG(T,C) (for any maximal torus T ⊆ G and any Weyl
chamber C ⊆ t), then Irr(N,C∗) denotes the set of irreducible representations of
N whose weights all lie in the dual Weyl chamber C∗ of C. For any V ∈ Irr(G),
mxC∗(V ) ⊆ C∗ ∩ T ∗ denotes the set of those maximal weights of the irreducible
summands of V |G0 which lie in C∗. And for any N -invariant set of weights
Φ ⊆ T ∗, V 〈Φ〉 denotes the sum of all irreducible summands of V |T with weights
in Φ, regarded as an N -representation.

Proposition 1.4. Fix a maximal torus T ⊆ G and a Weyl chamber C ⊆ t,
and set N = NG(T,C). For any irreducible G-representation V , the subspace
V 〈mxC∗(V )〉 is always an irreducible summand of V |N having multiplicity one.
This induces a bijection

βG : Irr(G)
∼=−−−−−→ Irr(N,C∗) defined by βG([V ]) =

[
V 〈mxC∗(V )〉

]
, (1)

and an isomorphism

β̄G : R(G)
∼=−−−−−→ R(N,C∗) defined by β̄G([V ]) = [V 〈C∗〉]. (2)

Proof. Fix an irreducible G0-representation V0, and let φ be the maximal weight
of V0 lying in C∗. Set Φ = (N/T )·φ ⊆ C∗, the N/T -orbit of φ. Let (V0) ⊆
Irr(G0) denote the G/G0-orbit of V0, and let Irr(G, (V0)) denote the set of all
irreducible G-representations with support in (V0); i.e., the set of those irreducible
G-representations V such that all irreducible summands of V |G0 lie in (V0).

Let Vφ denote the (1-dimensional) irreducible representation with weight (char-
acter) φ; regarded as a subspace of V0. Since G/G0 ∼= N/T , the uniqueness of
maximal weights in C∗ shows that each irreducible component of

(
IndGG0

(V0)
)∣∣G0

contains exactly one weight in Φ = (N/T )·φ (and with multiplicity one). Thus,

V0〈Φ〉 = Vφ and IndGG0
(V0)〈Φ〉 = IndNT (Vφ). (3)
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So for anyG-representation V ′ with support in (V0) (i.e., for any [V ′] ∈ Irr(G, (V0))),
there is a commutative diagram

HomG0

(
V0, V

′) r1−−−−→
∼=

HomT

(
Vφ, V

′〈Φ〉
)

F1

y∼= F2

y∼=
HomG

(
IndGG0

(V0), V ′
) r2−−−−→ HomN

(
IndNT (Vφ), V ′〈Φ〉

) (4)

where F1 and F2 are the Frobenius reciprocity isomorphisms, and r1 and r2 are
defined by restriction to summands with weights in Φ. The one-to-one correspon-
dence between irreducible G0-representations and highest weights contained in C∗

shows that r1 is an isomorphism, and thus that r2 is also an isomorphism.
Now assume that V and V ′ are two irreducible G-representations with support

in (V0). By Frobenius reciprocity again (HomG(IndGG0
(V0), V ) ∼= HomG0(V0, V ) 6=

0), V is a summand of IndGG0
(V0). So by (3) and (4), for any [V ], [V ′] ∈ Irr(G, (V0)),

HomN (V 〈Φ〉, V ′〈Φ〉) ∼= HomG(V, V ′) ∼=
{ C if V ∼= W

0 if V 6∼= W.

This shows that V 〈Φ〉 is N -irreducible for any [V ] ∈ Irr(G, (V0)), and that V 〈Φ〉 ∼=
V ′〈Φ〉 if and only if V ∼= V ′. And finally, any irreducible N -representation with
support in Φ is a summand of IndNT (Vφ) ∼= IndGG0

(V0)〈Φ〉, and hence has the form
V 〈Φ〉 for some V ∈ Irr(G0, (V0)).

We have now shown that βΦ : Irr(G, (V0))
∼=
−→ Irr(N,Φ), defined by setting

βΦ([V ]) = [V 〈Φ〉], is a well defined bijection. Since the restriction to G0 of any
irreducible G-representation is a sum of representations in just one G/G0-orbit
of irreducible G0-representations, βG : Irr(G) −→ Irr(N,C∗) is the disjoint union
of the βΦ taken over all N/T -orbits Φ ⊆ (C∗ ∩ T ∗) and hence also a bijection.
This proves point (1). At the same time, it shows that the homomorphism β̄G :
R(G) −→ R(N,C∗) of (2) is an isomorphism, since its matrix with respect to the
bases of irreducible representations is triangular with 1’s along the diagonal. �

We are now ready to prove that a class function is a (real) character if its
restriction to NG(T,C) (NG(T,±C)) is a (real) character.

Proof of 1.2. Complex case: Fix a continuous class function f : G −→ C such
that f |N is a character of N . We must show that f is a character of G. Let
v0 ∈ R(N) be such that χv0 = f |N , let χ be the character of β̄−1

G (v0〈C∗〉) ∈ R(G)
(Proposition 1.4(2)), and set f ′ = f−χ. By construction, f ′|N is the character
of an element v ∈ R(N) such that v〈C∗〉 = 0. We will show that v = 0. It then
follows that f ′ = 0 (since every element of G is conjugate to an element of N),
and hence that f = χ is a character of G.
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Fix any φ ∈ T ∗, and let Nφ ⊆ N denote the subgroup of elements fixing φ.
Choose any ψ ∈ interior(C∗)N (N/T acts linearly on t∗ and leaves the dual Weyl
chamber C∗ invariant). Then φ + Rψ is not contained in the wall of any dual
Weyl chamber (since ψ is not); and so there is a dual Weyl chamber C∗1 such that
φ + εψ ∈ interior(C∗1) for small ε > 0. Let w ∈ WG be any element such that
w(C∗1 ) = C∗ (WG0 permutes the Weyl chambers transitively). Then wφ ∈ C∗,
since φ ∈ C∗1 . Also, for any a ∈ Nφ, a(ψ) = ψ and a(φ) = φ by assumption,
so a leaves C∗1 invariant, and hence waw−1 leaves C∗ = w(C∗1) invariant. Thus
wNφw

−1 ⊆ N ; and so v〈wφ〉 = 0 ∈ R(wNφw−1) since v〈C∗〉 = 0 ∈ R(N). Since
χv is constant on G-conjugacy classes (it is the restriction of a class function on
G), it now follows that v〈φ〉 = 0 ∈ R(Nφ).

Let φ1, . . ., φk ∈ T ∗ be N/T -orbit representatives for the support of v, and write
Ni = Nφi (the subgroup of elements which fix φi). Then v =

∑k
i=1 IndNNi(v〈φi〉).

We have just seen that v〈φi〉 = 0 ∈ R(Ni) for each i, and hence v = 0.

Real case: Write N± = NG(T,±C), for short. Fix a class function f : G −→ C such
that f |N± is a real character. Then f is a character by the above, and f(G) ⊆ R
since any element of G is conjugate to an element of N ⊆ N± (Proposition 1.1).
By Lemma 1.3(b), we can assume (after replacing f by its sum with an appropriate
real character) that f = χV , where V =

∑k
i=1 Vi, the Vi are distinct irreducible

G-representations of quaternion type, and V |N± is a representation of real type.
We claim that V = 0 (i.e., that k = 0).

Assume otherwise: that k > 0. Choose a WG-orbit Ψ of maximal weights in
one of the Vi — say V1 — which does not occur in any of the others except possibly
as maximal weights. Set Φ = Ψ ∩ C∗ and Φ± = Ψ ∩ (±C∗). By Proposition 1.4
(and the original assumption on Ψ), V1〈Φ〉 is irreducible as an N -representation,
and does not occur as a summand of Vi|N for any i 6= 1. So the N±-representation

V ′1
def= V1〈Φ±〉 is irreducible — since

V ′1|N ∼= V1〈Φ〉 ⊕ V1〈Φ±rΦ〉

— and V ′1 does not occur as a summand of Vi|N± for any i 6= 1. Also, since V1
is self-conjugate, the elements of Ψ, and hence of Φ±, occur in pairs ±φ. This
shows that V ′1 = V1〈Φ±〉 is invariant under the conjugate linear automorphism
j : V1 −→ V1, and hence that it also has quaternion type. Thus, V |N± contains
with multiplicity one the irreducible summand V ′1 of quaternion type, and this
contradicts the assumption that V |N± is a representation of real type. �

It remains to extend this criterium to a result which detects characters by
restriction to finite subgroups of G. As usual, a finite group is called elementary if it
is the product of a p-group (for some prime p) and a cyclic group. A finite group G
is called R-elementary if it is elementary, or if it contains a normal cyclic subgroup
C C G of 2-power index with the property that for any g ∈ G, conjugation by g
acts on C via the identity or via (x 7→ x−1).
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Proposition 1.5. For any class function f : G −→ C, f is a character of G if and
only if its restriction to any finite elementary subgroup of G is a character; and
f is a real character of G if and only if its restriction to each finite R-elementary
subgroup of G is a real character.

Proof. When G is finite, the proposition holds by the classical Brauer theorems
for detecting characters of finite groups (cf. [Ser, Theorem 21 and Proposition
36]). So it will suffice to show that f is a (real) character of G if and only if its
restrictions to all finite subgroups of G are (real) characters. By Proposition 1.2,
it suffices to prove this when the connected component G0 of G is a torus.

Assume now that G0 = T is a torus. We can choose a sequence H1 ⊆ H2 ⊆
H3 ⊆ . . . of subgroups of G such that each Hi intersects all connected components
of G, and such that the union of the Hi is dense in G. The simplest way to
see this is to set n = |G/T |, let nT ⊆ T denote the n-torsion subgroup, and
note that the homomorphism H2(G/T ; nT ) −→ H2(G/T ;T ) is surjective since
n·H2(G/T ;T ) = 0. Hence there is a subgroup H0 ⊆ G such that H0 ∩ T = nT
and 〈H0, T 〉 = G; and we can define Hk = 〈H0, n·2kT 〉 for each k > 0.

Let f ∈ Cl(G) be any class function whose restriction to each Hi is a character.
For each character χ of G,

〈f, χ〉G
def=
∫
G

f ·χ = lim
i−→∞

( 1
|Hi|

∑
g∈Hi

f(g)·χ(g)
)

= lim
i−→∞

〈f, χ〉Hi

(by definition of the Riemann integral); and 〈f, χ〉Hi ∈ Z for each i since f |Hi is
a character of Hi. Thus, 〈f, χ〉G ∈ Z for each χ, and so f is a character of G by
Lemma 1.3(a). And if f |Hi is a real character for each i, then f is real valued (the
union of the Hi being dense in G), 〈f, χ〉G = lim

i→∞
〈f, χ〉Hi ∈ 2Z for each character

χ of quaternion type by Lemma 1.3(b), and so f is a real character by Lemma
1.3(b). �

Section 2. Induction for representations of compact Lie groups

Again, throughout the section, G denotes a fixed compact Lie group. We construct
an induction homomorphism R(H) −→ R(G), for an arbitrary closed subgroup
H ⊆ G, by first defining it between the groups of class functions, and then using
the results of Section 1 to show that it sends characters to characters.

The following lemma is useful for constructing continuous functions on G, and
on certain closed subsets of G.

Lemma 2.1. Let F be any set of closed subgroups of G, closed under conjuga-
tion and closed in the space of all subgroups (with the Hausdorff topology). Set
GF = ∪H∈FH: the union of the subgroups in F . Then for any function f : GF −→
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C invariant under conjugation, f is continuous on GF if f |H is continuous for all
H ∈ F .

Proof. Fix any conjugation invariant function f : GF −→ C such that f |H is
continuous for all H ∈ F . It will suffice to show, for any sequence gi → g in GF ,
that some subsequence of the f(gi) converges to f(g). Since if f is not continuous
at g, then there is ε > 0 and a sequence {gi} in GF converging to g such that
|f(gi)− f(g)| > ε for all i.

Fix such gi and g; and for each i choose Hi ∈ F such that gi ∈ Hi. Since F is
closed in the space of closed subgroups of G, and since this space is compact (cf.
[tD, Proposition IV.3.2(i)]), we can replace the gi by a subsequence and assume
that the Hi converge to some subgroup H ∈ F . By [tD, Theorem I.5.9], there
exist elements ai → e such that aiHia

−1
i ⊆ H for i sufficiently large. And hence

lim
i→∞

f(gi) = lim
i→∞

f(aigia−1
i ) = f(g)

since f |H is continuous. �

The next lemma is also rather technical, and will be used later to show that
the induction homomorphism we define for class functions is well defined.

Lemma 2.2. Fix a closed subgroup H ⊆ G and an element g ∈ G, and let
(G/H)g be the fixed point set of the action of g on G/H. A coset aH ∈ G/H
lies in (G/H)g if and only if a−1ga ∈ H. And if a1H and a2H lie in the same
connected component of (G/H)g, then a2H = xa1H for some x ∈ CG(g). In
particular, in this situation, a−1

1 ga1 is conjugate in H to a−1
2 ga2.

Proof. For any a ∈ G, aH ∈ (G/H)g if and only if gaH = aH, if and only if
a−1ga ∈ H. Also, if a2H = xa1H for any a1, a2 ∈ G and any x ∈ CG(g), then
a−1

1 ga1 and a−1
2 ga2 are conjugate by an element of H.

Now fix an element aH ∈ (G/H)g. Let CG(g)0 be the identity connected
component of the centralizer of g. We must show that the connected component
of aH in (G/H)g is CG(g)0·aH. Equivalently, via translation by a−1, we must
show that the connected component of eH in (G/H)a

−1ga is CG(a−1ga)·eH. So
upon replacing a−1ga by g, we are reduced to the case where a = e and g ∈ H.

Let h ⊆ g denote the Lie algebras of H ⊆ G. For all x ∈ G, xH ∈ (G/H)g

if and only if xH = gxH = gxg−1H. In particular, CG(g)·H ⊆ (G/H)g; and
the tangent plane at eH to the manifold (G/H)g is (g/h)Ad(g) (the fixed point
set of the adjoint action of g on g/h). Also, the projection of g onto g/h is split,
equivariantly with respect to the action of the compact group H, and so gAd(g)

surjects onto (g/h)Ad(g). Since gAd(g) is the Lie algebra of CG(g), this shows that
the two submanifolds CG(g)0·H ⊆ (G/H)g have the same dimension, and hence
that CG(g)0·H is the connected component of eH in (G/H)g. �
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We can now define the induction homomorphism for class functions, motivated
by the formula given by Segal [Seg, p. 119].

Propositition 2.3. Let H ⊆ G be any closed subgroup. Then there is a homo-
morphism

IndGH : Cl(H) −−−−−−→ Cl(G)

determined (uniquely) by the following formula. Fix any g ∈ G, let F1, . . . , Fk be
the connected components of (G/H)g, and choose elements aiH ∈ Fi. Then for
any f ∈ Cl(H),

IndGH(f)(g) =
k∑
i=1

χ(Fi)·f(a−1
i gai). (1)

Proof. Fix any f ∈ Cl(H). By Lemma 2.2, for each g ∈ G, IndGH(f)(g) is inde-
pendent of the choice of representatives aiH for the components of (G/H)g. Also,
IndGH(f) is conjugation invariant by definition; and it only remains to check that
it is continuous.

Let F be the family of abelian subgroups of G. Clearly, F is closed in the
Hausdorff topology, and its union is all of G. By Lemma 2.1, it will suffice to show
that f |A is continuous for each A ∈ F . Let X be a connected component of some
subgroup A ∈ F ; we can assume that X generates π0(A). For any g ∈ X , A/〈g〉 is
connected (where 〈g〉 is the closure of the subgroup generated by g); and hence is a
torus (or trivial). If (G/H)g =

∐k
i=1 Fi, where the Fi are connected components,

then (G/H)A =
∐k
i=1(Fi)A/〈g〉 and χ((Fi)A/〈g〉) = χ(Fi) for each i. Thus, if we

write (G/H)A =
∐m
j=1 Ej (where the Ej are the connected components), and

choose elements bjH ∈ Ej , then

IndGH(f)(g) =
m∑
j=1

χ(Ej)·f(b−1
j gbj).

This formula holds for all g ∈ X , and shows that IndGH(f) is continuous on X . �

The following double coset formula for induction and restriction of class func-
tions is analogous to that shown by Feshbach [Fe] for equivariant cohomology
theories. It was shown for representations by Snaith [Sn, Theorem 2.4], using Se-
gal’s definition. We prove it here for class functions, using directly the definition
in Proposition 2.3.

Lemma 2.4. Fix closed subgroups H,K ⊆ G, and write

K\G/H =
k∐
i=1

Ui
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where each Ui is a connected component of one orbit type for the action of K
on G/H. Fix elements a1, . . ., ak ∈ G such that KaiH ∈ Ui. For each i, let
ϕi : Cl(H) −→ Cl(K) denote the composite

ϕi : Cl(H) Res−−−−→ Cl(a−1
i Kai ∩H)

conj(a−1
i

)
−−−−−−→ Cl(K ∩ aiHa−1

i ) Ind−−−−→ Cl(K).

Then, as functions from Cl(H) to Cl(K),

ResGK ◦ IndGH =
k∑
i=1

χ](Ui)·ϕi; (1)

where for each i,

χ](Ui) = χ(Ui, Ui r Ui) = χ(Ui)− χ(Ui r Ui).

Proof. Fix elements f ∈ Cl(H) and g ∈ K. We will compare the two maps in (1),
when evaluated on a given class function f and a given element g.

Let Ũi ⊆ G/H denote the inverse image of Ui under the projection to K\G/H.
Let F1, . . . , Fm be the connected components of (G/H)g. Thus, G/H =

∐k
i=1 Ũi

and (G/H)g =
∐m
j=1 Fj . For each i, j, set

Vij = (K·aiH) ∩ Fj ⊆ Ũi ∩ Fj ⊆ G/H

(note that Vij need not be connected). Then the Vij −→ Ũi∩Fj −→ Ui are fibration
sequences, and so

χ(Fj) =
k∑
i=1

χ](Ũi ∩ Fj) =
k∑
i=1

χ(Vij)·χ](Ui).

for each j. Fix elements bij ∈ K, for each i, j, such that bijaiH ∈ Vij . Then by
definition of the induction map (and Lemma 2.1),

(ResGK ◦ IndGH)(f)(g) = IndGH(f)(g) =
k∑
i=1

m∑
j=1

χ(Vij)·χ](Ui)·f(a−1
i b−1

ij gbijai)

=
k∑
i=1

χ](Ui)·
m∑
j=1

χ(Vij)·
(
f◦ conj(a−1

i )
)
(b−1
ij gbij).

And for each i, if we set Ki = K∩aiHa−1
i (the isotropy subgroup of the action of

K on aiH ∈ G/H), then (K/Ki)g ∼= (K·aiH)g =
∐m
j=1 Vij (⊆ G/H); and so

m∑
j=1

χ(Vij)·
(
f◦ conj(a−1

i )
)
(b−1
ij gbij) = IndKKi

(
f◦ conj(a−1

i )
)
(g) = ϕi(f)(g).

�
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When G is finite, the formula given in Proposition 2.3 is just the usual formula
for the induction of characters (cf. [Ser, Theorem 12]). Hence by the double
coset formula in Lemma 2.4, for each character (real character) χ of H and each
finite subgroup K ⊆ G,

(
IndGH(χ)

)
|K is a character (or real character) of K. The

detection result of Proposition 1.5 now applies to show:

Theorem 2.5. The homomorphism IndGH of Proposition 2.3 sends characters to
characters, and sends real characters to real characters. It thus restricts to homo-
morphisms

IndGH : R(H) −−−−→ R(G) and IndGH : RO(H) −−−−→ RO(G).
�

These induction homomorphisms are in fact functorial; i.e., they compose in
the expected way.

Lemma 2.6. For any closed subgroups K ⊆ H ⊆ G,

IndGK = IndGH ◦ IndHK : Cl(K) −−−−−→ Cl(G),

and hence
IndGK = IndGH ◦ IndHK : R(K) −−−−−→ R(G).

Proof. Fix any element g ∈ G, and consider the projection (G/K)g
pr−−−−→ (G/H)g.

For any aH ∈ (G/H)g,

pr−1(aH) = {ahK |h ∈ H, h−1(a−1ga)h ∈ K} = a·(H/K)a
−1ga.

If aH and a′H lie in the same connected component of (G/H)g, then a′H = xaH
for some x ∈ CG(g) (Lemma 2.2), and so pr−1(a′H) = x·pr−1(aH). It follows that
pr is a fibration (fiber bundle) over each connected component of (G/H)g. The
result now follows from the definition of the induction homomorphisms (Proposi-
tion 2.3), together with the multiplicativity of Euler characteristics in a fibration.

�

We leave it as an exercise to check that this induction homomorphism is the
same as that defined by Segal in [Seg] (use the formula given in [Seg, p. 119]).

It is not hard to prove Frobenius reciprocity for induction and restriction of
representations, using the definition given here. And that in turn implies, for
example, that the induction map IndGN(T ) : R(N(T ))→ R(G) is always surjective,
and split by the restriction map. See also [Sn, Section 2.3] for the proofs of these
results using Segal’s definition of induction.
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Section 3. Representations supported by p-toral subgroups

Again, throughout this section, G will be a fixed compact Lie group, and G0 will
denote its identity connected component. Let SP (G) denote the family of p-toral
subgroups of G, for all primes p. We now consider the groups

RP(G) = lim←−
P∈SP(G)

R(P ) and ROP(G) = lim←−
P∈SP(G)

RO(P ),

where the limits are taken with respect to inclusion and conjugation; and the
natural “restriction” maps

rsU
G : R(G) −−−−→ RP(G) and rsO

G : RO(G) −−−−→ ROP(G).

These groups were shown in [JO] to be naturally isomorphic to the Grothendieck
groups K(BG) and KO(BG), respectively, of vector bundles over BG (and rsU

G and
rsO
G are isomorphic to the natural homomorphisms R(G) −→ K(BG) and RO(G) −→

KO(BG)).
The homomorphisms rsG are shown here to split as a direct sums of homomor-

phisms between finitely generated groups, one for each G/G0-orbit of irreducible
G0-representations, and the cokernel of each summand is computed (Theorem
3.9). In particular, this yields necessary and sufficient conditions for rsU

G to be
onto (Theorem 3.10 and Corollary 3.11). The orthogonal case seems to be much
more complicated; but we do at least show that rsO

G is onto whenever G is finite
or π0(G) has prime power order (Propositions 3.2 and 3.4), and then give some
examples which show that rsO

G can fail to be onto even when rsU
G is onto.

It will be useful to define the “character” of an element of RP(G). For any
compact Lie group G, let GP denote the union of the connected components in
G of prime power order in π0(G). Let Cl(GP ) denote the space of continuous
functions GP −→ C invariant on conjugacy classes (i.e., the “class functions” on
GP ).

Lemma 3.1. There is a (unique) character homomorphism

χ : RP(G) −−−−−→ Cl(GP ),

such that for any v =
(
vP
)
P∈SP(G) ∈ RP(G), χ(v)|P = χvP for all P in SP (G).

Also, χ sends RP(G) (ROP(G)) isomorphically to the subgroup of those class
functions on GP whose restriction to each p-toral subgroup P ⊆ G, for all primes
p, is a character of P (a real character of P ).

Proof. Let F be the set of p-toral subgroups of G (for all primes p), whose identity
connected component is a maximal torus of G. Clearly, F is closed in the Hausdorff
topology (note that for P ∈ F , the order of π0(P ) is bounded by |NG(T )/T |). And
by Proposition 1.1, GP is the union of the P ∈ F .
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Now, for any v =
(
vP
)
P∈SP(G) ∈ RP(G), define χ(v) : GP → C to be the

union of the characters χvP . This is well defined, and invariant under conjugation,
by definition of the inverse limit. Also, χ(v) is continuous by Lemma 2.1, applied
to the family F ; and so χ(v) ∈ Cl(GP).

The character homomorphism χ is clearly a monomorphism, and the descrip-
tions of the images of RP(G) and ROP(G) are immediate from the construction.

�

We are now ready to study the groups RP(G) and ROP(G), beginning with
the following case.

Proposition 3.2. If π0(G) has prime power order, then

rsU
G : R(G)

∼=−−−−→ RP(G) and rsO
G : RO(G)

∼=−−−−→ ROP(G)

are isomorphisms. Furthermore, for any G,

RP(G) ∼= lim←−
P∈FP(G)

R(P ) and ROP(G) ∼= lim←−
P∈FP(G)

RO(P ); (1)

where FP(G) denotes the family of subgroups H ⊆ G of finite index such that
H/G0 has prime power order (and the limits are taken with respect to inclusion
and conjugation).

Proof. If π0(G) is a p-group for any prime p, then G = GP , and so rsU
G and rsO

G

are both monomorphisms by Lemma 3.1. To prove that they are isomorphisms,
we must show that a class function f ∈ Cl(G) is a (real) character if its restriction
to all p-toral subgroups of G is a (real) character.

Fix a maximal torus T and a Weyl chamber C ⊆ t, and set N = NG(T,C).
Then N is p-toral by Proposition 1.1; and by Proposition 1.2 a class function
f ∈ Cl(G) is a character of G if f |N is a character of N . This shows that rsU

G is
an isomorphism. If π0(G) is a 2-group, then NG(T,±C) is 2-toral, and the same
argument shows that rsO

G is an isomorphism. Finally, if π0(G) is a p-group for an
odd prime p, then for any v ∈ ROP(G), χ(v) is a real valued character of G whose
restriction to G0 is a real character of G0 (since π0(G0) = 1 is a 2-group); and so
χ(v) is a real character of G by Lemma 1.3(c).

This finishes the proof of the first statement above. The formulas in (1) now
follow immediately (by the transitivity of inverse limits). �

The importance of the formulas in (1) above is that they show that the groups
RP(G) and ROP(G), and also the maps rsU

G and rsO
G , split as sums of groups and

maps indexed by the irreducible representations of the identity component G0.
This will be made more explicit in Theorem 3.9 below.
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The next proposition describes how standard induction techniques apply to
study RP(G) and rsU

G. Recall that a finite group Γ is p-elementary if it is a
product of a p-group and a cyclic group, and is elementary if it is p-elementary for
some prime p. Also, Γ is 2-R-elementary if it contains a normal cyclic subgroup
Cm of 2-power index such that any element of G either centralizes Cm or acts on
it via (a 7→ a−1); and is R-elementary if it is elementary or 2-R-elementary.

Proposition 3.3. (a) For any subgroup H ⊆ G of finite index, there is an induc-
tion homomorphism

IndGH : RP(H) −−−−→ RP(G),

with the property that for any v ∈ RP(H) and any g ∈ GP ,

χ(IndGH(v))(g) =
(
IndGH(χ(V ))

)
(g) =

∑
aH∈(G/H)g

χ(v)(a−1ga). (1)

(b) Let E(G) and ER(G) denote the sets of subgroups E ⊆ G of finite index such
that E/G0 is elementary or R-elementary, respectively. Then restriction induces
isomorphisms

Coker(rsU
G)

∼=−−−→ lim←−
E∈E(G)

Coker(rsU
E) and Coker(rsO

G)
∼=−−−→ lim←−

E∈ER(G)
Coker(rsO

E );

where the limits are taken with respect to inclusion and conjugation in G.

Proof. We regard IndGH as a homomorphism Cl(HP) −→ Cl(GP), defined via for-
mula (1). Note that this is just the restriction to GP of the formula given in
Proposition 2.3 (though only in the case where [G:H] < ∞). In particular, the
double coset formula of Lemma 2.4 applies in this situation.
(a) Fix any v ∈ RP(H), and let χ = χ(v) ∈ Cl(HP ) be its character. We must
show that IndGH(χ) is the character of an element of RP(G); or equivalently (by
Lemma 3.1) that IndGH(χ)|P is a character for all p-toral subgroups P ⊆ G (for
all primes p). And for any such P , gPg−1 ∩ H is p-toral for each g ∈ G, so
χ|
(
gPg−1 ∩ H

)
is a character, and hence IndGH(χ)|P is a character of P by the

double coset formula.
(b) Let F(G) be the class of subgroups of G of finite index. The functor H 7→
R(H/G0) satisfies the double coset formula and Frobenius reciprocity relations for
induction and restriction, and hence is a Green ring over F(G) in the sense of
Dress [Dr]. Also, the double coset formula of Lemma 2.4 says that H 7→ RP(H)
and H 7→ Coker(rsU

H) are both Mackey functors over F(G) (again in the sense
of Dress); and both are modules over R(−/G0) satisfying Frobenius reciprocity.
Since R(G/G0) is generated by induction from the R(E/G0) for E ∈ E(G) [Ser,
§10.5, Theorem 19], the “fundamental theorem” of Mackey functors and Green
rings says that F (G) ∼= lim←−E∈E(G)(F (E)) for any such module over R(−/G0).
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This is shown in [Dr, Propositions 1.1′ and 1.2], and a more direct proof is given
in [Ol, Theorem 11.1].

Similarly, H 7→ ROP(H) and H 7→ Coker(rsO
H) are Mackey functors over F(G),

and modules over RO(−/G0) satisfying Frobenius reciprocity. Since RO(G/G0) is
generated by induction from the RO(E/G0) for E ∈ ER(G) [Ser, §12.6, Theorem
27], the same argument applies to show that Coker(rsO

G) ∼= lim←−
E∈ER(G)

Coker(rsO
E ). �

In fact, the induction map IndGH : RP(H) −→ RP(G) is defined for any closed
subgroup H ⊆ G, using the formula for induction of characters in Proposition 2.3.
To see this, one must check, for any f ∈ Cl(H), that IndGH(f)|GP = 0 if f |HP = 0.
This would be immediate if we knew that H∩GP ⊆ HP ; but that is not the case
in general. The existence of the induction map is thus slightly more tricky than
in the case where [G : H] <∞, but is not difficult.

We now turn to the case of finite groups.

Proposition 3.4. If G is finite, then rsU
G and rsO

G are both surjective.

Proof. By Proposition 3.3(b), it suffices to show that rsU
G is onto when G is elemen-

tary, and that rsO
G is onto when G is R-elementary. We do this in the orthogonal

case only; the unitary case is similar (but simpler).
Assume that G is R-elementary, and fix an element v =

(
vP
)
P∈SP(G) ∈

ROP(G). In other words, vP ∈ RO(P ) for each p-subgroup P ⊆ G (for each prime
p
∣∣|G|); and by subtracting a constant character we can assume that χvP (1) = 0

for each P . For each p
∣∣|G|, write vp = vSylp(G) ∈ RO(Sylp(G)). It will suffice to

show that each vp extends to an element v′p ∈ R(G) whose character vanishes on
all elements of order prime to p (then v = rsO

G(
∑
v′p)). This is clear if Sylp(G) has

a normal complement, since in that case v′p can be taken to be the composite of
vp with a surjection G� Sylp(G).

The only case left to consider is that where p is odd, G is 2-R-elementary, and
Sylp(G) has no normal complement. Set pk = |Sylp(G)|; then there is a surjection
G � D(2pk), where D(2pk) is dihedral of order 2pk. One easily checks that any
vp ∈ RO(Cpk) such that χvp(1) = 0 extends to an element v′′p ∈ RO(D(2pk)) such
that χv′′p (g) = 0 for all g of order prime to p. And hence if v′p ∈ RO(G) is the
composite of v′′p with the surjection G � D(2pk), then v′p|Sylp(G) = vp and χv′p
vanishes on all elements of order prime to p. �

Recall that for any torus T , we let t denote the Lie algebra of T , and regard
the group T ∗ = Hom(T, S1) of irreducible characters of T as a lattice in t∗ =
Hom(t,R). The following definitions establish some of the notation which will be
used when dealing with irreducible characters and representations of groups with
torus identity component.
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Definition 3.5. If G is a compact Lie group with identity component T , then the
support of a G-representation V is the (G/T -invariant) subset Supp(V ) ⊆ T ∗ of
all characters of irreducible summands of V |T . More generally, for any v ∈ R(G),
Supp(v) ∈ T ∗ is the union of the supports of the irreducible G-representations
which occur in the decomposition of v. For any G/T -invariant subset Φ ⊆ T ∗,
Irr(G,Φ) denotes the set of irreducible G-representations with support in Φ, and
R(G,Φ) ⊆ R(G) denotes the subgroup of elements with support in Φ. For φ ∈
T ∗, we write (φ) for the G/T -orbit of φ (and write Irr(G,φ), etc., if φ is G/T -
invariant). Finally, if V is any G-representation, then V 〈Φ〉 and V 〈φ〉 denote the
largest summands of V with support in Φ or φ, respectively.

The descriptions of Coker(rsU
G) in Lemma 3.8 and Theorem 3.9 below will be

given in terms of a certain function δ(G), defined for compact Lie groups whose
identity component is a torus and central.

Definition 3.6. Assume that G lies in a central extension 1 −→ T −→ G −→ Γ −→ 1,
where T is a torus and Γ is a finite group. For each φ∈T ∗, define

δ(G,φ) = gcd
{

dim(V )
∣∣V ∈ Irr(G,φ)

}
;

and set
δ(G) = lcm

{
δ(G,φ)

∣∣φ∈T ∗}.
The next lemma gives a partial description of this function, independantly of

representations; and also lists some of its more technical properties which will be
needed in later proofs.

Lemma 3.7. Assume that G0 ⊆ Z(G); i.e., that G lies in a central extension
1 −→ T −→ G −→ Γ −→ 1, where T is a torus and Γ is finite. Set e = expt

(
T∩[G,G]

)
.

For each prime p
∣∣|Γ|, let Gp be a maximal p-toral subgroup of G: the extension of

T by a Sylow p-subgroup of Γ. Then
(a) δ(G) = 1 if and only if e = 1, if and only if G ∼= T × Γ
(b) e

∣∣δ(G) and δ(G)2∣∣|Γ|
(c) δ(G) =

∏
p||Γ| δ(Gp), and δ(G,φ) =

∏
p||Γ| δ(Gp, φ) for all φ∈T ∗

(d) δ(G,φ′) = δ(G,φ) for all φ′, φ ∈ T ∗ with φ′ ≡ φ (mod e)
(e) δ(G,nφ) = δ(G,φ) for all φ∈T ∗, and all n ∈ Z with (n, e) = 1.

Proof. Note first that for any H ⊆ G of finite index, and any φ ∈ T ∗,

δ(H,φ)
∣∣δ(G,φ)

∣∣[G : H]·δ(H,φ). (1)

The first relation holds since each G-representation with support in φ can be
regarded as an H-representation; and the second since IndGH(V ) has support in φ
for any H-representation V with support in φ.
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(b) Fix any φ ∈ T ∗, and choose a ∈ T ∩ [G,G] such that φ(a) generates φ(T ∩
[G,G]). Then for any G-representation V with support in φ, a acts on V via multi-
plication by φ(a); and since a ∈ [G,G], φ(a)· IdV has determinant φ(a)dim(V ) = 1.
Thus, |φ(a)|

∣∣ dim(V ) for all such V , and so

|φ(a)| = |φ(T ∩ [G,G])|
∣∣δ(G,φ). (2)

In particular, e = expt(T ∩ [G,G]) divides δ(G).
Now fix any φ ∈ T ∗, and let Vφ be the 1-dimensional irreducible T -representation

with character φ. Let V1, . . ., Vk be the irreducible G-representations with support
in φ. For each i, the multiplicity of Vi in IndGT (Vφ) is

dimC
(
HomG(IndGT (Vφ), Vi)

)
= dimC

(
HomT (Vφ, Vi)

)
= dimC Vi.

Thus, |Γ| = dim(IndGT (Vφ)) =
∑k
i=1 dim(Vi)2. And so δ(G,φ), the greatest com-

mon divisor of the dim(Vi), is such that δ(G,φ)2
∣∣|Γ|.

(a) We prove here the slightly more general equivalence that

δ(G,φ) = 1 ⇐⇒ φ(T ∩ [G,G]) = 1 ⇐⇒ G/Ker(φ) ∼= T/Ker(φ) × Γ. (3)

The third statement clearly implies the first, and the first implies the second by
(2).

By the universal coefficient theorem, H2(Γ;T ) ∼= Hom(H2(Γ), T ); and T ∩
[G,G] is the image of the homomorphism ηG : H2(Γ) −→ T which corresponds to
[G] as an element of H2(Γ;T ). So G ∼= T × Γ if T ∩ [G,G] = 1, and G/Ker(φ) ∼=
T/Ker(φ) × Γ if φ(T ∩ [G,G]) = 1.
(c) This formula follows immediately from (1), and the fact that δ(Gp, φ)

∣∣|Gp/T |
is a power of p for each p.
(d) If φ ≡ 0 (mod e), then φ(T ∩ [G,G]) = 1, and so δ(G,φ) = 1 by (3). If
φ′ ≡ φ 6≡ 0 (mod e), then the two composites

H2(Γ)
ηG−−−−−→ T

φ−−−−−→−−−−−→
φ′

S1

are equal. Hence (G/Ker(φ), φ) ∼= (G/Ker(φ′), φ′) as pairs, and δ(G,φ) = δ(G,φ′).
(e) For any n ∈ Z and any G-representation V with support φ, ψn(V ) is a virtual
representation with support nφ: since χψnV (gt) = χV (gntn) = χψnV (g)·φ(t)n for
any g∈G and t∈T . Cf. [Ad, Lemma 3.61] for details. Also, V and ψn(V ) have
the same (virtual) dimension, and hence δ(G,nφ)

∣∣δ(G,φ). So by (d), δ(G,nφ) =
δ(G,φ) if n is invertible mod e. �

Ian Leary has pointed out to me that δ(G) is the greatest common divisor of
the indices [G : H] of those subgroups H ⊆ G of finite index such that H splits as
a product H ∼= T × (H/T ).
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Whenever G0 = T is a torus, R(G) splits as the direct sum, taken over all G/T -
orbits (φ) ⊆ T ∗, of the subgroups R(G, (φ)) of finite rank. In a similar fashion,
rsU
G splits as the direct sum over all (φ) ⊆ T ∗ of homomorphisms

rsG,(φ) : R(G, (φ)) −−−−−→ RP(G, (φ)).

We are now ready to describe the cokernel of each of these summands for such G.
The key case to consider is that when T = G0 is central and φ is faithful.

Lemma 3.8. Assume that G lies in a central extension 1 −→ T −→ G
σ
−→ Γ −→ 1,

where T ∼= S1, and where Γ is finite. Fix a faithful (injective) character φ ∈ T ∗.
Let S be the set of all conjugacy classes of elements g ∈ Γ such that no two
elements in σ−1g are conjugate; and let SP ⊆ S be the set of conjugacy classes of
elements of prime power order. For each g ∈ SP , let η(g) be the largest divisor of
δ(CG(g), φ) which is prime to the order of g. Then

R(G,φ) ∼= Z|S|, RP(G,φ) ∼= Z|SP |, and Coker(rsG,φ) ∼=
⊕

16=g∈SP

Z/η(g).

Proof. A character χ of G has support in φ if and only if it satisfies the relation
χ(gt) = χ(g)φ(t) for all g ∈ G and t ∈ T . In particular, since φ is injective,
χ(g) = 0 for any g which is conjugate to gt for some 1 6= t ∈ T . Thus, Cl(G,φ)
is a complex vector space of dimension |S|; and by the Peter-Weyl theorem (and
the independence of irreducible characters) R(G,φ) is a free abelian group of rank
|S|. Also, RP(G,φ) is torsion free (it is detected by characters defined on GP ),
and Ker(rsG,φ) is the set of elements of R(G,φ) whose characters vanish on GP .
So the image of rsG,φ is free of rank |SP |; and once we have shown that rsG,φ has
finite cokernel it will follow that RP(G,φ) is a free abelian group of the same rank.

The computation of the cokernel of rsG,φ will be carried out in two steps.
Step 1. Assume first that Γ is p-elementary for some prime p. Then we can write
G = Cn × P , where Cn is cyclic of order n prime to p, and where P is p-toral.
In particular, R(G) ∼= R(Cn)⊗ R(P ) and R(G,φ) ∼= R(Cn)⊗R(P, φ). Let IR(−)
denote the augmentation ideal of R(−), and similarly for IRP(−). Consider the
following commutative diagram with split short exact rows:

0 −−−−→ IR(Cn)⊗R(P, φ) −−−−→ R(G,φ) −−−−→ R(P, φ) −−−−→ 0

rsCn⊗augm.
y rsG,φ

y =
y

0 −−−−→ IRP(Cn)⊗ Z −−−−→ RP(G,φ) −−−−→ R(P, φ) −−−−→ 0.

Here, IRP(Cn) is the product of the IR(Sylq(Cn)) for q|n, and any v∈IR(Sylq(Cn))
lifts to an element of IR(Cn) whose character vanishes on other Sylow subgroups.
Hence IR(Cn) surjects onto IRP(Cn), and so

Coker(rsG,φ) ∼= Coker(rsCn ⊗ augm.) ∼= IRP(Cn)⊗ Coker
[
R(P, φ)

augm.
−−−−→ Z

]
.
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The cokernel of this augmentation map is by definition Z/δ(P, φ), and so

Coker(rsG,φ) ∼= IRP(Cn)⊗
(
Z/δ(P, φ)

)
. (1)

Step 2. Now assume that G is arbitrary. Let E(G) be the set of subgroups of G
of finite index such that E/T is elementary, and (for each prime p

∣∣|Γ|) let Ep(G)
be the set of those E ∈ E(G) such that E/T is p-elementary. By Proposition
3.3, Coker(rsG,φ) is the inverse limit of the groups Coker(rsE,φ), taken over all
E ∈ E(G). By (1), Coker(rsE,φ) is a finite p-group for all E ∈ Ep(G). Hence
Coker(rsG,φ) is finite; and (for each p) Coker(rsG,φ)(p) is the inverse limit of the
Coker(rsE,φ) for E ∈ Ep(G).

Fix a prime p
∣∣|Γ|; we want to determine the p-power torsion in Coker(rsG,φ).

If K ′ ⊆ K are finite cyclic subgroups of order prime to p, then the composite

IR(K ′)(p)
Ind−−−−−→ IR(K)(p)

Res−−−−−→ IR(K ′)(p) (2)

is multiplication by [K:K ′], and hence an isomorphism. Thus, if K is cyclic of
order prime to p, we can split

IRP(K)(p) =
⊕
q||K|

IR(Sylq(K)) ∼=
⊕

16=K′⊆KP

ĨR(K ′)(p)

(i.e., taking the second sum over subgroups of prime power order). Here, ĨR(K ′) ⊆
IR(K ′) is the kernel of the map given by restriction to the subgroup of prime index,
and is free with rank equal to the number of generators of K ′.

For each n
∣∣|Γ| prime to p, let Cycn be the set of all cyclic subgroups K ⊆ Γ of

order n if n is a prime power, and set Cycn = ∅ otherwise. By Lemma 3.7(c), for
any maximal p-toral subgroup P ⊆ H, δ(P, φ) is the largest power of p dividing
δ(H,φ). So with the help of (1) we now get

Coker(rsG,φ)(p)
∼= lim←−
E∈Ep(G)

Coker(rsE,φ)

∼=
⊕
p-n||Γ|

(
lim←−

K∈Cycn

(
ĨR(K)⊗ Z

/
δ(σ−1(CΓ(K)), φ)

)
(p)

)
. (3)

For each n = qk (where q 6= p is prime), set

Cyc′n =
{
K=〈g〉∈Cycn

∣∣ no two elts. in σ−1g conjugate in G
}
.

Fix some K ∈ Cycqk rCyc′qk , and let K ′ ⊆ K be the subgroup of index q. Then
there exists x ∈ NG(σ−1K) such that for each g ∈ σ−1(KrK ′), xgx−1 = gt for
some 1 6= t ∈ T . The character of any element v ∈ ĨR(K) ∼= ĨR(σ−1K,φ) vanishes
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on σ−1K ′; and hence (since χv(gt) = χv(g)·φ(t)) v is fixed by the action of x only
if v = 0. Thus, x acts on ĨR(K) with trivial fixed point set; and in particular such
terms contribute nothing to the limit in (3).

Formula (3) thus reduces to a sum, over conjugacy class representatives for all
K ∈ Cyc′n, of the groups

H0(NG(σ−1K); ĨRP(K)
)
⊗
(
Z
/
δ(CG(σ−1K), φ)

)
(p).

The first factor here is free of rank equal to the number of Γ-conjugacy classes
of generators of K. The formula for Coker(rsG,φ) now follows upon taking the
product over all primes p

∣∣|Γ|. �

As an example, consider the groupG = Cn×(S1×C2Q(8)), where n is odd, Q(8)
is a quaternion group of order 8, and the second product is taken while identifying
the central elements of order 2 in S1 and Q(8). By Lemma 3.8, if φ ∈ T ∗ is a
generator, then rsG,kφ is onto for k even, while Coker(rsG,kφ) ∼= Z/2⊗IRP(Cn) 6= 0
if k is odd.

The groups dealt with in Lemma 3.8 seem quite specialized, but we are now
ready to show that the general case — for an arbitrary compact Lie group G —
can always be reduced to the cases handled there.

Theorem 3.9. Let G be any compact Lie group. Fix a maximal torus T ⊆ G and
a Weyl chamber C ⊆ t, and set N = N(T,C) ⊆ G. Then rsU

G splits as a direct
sum of homomorphisms

rsG,(V0) : R(G, (V0)) −−−−−→ RP(G, (V0)),

taken over all G/G0-orbits (V0) ⊆ Irr(G0).
For any V0 ∈ Irr(G0), let φ be the maximal weight of V0 in C∗, let Nφ ⊆ N

be the subgroup of elements which fix φ, and set Kφ = Ker(φ) ⊆ T . Then the
assignment

(
[V ] 7→ [V 〈φ〉]

)
induces isomorphisms

R(G, (V0))
∼=−−−−−→ R(Nφ/Kφ, φ), RP(G, (V0))

∼=−−−−−→ RP(Nφ/Kφ, φ),

and
Coker(rsG,(V0))

∼=−−−−−→ Coker(rsNφ/Kφ,φ).

Proof. By Lemma 3.2, RP(G) is the inverse limit of the representation rings R(H),
taken over all H ⊆ G of finite index such that H/G0 has prime power order. Since
each R(H) splits as a sum of finitely generated groups indexed by the G/G0-orbits
(V0) ∈ Irr(G0), we now see that RP(G) also splits as such a sum. And hence rsU

G

also splits as a direct sum of homomorphisms rsG,(V0).
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Now fix V0 ∈ Irr(G0) and let φ be its maximal weight in C∗. Write Φ = (φ)
for short: the N/T -orbit of φ ∈ C∗T . By Proposition 1.4, the assignment [V ] 7→
[V 〈Φ〉] defines a bijection from Irr(G, (V0)) to Irr(N,Φ), and hence an isomor-

phism R(G, (V0))
∼=
−→ R(N,Φ). Similarly, it induces isomorphisms R(H, (V0))

∼=
−→

R(H∩N,Φ) for each H ⊆ G of finite index, and upon taking the inverse limit
over all such H for which H/G0 has prime power order we get an isomorphism

RP(G, (V0))
∼=−→ RP(N,Φ). And this in turn induces an isomorphism between the

cokernels of rsG,(V0) and rsN,Φ.
The homomorphism R(N,Φ) −→ R(Nφ, φ) ∼= R(Nφ/Kφ, φ), defined by send-

ing [V ] to [V 〈φ〉], is an isomorphism: its inverse is the induction map [V ] 7→
[IndNNφ(V )]. This same assignment also defines an isomorphism RP(N,Φ)

∼=
−→

RP(Nφ/Kφ, φ) (whose inverse is again the induction map); and hence defines an
isomorphism between the cokernels of rsN,Φ and rsNφ/Kφ,φ. �

The above general description of Coker(rsU
G) is rather complicated. In contrast,

the conditions for the map rsU
G to be onto can be formulated more simply.

Theorem 3.10. Let G be any compact Lie group. Fix a maximal torus T ⊆ G
and a Weyl chamber C ⊆ t, and set N = N(T,C) ⊆ G. Let E ′(N) denote the set
of subgroups E ⊆ N of finite index such that E/T is elementary but not of prime
power order. Then

expt
(
Coker(rsU

G)
)

= lcm
{
δ(E/[E, T ])

∣∣E ∈ E ′(N)
}
. (1)

In particular, rsU
G is surjective if and only if rsU

N is surjective, if and only if T ∩
[E,E] = [E, T ] for all E ∈ E ′(N).

Proof. It is clear from part (c) that the exponent of Coker(rsU
G) divides the number

given in (1). To show that these are equal, fix any prime p, and choose E ⊆ N
of finite index such that E/T is p-elementary but not a p-group. We must show
that δ(E/[E, T ])

∣∣ expt
(
Coker(rsU

G)
)
. Choose any φ′ ∈ (T/[E, T ])∗ ⊆ T ∗ such

that δ(E/[E, T ], φ′) = δ(E/[E, T ]). Since N/T acts linearly on t∗ and leaves C∗

invariant, the fixed set (C∗)E is a cone shaped subspace of (t∗)E with nonempty
interior. Hence, we can choose φ ∈ C∗ ∩ (T/[E, T ])∗ = (C∗T )E such that φ ≡ φ′

modulo the exponent of T∩[E,E]
[E,T ] . If q 6= p is any other prime dividing |E/T |, then

δ(E/[E, T ], qφ) = δ(E/[E, T ], φ) = δ(E/[E, T ], φ′) = δ(E/[E, T ])

by Lemma 3.7(d,e). And finally, if gT ∈ E/T is the element of order q, then gT ∈ S
in the notation of Lemma 3.8: no two elements in gT/Ker(qφ) are conjugate. Thus,

δ(E/[E, T ]) = δ(E/[E, T ], qφ)
∣∣ expt

(
Coker(rsE,qφ)

)∣∣ expt
(
Coker(rsU

G)
)
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by Lemma 3.8; and this finishes the proof of formula (1). The necessary and
sufficient conditions for rsU

G to be surjective now follow from Lemma 3.7(a). �

Since the general condition for rsU
G to be surjective is still somewhat compli-

cated, we now list some special cases which are simpler to formulate.

Corollary 3.11. For any compact Lie group G, Coker(rsU
G) has finite exponent,

and
expt

(
Coker(rsU

G)
)2∣∣|π0(G)|. (1)

Furthermore, rsU
G is surjective if G satisfies any of the following conditions:

(a) G is finite or connected.
(b) All elements of π0(G) have prime power order.
(c) π0(G) is a periodic group: all of its Sylow subgroups are cyclic or quater-

nion.
(d) Z(G0) = 1.
(e) G is a semidirect product of the form G = G0oΓ, where Γ ⊆ G normalizes

some maximal torus T and leaves invariant some Weyl chamber in T .

Proof. Fix a maximal torus T ⊆ G0, and a Weyl chamber C. Set N = N(T,C).
As in Theorem 3.10, let E ′(N) be the set of subgroups H ⊆ N of finite index such
that H/T is elementary but not of prime power order.

By Lemma 3.7(b), δ(H/[T,H])2∣∣|H/T |∣∣|π0(G)| for each H ⊆ N of finite index.
So (1) follows from Theorem 3.10.
(a) rsU

G is onto by Lemma 3.4 if G is finite, and by (1) if G is connected.
(b) If all elements of π0(G) = π0(N) have prime power order, then E ′(N) = ∅,
and so rsU

G is onto by Theorem 3.10.
(c) Note that H2(Γ) = 0 for any finite periodic group Γ. Hence, if π0(G) is
periodic, then for any H ∈ E ′(N), H/[H,T ] ∼= T/[H,T ]×H/T . So rsU

N and rsU
G

are onto by Theorem 3.10.
(e) The conditions on Γ imply that N is a semidirect product of T with Γ, and
hence that rsU

G is onto by Theorem 3.10.
(d) By [Bo, §4.10, Corollaire], the surjection Aut(G0)� Out(G0) is split by outer
automorphisms which fix T and C. Let Γ ⊆ G be the subgroup of elements whose
conjugation action lies in the image of any given splitting map. Then G = G0oΓ
(since G0 ∩ Γ = Z(G0) = 1); and so rsU

G is onto by (e). �

We remark here that G being a semidirect product G0 o Γ does not in itself
imply that rsU

G is onto. As an example, set

G = C3 ×
(
SU(2)×C2Q(8)

)
,

where C3 is cyclic of order 3, Q(8) is a quaternion group of order 8, and the
product is taken by identifying the central subgroups of order 2 in SU(2) and
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Q(8). Then Theorem 3.10 applies to show that Coker(rsU
G) has exponent 2. But

SU(2)×C2Q(8) is also a semidirect product of SU(2) with C2×C2: the splitting
comes from the diagonal subgroup

〈(i, i)〉 × 〈(j, j)〉 ⊆ Q(8)×C2Q(8) ⊆ SU(2)×C2Q(8).

So far, we have dealt mostly with the case of unitary representations. The
general conditions for rsO

G to be surjective seem to be much more complicated.
For example, with a little more work, one can show that if G is a central extension
of a torus by a finite group, then rsO

G is onto if and only if rsU
G is onto. In contrast,

the following example provides a simple way of constructing groups G for which
rsO
G is not onto but rsU

G is onto.

Example 3.12. Fix any pair (G′, V ′), where G′ is a compact connected Lie group,
and V ′ an irreducible G′-representation of real type having the additional property
that some central element z∈Z(G′) of order 2 acts on V ′ by (− Id). Choose any
odd prime power n > 1, and set G = G′×C2Q(4n): the central product of G′ with
the quaternion group of order 4n, where z is identified with the central element of
Q(4n). Then rsO

G is not onto.

Proof. Let W be any effective irreducible representation of Q(4n), and set V =
V ′⊗CW . Then V is an irreducible G-representation of quaternion type, but its
restriction to any p-toral subgroup of G (for any prime p) has real type. In par-
ticular, [V ] represents an element of ROP(G); but since rsO

G and rsU
G are injective

(all elements of π0(G) ∼= D(2n) have prime power order), it does not lie in the
image of rsO

G . �

For example, we can take G′ = SO(2m) for any m ≥ 2, and let V ′ be the
standard G′-representation on C2m. Set G = G′×C2Q(4n), for some odd prime
power n ≥ 3. Then rsO

G : RO(G) −→ ROP(G) fails to be onto, while rsU
G is onto

(in fact, an isomorphism) by Corollary 3.11(b) (all elements of π0(G) have prime
power order).
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