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Abstract. We use the theory of S.A.G.B.I. bases to construct a generating set for the ring
of invariants for the four and five dimensional indecomposable modular representations of a
cyclic group of prime order. We observe that for the four dimensional representation the ring
of invariants is generated in degrees less than or equal to 2p − 3, and for the five dimensional
representation the ring of invariants is generated in degrees less than or equal to 2p− 2.
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Introduction

Let k be a field and let k[x1, . . ., xn] denote the polynomial algebra in the variables
x1, . . . , xn. Define an algebra automorphism, σ, of k[x1, . . ., xn] by

σ(xi) =
{
x1 if i = 1,
xi−1 + xi if i > 1.

If f ∈ k[x1, . . ., xn] and σ(f) = f , then f will be called σ-invariant. Since σ is
a degree preserving map, any σ-invariant polynomial is a sum of homogeneous
σ-invariant polynomials. Let k[x1, . . ., xn]σ denote the ring of σ-invariant poly-
nomials. Suppose that p is a prime number and let Fp denote the field with p
elements. If k = Fp and n ≤ p, then σ generates a group isomorphic to Z/p and
we denote k[x1, . . ., xn]σ by Fp[x1, . . ., xn]Z/p. The action of Z/p induced by σ on
the degree one polynomials of Fp[x1, . . ., xn] is the indecomposable modular repre-
sentation of dimension n. The study of Fp[x1, . . ., xn]Z/p has a long history going
back at least to L. E. Dickson’s Madison Colloquium [5]. From Dickson’s perspec-
tive the problem is an extension of classical invariant theory and the elements of
Fp[x1, . . ., xn]Z/p are the formal modular seminvariants of a binary (n − 1)–form
[5, III]. Dickson gave a complete description of Fp[x1, . . ., xn]Z/p for n = 2 and
n = 3. He gave a generating set for n = 4, p = 5. G. Almkvist, in [1], described
the set of relations for n = 4, p = 5. W. L. G. Williams, in [14], constructed a
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generating set for n = 4, p = 7. K. Str̊ahlén, in a masters thesis [12] supervised by
G. Almkvist, studied the relations among Williams’ generators and showed that
the generating set is not minimal. The primary purpose of this paper is to describe
a generating set for n = 4 and n = 5 for all p ≥ 5.

If the characteristic of k is zero, then σ generates a group isomorphic to Z.
In this case we denote k[x1, . . ., xn]σ by k[x1, . . ., xn]Z. Let Q denote the ra-
tional numbers. For any element f ∈ Q[x1, . . ., xn]Z, a suitable scalar multi-
ple of f lies in Z[x1, . . ., xn]Z. By reducing coefficients modulo p, an element of
Z[x1, . . ., xn]Z gives rise to an element of Fp[x1, . . ., xn]Z/p. We will call elements
of Fp[x1, . . ., xn]Z/p constructed in this fashion rational invariants. G. Almkvist
has shown that, if f ∈ Fp[x1, . . ., xn]Z/p and the degree of f is small compared to
p, then f is a rational invariant [1, 2.5]. Thus characteristic zero computations can
provide us with some of our generators. In fact, a rational invariant corresponds
to the source of a covariant of a binary (n − 1)–form (see [1]) and so classical
invariant theory can be used to compute rational invariants (see, for example, [6]
and [13]).

Two additional constructions are needed to provide us with the remaining
generators. The first of these is the transfer. The transfer is a homomorphism of
Fp[x1, . . ., xn]Z/p–modules from Fp[x1, . . ., xn]to Fp[x1, . . ., xn]Z/p defined by

Tr(f) =
p∑
c=1

σc(f).

The second construction is the norm. For an element, f , of Fp[x1, . . ., xn] the
norm of f is defined by

N(f) =
p∏
c=1

σc(f).

We shall see that, at least for n = 4 and n = 5, Fp[x1, . . ., xn]Z/p is generated by
N(xn), selected rational invariants and elements from the image of the transfer.

We compute generating sets by constructing a collection of invariants and then
using the theory of S.A.G.B.I. bases, introduced by L. Robbiano and M. Sweedler
in [9], to prove that the given collection of invariants form a generating set. In
Section 1 we define a S.A.G.B.I. basis and discuss the properties of S.A.G.B.I.
bases required for our purposes. Section 2 is devoted primarily to constructing
rational invariants with particular lead monomials. In this section we also discuss
the ring Q[V∞]Z formed by taking the union over n of Q[x1, . . ., xn]Z. We are able
to construct a vector space basis for Q[V∞]Z. In Section 3 we compute the lead
monomials of certain families of elements in the image of the transfer. Section 4
contains the proof that a certain collection of invariants is a generating set for
Fp[x1, . . ., x4]Z/p and Section 5 contains the analogous result for Fp[x1, . . ., x5]Z/p.
Section 6 is devoted to conclusions and conjectures.

We recommend [10] as a good general reference for the invariant theory of
finite groups. Preliminary calculations, including the construction of a generating
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set for n = 4 with p = 11, were performed using G. Kemper’s Maple package
INVAR ([7], [8]). I would like to thank Catherine Chambers for implementing the
most recent version of INVAR on our computing facilities and for supervising the
computations. I would also like to thank Eddy Campbell, Ian Hughes and David
Wehlau for their assistance and encouragement.

1. S.A.G.B.I. bases

Throughout the paper we use the graded reverse lexicographic monomial order
with xm < xm+1. We direct the reader to Chapter 2 of [4] for the appropriate
definitions and a detailed discussion of monomial orders. We use the convention
that a monomial is a product of variables and that a term is a monomial with
a non-zero coefficient. Note that that the zero polynomial is neither a monomial
nor a term. We extend the monomial order to a partial order on polynomials by
comparing lead monomials. We consider the zero polynomial to be smaller than
any non-zero polynomial.

Suppose that A is a subalgebra of k[x1, . . ., xn]. Let LT(A) denote the vec-
tor space spanned by the lead terms of elements of A. LT(A) is a subalgebra of
k[x1, . . ., xn]. If C is a subset of A then let LM(C) denote the set of lead mono-
mials of elements of C. If LM(C) generates the algebra LT(A) then C is called a
S.A.G.B.I. basis for A.

Proposition 1.1. If C is a S.A.G.B.I. basis for A then C generates the algebra
A.

Proof. See [9, 1.16]. �

Suppose thatM is a subspace of k[x1, . . ., xn]. LetMd denote the homogeneous
component of degree d. The Poincaré series of M is given by

P (M, t) =
∞∑
d=0

dimk(Md)td.

Proposition 1.2. If A is a subalgebra of k[x1, . . ., xn], then P (A, t) = P (LT(A), t).

Proof. We will prove that Ad has a basis, B, with distinct lead monomials and
hence LM(B) is a basis for LT(A)d.

In k[x1, . . ., xn], the monomials of degree d form an ordered basis for the vector
space of homogeneous polynomials of degree d. We can use this basis to assign a
row vector of coefficients to each homogeneous polynomial. Choose a basis forAd.
For each vector in this basis there is a corresponding row vector of coefficients.
Form a matrix from these row vectors. The rows of this matrix are linearly inde-
pendent. Using row operations put the matrix in echelon form. The rows of the
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echelon form are the coefficients of a new basis, say B, for Ad. Since the coefficient
matrix corresponding to B is in echelon form, the lead monomials of the elements
of B are distinct. �

2. Lead monomials of invariants

In this section we construct rational invariants with particular lead monomials. We
also characterize those monomials which are the lead monomial of a σ–invariant.
We will use LM to denote the operation which associates to a polynomial its lead
monomial. For convenience we set LM(0) = 0.

Lemma 2.1. If β is a monomial in k[x1, . . ., xm−1] then βxm and βxm−1 are
consecutive elements in the order.

Proof. Suppose that γ is a monomial with βxm−1 < γ ≤ βxm. We will prove that
βxm−1 and βxm are consecutive by showing γ = βxm.

Let bi be the exponent of xi in β and let ei be the exponent of xi in γ. Let
j be the first position at which the exponent sequence of βxm−1 differs from the
exponent sequence of γ. Since βxm−1 and γ have the same degree, we can assume
that j < m. Thus bi = ei for i < j. If j < m− 1 then γ > βxm, contradicting our
hypotheses. Thus j = m− 1. Since the exponent of xm−1 in βxm−1 is bm−1 + 1
and γ > βxm−1, we conclude that bm−1 + 1 > em−1. Furthermore, since the
exponent of xm−1 in βxm is bm−1 and γ ≤ βxm, we have em−1 ≥ bm−1. Therefore
bm−1 = em−1 and γ = βxm. �

It will be convenient to define the function ∂ = σ−1. Note that ∂ is linear and,
if f and g are elements of k[x1, . . ., xn], then ∂(fg) = ∂(f)g+σ(f)∂(g). Therefore
the function ∂ is a twisted σ-derivation.

Theorem 2.2. Suppose that n ≥ m > 1 and β is a monomial in k[x1, . . ., xm−1].
Then βxm is not the lead monomial of a σ–invariant in k[x1, . . ., xn].

Proof. Suppose that f ∈ k[x1, . . ., xn] and that the lead term of f is βxm. Then
f = βxm + h for some polynomial h with LM(h) < LM(f) = βxm. We will prove
that LM(∂(f)) = βxm−1 and thus f is not σ–invariant.

Evaluating σ(xm) and rearranging terms gives

∂(f) = (xm + xm−1)∂(β) + βxm−1 + ∂(h).

We extend the monomial order to a partial order on polynomials by comparing
lead monomials. We consider the zero polynomial to be less than every non-zero
polynomial. Note that, for any monomial γ, ∂(γ) < γ. Thus ∂(β) < β and
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xm∂(β) < xmβ. Furthermore, if h is not the zero polynomial, ∂(h) < h. From
Lemma 2.1, βxm and βxm−1 are consecutive in the order. Thus ∂(h) < βxm−1
and LM(xm∂(β)) ≤ βxm−1. Since βxm−1 is in k[x1, . . ., xm−1], LM(xm∂(β)) is
not equal to βxm−1. Therefore LM(∂(f)) = βxm−1. �

Theorem 2.3. If β is a monomial in k[x1, . . ., xm−1] and i ≥ 2 then βxim is the
lead monomial of a σ–invariant in k[x1, . . ., xn] for sufficiently large n.

Proof. We prove the theorem by introducing an algorithm for constructing a σ-
invariant with lead monomial βxim.

Apply ∂ to βxim and observe that, as long as i is not the characteristic of k, the
lead term of ∂(βxim) is iβxm−1x

i−1
m . Define f1 = βxim − iβxm−1x

i−2
m xm+1. Note

that LM(∂(f1)) < βxm−1x
i−1
m . For j > 1, if ∂(fj−1) = 0 then fj−1 is σ-invariant,

otherwise write the lead term of ∂(fj−1) as γxkr with γ ∈ k[x1, . . ., xr−1] and k > 0
and define fj = fj−1 − γxk−1

r xr+1. Observe that LM(∂(fj)) < LM(∂(fj−1)).
Thus, as long as ∂(fj) is non-zero, LM(∂(f1)), . . . ,LM(∂(fj)) is a strictly de-
creasing sequence of monomials in a fixed degree.

It is not difficult to prove that the set of monomials in countably many variables
is well ordered by the graded reverse lexicographic order. Therefore the algorithm
terminates. However, we prefer to give an argument which provides us with an
upper bound on n.

For a monomial λ =
∏
s x

is
s , we define the weight of λ by wt(λ) =

∑
s sis. Note

that the monomials appearing in ∂(λ) all have weight less than wt(λ). Furthermore
wt(γxk−1

r xr+1) = wt(γxkr ) + 1. Hence any monomial appearing in fj has weight
less than or equal to wt(βxim). Since there are only a finite number of monomials
in a given degree with a given weight, we see that there are only finitely many
fj . In fact, if we let d denote the degree of βxim and define ` = wt(βxim)− d+ 1,
then xd−1

1 x` is the smallest monomial of degree d and weight wt(βxim), and fj ∈
k[x1, . . ., x`]. �

Note that all monomials except those of the form xi1 satisfy the hypotheses
of either Theorem 2.2 or Theorem 2.3. We will call a monomial admissible if it
satisfies the hypotheses of Theorem 2.3 or if the monomial is of the form xi1.

Corollary 2.4. LM(Q[V∞]Z) is the set of admissible monomials.

Suppose γ is a monomial satisfying the hypotheses of Theorem 2.3. Then let
inv(γ) be the invariant produced by the algorithm. For convenience we define
inv(xi1) = xi1.

Remark 2.5. Suppose that γ is an admissible monomial. Reviewing the algo-
rithm, we observe that γ is the only admissible monomial appearing in inv(γ).
Furthermore, if ` = wt(γ)− degree(γ) + 1, then inv(γ) is in k[x1, . . ., x`]σ. David
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Wehlau and I have recently proved that the variable x` does appear in inv(γ). In
other words, inv(γ) in is not an element of k[x1, . . ., x`−1]σ.

Let B denote the set {inv(γ) | γ is admissible}.

Theorem 2.6. B is a basis for the vector space Q[V∞]Z.

Proof. Since the elements of B have distinct lead monomials the set is linearly
independent. To see that B is a spanning set, consider a polynomial f ∈ Q[V∞]Z.
Let Γ be the set of admissible monomials appearing in f and, for γ ∈ Γ, let cγ
denote the coefficient of γ in f . Let

f̃ =
∑
γ∈Γ

cγ inv(γ).

Since no admissible monomial appears in the invariant f − f̃ , it follows from
Corollary 2.4 that f − f̃ = 0. Thus B spans Q[V∞]Z as required. �

We can use the algorithm from the proof of Theorem 2.3 to describe the rational
invariants which will appear as generators in Sections 4 and 5. It is easy to see that
inv(x2

2) = x2
2−x1(x2 +2x3) , inv(x2

3) = x2
3−x2(x3 +2x4)+x1(x3 +3x4+2x5), and

inv(x3
2) = x3

2 + x2
1(3x4 − x2)− 3x1x2x3. Explicit calculation shows that, although

inv(x3
3) involves x1 through x7, if we define inv(x3

3) = 2 inv(x3
3) − 3 inv(x2x

2
3) +

9x1 inv(x2
4), we get an element of k[x1, . . ., x5]σ with lead monomial x3

3. Similarly
define

inv(x2
2x

2
3) = 3 inv(x2

2x
2
3)+x1

(
6 inv(x2x

2
3)− 8 inv(x3

3)
)
−x2

1

(
9 inv(x2

4) + 8 inv(x2
3)
)
,

and inv(x2
2x

2
3x

2
4) = 4 inv(x2

3)3− inv(x3
3)2. Clearly LM(inv(x2

2x
2
3)) = x2

2x
2
3. Careful

computation shows that inv(x2
2x

2
3) ∈ k[x1, . . ., x4]σ, LM(inv(x2

2x
2
3x

2
4)) = x2

2x
2
3x

2
4

and inv(x2
2x

2
3x

2
4) ∈ k[x1, . . ., x5]σ.

3. Lead monomials of transfers

In this section we compute the lead monomial for various elements in the image of
the transfer. We assume throughout that p > 2. When p = 2, with the exception
of Theorem 3.5 with i = 0, the results stated here are true and the proofs are
elementary.

Observe that

σc(xm) = xm +
(
c

1

)
xm−1 +

(
c

2

)
xm−2 + · · ·+

(
c

m− 1

)
x1. (3.1)
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Therefore

Tr
(
xim−1x

j
m

)
=
∑
c∈Fp

(
m−2∑
k=0

(
c

k

)
xm−1−k

)i(
m−1∑
`=0

(
c

`

)
xm−`

)j
. (3.2)

Note that
(
c
i

)
is a polynomial in c of degree i. The following lemma is well

known.

Lemma 3.1. Suppose that ` is a positive integer. Then

∑
c∈Fp

c` =
{ −1 if p− 1 divides `;

0 if p− 1 does not divide `.

Proof. See, for example, [3, 9.4]. �

Theorem 3.2. If (p− 1)/2 ≤ i ≤ p− 1 then

LM
(
Tr
(
xim
))

= xp−1−i
m−2 x

2i−(p−1)
m−1 .

Proof. Using Equation 3.1, we see that the coefficient of xp−1−i
m−2 x

2i−(p−1)
m−1 in σc(xim)

is
(
c
2
)p−1−i(c

1
)2i−(p−1)( i

p−1−i
)
. Using Lemma 3.1, we see that

∑
c∈Fp

(
c

2

)p−1−i(
c

1

)2i−(p−1)(
i

p− 1− i

)
= −

(
1
2

)p−1−i (
i

p− 1− i

)

and, since i ≤ p − 1, this is non-zero. All of the monomials appearing in σc(xim)
which are greater than xp−1−i

m−2 x
2i−(p−1)
m−1 have coefficients which, as polynomials in

c, have degree less than p− 1 and hence, by Lemma 3.1, these monomials do not
appear in Tr(xim). �

Theorem 3.3. If 1 ≤ i ≤ p− 1 then

LM
(

Tr
(
xim−1x

p−1
m

))
= xi+p−1

m−1 .

Proof. Using Equation 3.2 we see that the coefficient of xi+p−1
m−1 in σc(xim−1x

p−1
m )

is cp−1. Thus, using Lemma 3.1, the coefficient of xi+p−1
m−1 in Tr(xim−1x

p−1
m ) is −1.

All of the monomials appearing in σc(xim−1x
p−1
m ) which are greater than xi+p−1

m−1
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have coefficients which, as polynomials in c, have degree less than p−1 and hence,
by Lemma 3.1, these monomials do not appear in Tr(xim−1x

p−1
m ). �

Theorem 3.4. If 2 ≤ i ≤ p− 1 then

LM
(

Tr
(
xim−1x

p−2
m

))
= xm−2x

i+p−3
m−1 .

Proof. Using Equation 3.2 we see that the coefficient of xm−2x
i+p−3
m−1 in

σc(xim−1x
p−2
m ) is icp−1 + (p−2)

(
c
2
)
cp−3. Thus, using Lemma 3.1, the coefficient of

xi+p−1
m−1 in Tr(xim−1x

p−1
m ) is −i+1. As long as i 6= 1, this coefficient is non-zero. All

of the monomials appearing in σc(xim−1x
p−2
m ) which are greater than xm−2x

i+p−3
m−1

have coefficients which, as polynomials in c, have degree less than p−1 and hence,
by Lemma 3.1, these monomials do not appear in Tr(xim−1x

p−2
m ). �

Theorem 3.5. If (p− 1)/2− 1 ≤ i ≤ p− 1 then

LM
(

Tr
(
x2
m−1x

i
m

))
= xp−1−i

m−2 x2i−p+3
m−1 .

Proof. We use Equation 3.2 to compute the coefficient of xp−1−i
m−2 x2i−p+3

m−1 in
σc(x2

m−1x
i
m). σc(x2

m−1) contributes x2
m−1, 2cxm−1xm−2 or c2x2

m−2 with the
rest of the term coming from σc(xim). Thus the coefficient of xp−1−i

m−2 x2i−p+3
m−1 in

σc(x2
m−1x

i
m) is

c2i−p+1
(
c

2

)p−1−i(
i

p− 1− i

)
+ 2c2i−p+3

(
c

2

)p−2−i(
i

p− 2− i

)
+c2i−p+5

(
c

2

)p−3−i(
i

p− 3− i

)
.

Thus, using Lemma 3.1, the coefficient of xp−1−i
m−2 x2i−p+3

m−1 in Tr(x2
m−1x

i
m) is

−
(

1
2

)p−1−i(
i

p− 1− i

)
− 2

(
1
2

)p−2−i (
i

p− 2− i

)
−
(

1
2

)p−3−i (
i

p− 3− i

)
.

We need to show that this coefficient is non-zero. If i = p − 1 or i = p − 2 then
the coefficient is −1. If i < p − 2 then, after factoring, simplifying and reducing
modulo p, the coefficient is

−1
2(i+ 2)

(
1
2

)p−3−i(
i

p− 3− i

)
.
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Thus the coefficient is non-zero. All of the monomials appearing in σc(x2
m−1x

i
m)

which are greater than xp−1−i
m−2 x2i−p+3

m−1 have coefficients which, as polynomials in
c, have degree less than p− 1 and hence, by Lemma 3.1, these monomials do not
appear in Tr(x2

m−1x
i
m). �

Theorem 3.6. Suppose that Tr(β) is non-zero and LM (Tr(β)) is in Fp[xm, . . ., xn].
Then

LM (Tr(xmβ)) = xm LM (Tr(β)) .

Proof. Using Equation 3.1, we see that

Tr(xmβ) =
∑
c∈Fp

σc(xm)σc(β)

=
∑
c∈Fp

m−1∑
j=0

(
c

j

)
xm−j

σc(β)

= xm Tr(β) +
∑
c∈Fp

m−1∑
j=1

(
c

j

)
xm−j

σc(β).

Thus Tr(xmβ) is congruent, modulo the ideal generated by x1 through xm−1, to
xm Tr(β). Since LM (Tr(β)) is in Fp[xm, . . ., xn], the lead monomial of Tr(xmβ)
comes from xm Tr(β). Therefore LM (Tr(xmβ)) = xm LM (Tr(β)). �

4. The four dimensional representation

In this section we construct a generating set for Fp[x1, . . ., x4]Z/p. If p ≡ 1 (mod 3)
then define ` = (p−1)/3 and q = 2`+1. If p ≡ −1 (mod 3) then define ` = (p+1)/3
and q = 2`− 1. If i is a integer, define ε(i) to be 0 if i is even and 1 if i is odd.

Theorem 4.1. Fp[x1, . . ., x4]Z/p is generated by x1, inv(x2
2), inv(x3

2), inv(x2
2x

2
3),

N(x4) and the following families:
(i) Tr(xi3x

p−1
4 ) for 0 ≤ i ≤ p− 2,

(ii) Tr(xi3x
p−2
4 ) for 3 ≤ i ≤ p− 2,

(iii) Tr(xj4) for q ≤ j ≤ p− 2 and
(iv) Tr(x2

3x
j
4) for 2`− 1 ≤ j ≤ p− 2.

The rest of this section is devoted to the proof of Theorem 4.1. Let C denote
the collection of invariants given in the statement of the preceding theorem. We
prove the theorem by showing that C is a S.A.G.B.I. basis for Fp[x1, . . ., x4]Z/p,
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i.e., the lead monomials of the elements of C generate the lead term algebra of
Fp[x1, . . ., x4]Z/p. We do this by computing the Poincaré series of the algebra
generated by the lead monomials of C and comparing the result with the Poincaré
series of Fp[x1, . . ., x4]Z/p as computed by G. Almkvist and R. Fossum [2, 3.1].
We observe that the two series are equal and, using Proposition 1.2, we conclude
that the lead monomials of C generate the lead term algebra of Fp[x1, . . ., x4]Z/p.
Therefore, by Proposition 1.1, C generates Fp[x1, . . ., x4]Z/p.

Let A denote the algebra generated by the lead monomials of C. We wish to
compute the Poincaré series of A. Using Theorem 3.2 and the fact that the lead
monomial of N(xn) is xpn, we have

LM{x1, inv(x2
2),Tr(xp−1

4 ),N(x4)} = {x1, x
2
2, x

p−1
3 , xp4}.

Note that this set is algebraically independent. Let R denote the ring generated
by {x1, x

2
2, x

p−1
3 , xp4}, then

P (R, t) =
1

(1− t)(1− t2)(1− tp−1)(1− tp)
We will use the R–module structure of A to compute its Poincaré series. In order
to understand the R–module structure we need to find module generators for A.
Let

D = {Tr(x3x
p−1
4 )·Tr(xp−2

4 )}∪{inv(x2
2x

2
3)i+1, inv(x3

2)·inv(x2
2x

2
3)i | 1 ≤ i ≤ `/2−1}

and let M be the R–submodule of A generated by 1, LM(C) and LM(D). We
will start by computing the Poincaré series ofM. We shall see that the Poincaré
series ofM is equal to the Poincaré series of Fp[x1, . . ., x4]Z/p and thusM = A =
LT(Fp[x1, . . ., x4]Z/p).

We impose a Z/2×Z/(p−1)–grading on Fp[x1, . . ., x4]. A monomial xi11 x
i2
2 x

i3
3 x

i4
4

will be assigned the multidegree (i2, i3) ∈ Z/2× Z/(p− 1). Observe that the ac-
tion of R preserves the multidegree. Since A is generated by monomials, A is a
Z/2×Z/(p− 1)–graded R–module. Therefore all generators and relations can be
chosen to be homogeneous with respect to the Z/2× Z/(p− 1)–grading.

If β and γ are monomials in Fp[x1, . . ., x4] with the same multidegree, then the
intersection of Rβ with Rγ is the free R–module generated by the least common
multiple of β and γ. In particular, an R–module generated by two monomials with
the same multidegree has a single free relation.

We can use the results of Section 3 to describe LM(C). From Theorem 3.2
we see that, for q ≤ j ≤ p − 2, we have LM(Tr(xj4)) = xp−1−j

2 x
2j−(p−1)
3 . From

Theorem 3.3 we see that, for 1 ≤ i ≤ p − 2, we have LM(Tr(xi3x
p−1
4 )) = xi+p−1

3 .
From Theorem 3.4 we see that, for 3 ≤ i ≤ p − 2, we have LM(Tr(xi3x

p−2
4 )) =

x2x
i+p−3
3 . Using Theorem 3.5 we see that, for 2` − 1 ≤ j ≤ p − 2, we have

LM(Tr(x2
3x
j
4)) = xp−1−j

2 x2j−p+3
3 . Therefore

LM(D) = {x2x
2p−3
3 } ∪ {(x2

2x
2
3)i+1, x3

2(x2
2x

2
3)i | 1 ≤ i ≤ `/2− 1}
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and the R–module M is generated by the following families of monomials:
(i) 1 and x2x

2p−3
3 ,

(ii) (x2
2x

2
3)i, x3

2(x2
2x

2
3)i−1 for 1 ≤ i ≤ `/2,

(iii) xp−1+i
3 for 1 ≤ i ≤ p− 2,

(iv) x2x
p−3+i
3 for 3 ≤ i ≤ p− 2,

(v) xp−1−j
2 x2j−p+1

3 for q ≤ j ≤ p− 2 and
(vi) xp−1−j

2 x2j−p+3
3 for 2`− 1 ≤ j ≤ p− 2.

This list of monomials contributes either one or two elements to each multi-
degree. When there is one element in a given multidegree then the homogeneous
component of M in that multidegree is a free R–module of rank one. If there are
two elements in a given multidegree then the homogeneous component has two
generators and a single free relation. Therefore we can write the Poincaré series
of M as

P (M, t) =
g(t)− r(t)

(1− t)(1− t2)(1− tp−1)(1− tp)

where g(t) is the Poincaré series for the generators and r(t) is the Poincaré series
for the relations. Referring to our list of generators we see that

g(t) = 1 + t2p−2 +
`/2∑
i=1

(
t4i + t4i−1

)
+
p−2∑
i=1

tp−1+i

+
p−2∑
i=3

tp−2+i +
p−2∑
j=q

tj +
p−2∑

j=2`−1

tj+2.

To compute r(t) we need to identify the multidegrees containing two generators
and compute the degree of the least common multiple of the two generators. Sort-
ing our generators into homogeneous components leads to the following relations:

(i) lcm((x2x3)2i, x2i+p−1
3 ) = x2i

2 x
2i+p−1
3 for 1 ≤ i ≤ `/2,

(ii) lcm(x2i+1
2 x2i−2

3 , x2x
2i+p−3
3 ) = x2i+1

2 x2i+p−3
3 for 1 ≤ i ≤ `/2,

(iii) lcm(xp−1−j
2 x2j−p+1

3 , x
ε(j)
2 x2j

3 ) = xp−1−j
2 x2j

3 for q ≤ j ≤ p− 3, and

(iv) lcm(xp−1−j
2 x2j−p+3

3 , x
ε(j)
2 x2j+2

3 ) = xp−1−j
2 x2j+2

3 for 2`− 1 ≤ j ≤ p− 3.

Thus

r(t) =
`/2∑
i=1

(
t4i+p−1 + t4i+p−2

)
+
p−3∑
j=q

tp−1+j +
p−3∑

j=2`−1

tp+1+j .

Form the polynomial g(t)−r(t), evaluate the geometric series, and simplify, to get

g(t)− r(t) =
(

1− tp−1

1− t4
)(

1 + t3 + tq + tq+1 + tq+2 + tq+3 + t2`+1 + t2`+2
)
.
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If p ≡ 1 (mod 3), then 2` = q − 1 and

P (M, t) =
1 + t3 + 2tq + 2tq+1 + tq+2 + tq+3

(1− t)(1− t2)(1− t4)(1− tp) .

If p ≡ −1 (mod 3), then 2` = q + 1 and

P (M, t) =
1 + t3 + tq + tq+1 + 2tq+2 + 2tq+3

(1− t)(1− t2)(1− t4)(1− tp) .

Comparing with [2, 3.1] we see that P (M, t) = P (Fp[x1, . . ., x4]Z/p, t) as required.

Remark 4.2. The simplification of g(t)− r(t) was done by hand. The result can
be confirmed using a computer algebra program such as Maple. If f(t) denotes
the numerator in the Poincaré series produced by Almkvist and Fossum, then the
polynomial (g(t)− r(t)) (1− t4)− f(t)(1− tp−1) is zero.

Corollary 4.3. Fp[x1, . . ., x4]Z/p is generated by homogeneous polynomials of de-
gree less than or equal to 2p− 3.

5. The five dimensional representation

Theorem 5.1. Fp[x1, . . ., x5]Z/p is generated by x1, inv(x2
2), inv(x2

3), inv(x3
2),

inv(x3
3), inv(x2

2x
2
3x

2
4), N(x5), Tr(x2x3x

(p−1)/2
5 ) and the following families:

(i) Tr(xi4x
p−1
5 ) and Tr(x2x

i
4x
p−1
5 ) for 0 ≤ i ≤ p− 2,

(ii) Tr(xi4x
p−2
5 ) and Tr(x2x

i
4x
p−2
5 ) for 3 ≤ i ≤ p− 2,

(iii) Tr(x2
4x
j
5) and Tr(x2x

2
4x
j
5) for (p− 1)/2 ≤ j ≤ p− 2.

(iv) Tr(xj5) for (p+ 1)/2 ≤ j ≤ p− 1, and
(v) Tr(x2x

j
5) for (p− 1)/2 ≤ j ≤ p− 2.

This section is devoted the proof of Theorem 5.1. The methods used are similar
to those used in Section 4.

Let C denote the collection of invariants given in the statement of the preceding
theorem. Let A denote the algebra generated by the lead monomials of C. Using
Theorem 3.2, we see that

LM{x1, inv(x2
2), inv(x2

3),Tr(xp−1
5 ),N(x5)} = {x1, x

2
2, x

2
3, x

p−1
4 , xp5}.

This is an algebraically independent subset of A. Let R denote the ring generated
by {x1, x

2
2, x

2
3, x

p−1
4 , xp5}. As in Section 4, if p ≡ 1 (mod 3) then define ` = (p−1)/3
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and q = 2`+ 1, if p ≡ −1 (mod 3) then define ` = (p + 1)/3 and q = 2`− 1, and
if i is a integer, define ε(i) to be 0 if i is even and 1 if i is odd. Let

D′ = {inv(x3
2)i · inv(x3

3)j · inv(x2
2x

2
3x

2
4)k | i, j ∈ {0, 1}, 0 ≤ k ≤ `/2− 1− j},

and let

D = {Tr(x4x
p−1
5 ) · Tr(xp−2

5 ),Tr(x2x4x
p−1
5 ) ·Tr(xp−2

5 )} ∪ D′.

Let M be the R–module generated by LM(C) and LM(D). Note that M is a
subset of A. We impose a Z/2×Z/2×Z/(p− 1)–grading on Fp[x1, . . ., x5]Z/p. A
monomial xi11 x

i2
2 x

i3
3 x

i4
4 x

i5
5 will be assigned the multidegree

(i2, i3, i4) ∈ Z/2× Z/2× Z/(p− 1).

Observe that the action of R preserves the multidegree. Since M is generated by
monomials, all generators and relations can be chosen to be homogeneous with
respect to the Z/2× Z/2× Z/(p− 1)–grading.

We can use the results of Section 3 to describe LM(C). From Theorem 3.2, for
(p−1)/2 ≤ j ≤ p−1, we have LM(Tr(xj5)) = xp−1−j

3 x
2j−(p−1)
4 . From Theorem 3.3,

for 1 ≤ i ≤ p− 2, we have LM(Tr(xi4x
p−1
5 )) = xi+p−1

4 . From Theorem 3.4, for 3 ≤
i ≤ p− 2, we have LM(Tr(xi4x

p−2
5 )) = x3x

i+p−3
4 . Using Theorem 3.5 we see that,

for (p− 1)/2 ≤ j ≤ p− 2, we have LM(Tr(x2
4x
j
5)) = xp−1−j

3 x2j−p+3
4 . These results

in conjunction with Theorem 3.6 allow us to compute LM(Tr(x2x3x
(p−1)/2
5 )) and

LM(Tr(x2x
i
4x
j
5)) for the required values of i and j. Therefore

LM(D) = {x3x
2p−3
4 , x2x3x

2p−3
4 } ∪ LM(D′)

and M is generated by the following families of monomials:

(i) 1, x3x
2p−3
4 and x2x3x

2p−3
4 ,

(ii) (x2x3x4)2i, x2i+1
3 (x2x4)2(i−1) and (x2x3)2i+1x

2(i−1)
4 for 1 ≤ i ≤ `/2− 1,

x2i+1
2 (x3x4)2(i−1) for 1 ≤ i ≤ `/2,

(iii) xp−1+i
4 for 1 ≤ i ≤ p− 2, x2x

p−1+i
4 for 0 ≤ i ≤ p− 2,

x3x
p−3+i
4 and x2x3x

p−3+i
4 for 3 ≤ i ≤ p− 2, and

(iv) x2x
p−1−j
3 x2j−p+1

4 and xp−1−j
3 x2j−p+3

4 for (p− 1)/2 ≤ j ≤ p− 2,
x2x

p−1−j
3 x2j−p+3

4 for (p− 1)/2− 1 ≤ j ≤ p− 2,
xp−1−j

3 x2j−p+1
4 for (p+ 1)/2 ≤ j ≤ p− 2.
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Thus the Poincaré series of the generators is given by

g(t) = 1 + (1 + t)t2p−2 + t3`−3 +
`/2−1∑
i=1

(
2t6i + 2t6i−3

)

+
p−2∑
i=1

tp−1+i +
p−2∑
i=0

tp+i + (1 + t)
p−2∑
i=3

tp−2+i

+
p−2∑

j=(p+1)/2

tj +
p−2∑

j=(p−1)/2

tj(t+ t2) +
p−2∑

j=(p−3)/2

tj+3.

Evaluating the geometric series and simplifying gives

g(t) =
(

1 + t3

1− t3

)
(1− t3`−3)− tp−1 +

(
1 + t

1− t

)[
2t(p+1)/2 − (1 + t2)t2p−3

]
.

Observe that each homogeneous component contains one, two, or three gen-
erators. If the component contains one generator then the component is a free
module of rank one. If the component contains two generators then there is a
single free relation generated by the least common multiple. If the component
contains three generators then there are three relations given by the pairwise least
common multiples and a single syzygy given by the least common multiple of all
three generators. Thus the Poincaré series can be written as

P (M, t) =
g(t)− r1(t) + s(t)− r2(t)

(1− t)(1− t2)2(1− tp−1)(1− tp)

where r1(t) is the Poincaré series for the free relations, s(t) is the Poincaré series
for the syzygies and r2(t) is the Poincaré series for the relations associated to the
homogeneous components with three generators.

The free relations are given by:

(i) lcm(x3
3, x3x

p−1
4 ) = x3

3x
p−1
4 ,

(ii) lcm(xp−1−j
3 x2j−p+1

4 , x
ε(j)
3 x2j

4 ) = xp−1−j
3 x2j

4 and

lcm(x2x
p−1−j
3 x2j−p+1

4 , x2x
ε(j)
3 x2j

4 ) = x2x
p−1−j
3 x2j

4 for 2`− 1 ≤ j ≤ p− 3,

(iii) lcm(xp−1−j
3 x2j−p+3

4 , x
ε(j)
3 x2j+2

4 ) = xp−1−j
3 x2j+2

4 and

lcm(x2x
p−1−j
3 x2j−p+3

4 , x2x
ε(j)
3 x2j+2

4 ) = x2x
p−1−j
3 x2j+2

4 for q − 2 ≤ j ≤ p− 3.
Thus

r1(t) = tp+2 + (1 + t)tp−1

 p−3∑
j=2`−1

tj +
p−3∑
j=q−2

tj+2

 .
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Evaluate the geometric series to get

r1(t) = tp+2 + (1 + t)tp−1
(
t2`−1 − tp−2 + tq − tp

1− t

)
.

We need to describe the syzygies and the relations associated the homogeneous
components with three generators. In the first line we list the three generators
and in the second line we give the pairwise least common multiples followed by
the least common multiple of the three monomials.

(i) xp−1−j
3 x2j−p+1

4 , x
ε(j)
3 x2j

4 , x
3ε(j)
3 (x2x3x4)2j−p+1

xp−1−j
3 x2j

4 , x
p−1−j
3 (x2x4)2j−p+1, x2j−p+1

2 x
2j−p+1+3ε(j)
3 x2j

4 ;x2j−p+1
2 xp−1−j

3 x2j
4

for (p+ 1)/2 ≤ j ≤ 2`− 2.

(ii) x2x
p−1−j
3 x2j−p+1

4 , x2x
ε(j)
3 x2j

4 , x
3
2x

3ε(j)
3 (x2x3x4)2j−p+1x2x

p−1−j
3 x2j

4 ,

x3
2x
p−1−j
3 (x2x4)2j−p+1, x2j−p+4

2 x
2j−p+1+3ε(j)
3 x2j

4 ;x2j−p+4
2 xp−1−j

3 x2j
4

for (p− 1)/2 ≤ j ≤ 2`− 2.

(iii) xp−1−j
3 x2j−p+3

4 , x
ε(j)
3 x2j+2

4 , x
3ε(j)
3 (x2x3x4)2j−p+3xp−1−j

3 x2j+2
4 ,

xp−1−j
3 (x2x4)2j−p+3, x2j−p+3

2 x
2j−p+3+3ε(j)
3 x2j+2

4 ;x2j−p+3
2 xp−1−j

3 x2j+2
4

for (p− 1)/2 ≤ j ≤ q − 3.

(iv) x2x
p−1−j
3 x2j−p+3

4 , x2x
ε(j)
3 x2j+2

4 , x3
2x

3ε(j)
3 (x2x3x4)2j−p+3x2x

p−1−j
3 x2j+2

4 ,

x3
2x
p−1−j
3 (x2x4)2j−p+3, x2j−p+6

2 x
2j−p+3+3ε(j)
3 x2j+2

4 ;x2j−p+6
2 xp−1−j

3 x2j+2
4

for (p− 1)/2− 1 ≤ j ≤ q − 3.

Thus

s(t) =
2`−2∑

j=(p+1)/2

t3j +
2`−2∑

j=(p−1)/2

t3j+3 +
q−3∑

j=(p−1)/2

t3j+4 +
q−3∑

j=(p−3)/2

t3j+7.

Evaluating the geometric series and simplifying gives

s(t) =
(

1
1− t3

)[
2t3(p+1)/2(1 + t)− (1 + t3)(t6`−3 + t3q−2)

]
.

The Poincaré series for the relations associated the homogeneous components
with three generators is given by
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r2(t) =
2`−2∑

j=(p+1)/2

tj+p−1 +
2`−2∑

j=(p−1)/2

tj+p +
q−3∑

j=(p−1)/2

tj+p+1 +
q−3∑

j=(p−3)/2

tj+p+2

+
2`−2∑

j=(p+1)/2

t3j−p+1 +
2`−2∑

j=(p−1)/2

t3j−p+4 +
q−3∑

j=(p−1)/2

t3j−p+5 +
q−3∑

j=(p−3)/2

t3j−p+8

+
2`−2∑

j=(p+1)/2

t6j−2(p−1)+3ε(j) +
2`−2∑

j=(p−1)/2

t6j−2(p−1)+3ε(j)+3

+
q−3∑

j=(p−1)/2

t6j−2(p−1)+3ε(j)+6 +
q−3∑

j=(p−3)/2

t6j−2(p−1)+3ε(j)+9 .

Evaluating the geometric series in the first two lines, reindexing, and reorganizing
the sums in the third and fourth lines gives

r2(t)=
(

1
1− t

)[
2t3(p−1)/2+1 − t2`+p−2 − t2`+p−1 + 2t3(p−1)/2+2 − tq+p−1 − tq+p)

]
+
(

1
1− t3

)[
2t(p−1)/2+3 − t6`−p−2 − t6`−p+1 + 2t(p−1)/2+4 − t3q−p−1 − t3q−p+2

]
+
`/2−1∑
i=1

t6j+(p−1) +
`/2−1∑
i=0

t6j+(p−1)+3 +
`/2−2∑
i=1

t6j+(p−1)+3 +
`/2−2∑
j=0

t6j+(p−1)+6.

Let n(t) = g(t)− r1(t) + s(t)− r2(t). Combining the previous expressions and
simplifying gives

n(t) =
(

1− tp−1

1− t3

)[
(1 + t3)(1− t3`−3 + t6`−p−2 + t3q−p−1) + 2t(p+1)/2(1 + t)2

]
.

Note that, for any prime p, t3q−p−1 + t6`−p−2 − t3`−3 = tp. Thus

P (M, t) =
(1 + t3)(1 + tp) + 2t(p+1)/2(1 + t)2

(1− t)(1− t2)2(1− t3)(1− tp) .

Comparing with [2, 3.1] we see that P (M, t) = P (Fp[x1, . . ., x5]Z/p, t) as required.
This completes the proof of Theorem 5.1.

Remark 5.2. As in Section 4, the simplification of the Poincaré series was done
by hand but can be confirmed by a computer algebra program such as Maple. If
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we use f(t) to denote the numerator of the Poincaré series produced by Almkvist
and Fossum, then the polynomial n(t)(1− t3)− f(t)(1− tp−1) is zero.

Corollary 5.3. Fp[x1, . . ., x5]Z/p is generated by homogeneous polynomials of de-
gree less than or equal to 2p− 2.

6. Concluding remarks

We believe that, in principle, the methods used here could be extended to n > 5
but that the computations required will become increasingly more complicated.
Instead we suggest a more conceptual approach along the lines of the following
conjecture. We remind the reader that rational invariants are the invariants in the
image of the projection from Z[x1, . . ., xn]Z to Fp[x1, . . ., xn]Z/p.

Conjecture 6.1. Fp[x1, . . ., xn]Z/p is generated by rational invariants, the image
of the transfer and N(xn).

A proof of this conjecture would reduce the problem of finding an upper bound
on the degrees of the generators to the relatively accessible problem of computing
the image of the transfer. As philosophical evidence for the conjecture we include
the following theorem.

Theorem 6.2. Fp[x1, . . ., xn]Z/p is an integral extension of the subalgebra gener-
ated by N(xn) and the image of the transfer.

Proof. It is sufficient to find a homogeneous system of parameters for Fp[x1, . . ., xn]
inside the subalgebra generated by N(xn) and the image of the transfer. Consider
the set

C = {Tr(xp−1
2 ),Tr(xp−1

3 ), . . .,Tr(xp−1
n ),N(xn)}

Using Theorem 3.2, LM(C) = {xp−1
1 , xp−1

2 , . . ., xp−1
n−1, x

p
n}. Since LM(C) is a homo-

geneous system of parameters and we are using the graded reverse lexicographic
order, C is a homogeneous system of parameters . �

Remark 6.3. The image of the transfer is an ideal in Fp[x1, . . ., xn]Z/p. The
radical of this ideal is the intersection of the ideal generated by x1, . . . , xn−1 in
Fp[x1, . . ., xn] with Fp[x1, . . ., xn]Z/p (see [11, Remark 2.5]). It is not hard to show
that Fp[x1, . . ., xn]Z/p is generated by N(xn) and the radical of the image of the
transfer.
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