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Abstract. We determine all stable constant mean curvature hypersurfaces in a wide class of
complete Riemannian manifolds having a foliation whose leaves are umbilical hypersurfaces.
Among the consequences of this analysis we obtain all the stable constant mean curvature hy-
persurfaces in many nonsimply connected hyperbolic space forms.
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1. Introduction

Compact hypersurfaces Σn with constant mean curvature in a Riemannian mani-
fold Mn+1 are first order solutions to an isoperimetric problem: they are critical
points of the area functional, admissible variations being only those that leave a
certain enclosed volume function fixed. In this setting, it is natural to study con-
stant mean curvature compact hypersurfaces which are stable with respect to that
variational problem, i.e., those for which the index form Q arising from the second
variation of the area is nonnegative for all admissible variations. More precisely
(see [BdC,BdCE]), those satisfying

Q(h) =
∫

Σ

{
|∇h|2 −

(
S(N,N) + |σ|2

)
h2
}
dA ≥ 0, (1)

for any h ∈ C∞(Σ) such that
∫
Σ h dA = 0. There ∇h stands for the gradient of h,

N is a unit normal vector field on Σ (we will assume Σ to be orientable and M to
be oriented), S is the Ricci tensor of the ambient manifold M and σ the second
fundamental form of the immersion.

The classification of stable compact hypersurfaces with constant mean curva-
ture was acomplished by Barbosa and do Carmo ([BdC]) when the ambient space
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Mn+1 is the Euclidean space Rn+1 and continued by themselves and Eschenburg
([BdCE]), and independently by El Soufi and Ilias in [EI] and by Heintze in [H],
when Mn+1 is either the sphere Sn+1 or the hyperbolic space Hn+1. Their results
can be jointly stated as follows:

The only stable compact orientable hypersurfaces with constant mean curvature
immersed in a simply connected space form are the umbilical (round) spheres.

Besides this case where the ambient space is a simply connected space form, this
kind of hypersurfaces has been completely classified only when n = 2 and Mn+1

is the three dimensional real projective space RP 3, by Ritoré and Ros [RR1]. In
this nonsimply connected low dimensional case, one can observe that an easy but
nontrivial topology in the ambient space yields the apparition of different types
of orientable compact stable constant mean curvature surfaces requiring more so-
phisticated classification technics. Increasing topology or changing compactness by
completeness hardens considerably the problem (see [RR2] and references therein).

In this paper we will classify all orientable compact stable constant mean cur-
vature hypersurfaces in many nonsimply connected hyperbolic space forms. More
precisely, particular cases of Corollaries 7 and 8 (see Remarks 3 and 4), will give

Let Γ be a subgroup of Iso +(Hn+1) acting properly and discontinuously. Sup-
pose that Γ fixes a given horosphere H0 (respectively, hyperbolic hyperplane).
Then, the connected components of an orientable compact stable constant mean
curvature hypersurface in the quotient Hn+1/Γ are either umbilical (round)
spheres or H/Γ ⊂ Hn+1/Γ, where H is a horosphere (respectively hyperplane)
parallel to H0. Moreover, there is at most one connected component of the first
type.

Notice that the subgroup of Iso +(Hn+1) consisting of the orientation preserv-
ing isometries fixing a given horosphere (respectively hyperplane) can be naturally
identified with Iso (Rn) (respectively Iso (Hn)). So, the result above can be applied
to many hyperbolic space forms. It is also relevant to remark that, when the am-
bient space is a simply connected space form, stable hypersurfaces are necessarily
connected. In our setting, examples will convince us that other is the case. Any-
way, there are situations where we will be able to assert something more about
the combination of the possible connected components. In fact, we will obtain in
Remark 4 just after Corollary 8 that

Let Γ be a subgroup of Iso +(Hn+1) acting properly and discontinuously and
fixing a given horosphere H0. Then, an orientable compact constant mean
curvature hypersurface immersed in the quotient Hn+1/Γ is stable if and only
if it is either an umbilical (round) sphere or a finite number of H/Γ, where H
means a horosphere parallel to H0.
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The reason because we are able to classify stable constant mean curvature hy-
persurfaces in precisely these two types of space forms is that they can be described
as certain warped products (see [BiOn,On]). In fact, we will achieve the classifi-
cation of all orientable compact stable constant mean curvature hypersurfaces in
a wider class of Riemannian manifolds having nonconstant curvature which can
described in terms of those warped products. We will see in Corollary 6 that

If f is a positive nonconstant solution to the Jacobi equation f ′′ + κf = 0,
κ ∈ R, and Pn is a Riemannian manifold whose Ricci curvature SP satisfies
SP ≥ (n − 1){f ′2 + κf2}, then the connected components of any orientable
compact stable constant mean curvature hypersurface into the warped product
R ×f Pn are of two types: either umbilical round spheres or slices {s} × Pn,
s ∈ R. The first case occurs only when Pn has constant curvature (in a certain
region) and the second one only when Pn is compact. Moreover, there is at most
one connected component of the first type and only one connected component
when κ ≥ 0.

We must point out that when κ < 0 the warped products R×f Pn provide us
many Riemannian manifolds which are complete. The procedure that we will use
for studying compact hypersurfaces in these ambient spaces is to use the existence
on such warped products of a nontrivial closed conformal field to obtain certain
integral formulae generalizing the classical Minkowski formulae. This has been
already done in [M] to obtain analogues to the Liebmann ([J,Li]) and Alexandrov
([A]) theorems on compact constant mean curvature hypersurfaces in Euclidean
spaces.

2. Closed conformal fields and induced foliations

The ambient spaces Mn+1 that we are going to consider in order to study stability
of compact constant mean curvature hypersurfaces can be described as certain
warped products with a 1-dimensional factor (see Section 3 below). One of the
relevant features of these Riemannian manifolds (which include the three simply
connected space forms) is the existence of a nontrivial closed conformal field.

Thus, consider a Riemannian manifold Mn+1 endowed with a nontrivial closed
conformal field X , that is, such that there exists a function φ ∈ C∞(M) with

∇uX = φu for every vector u ∈ TM, (2)

where ∇ stands for the Levi-Civita connection on M associated to the Riemannian
metric 〈, 〉. This geometrical situation has been widely considered in the literature,
either directly imposed on a Riemannian manifold (see, for example, [O,TW] and
references therein), or related to other assumptions such as the existence of some
function whose Hessian satisfies an Obata type condition [K,Ta]; the fact that M
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is a Lagragian submanifold of Cn with conformal Maslov class [RU]; and, finally,
the fact that M is a warped product (in the sense of [BiOn] or [On], p. 204). It
is also related with the existence of a certain class of foliations whose leaves are
totally umbilical.

From definition (2), we immediately obtain

∇|X |2 = 2φX =
2

n+ 1
(divX)X. (3)

By taking covariant derivatives in (3), we may compute the Hessian of the function
|X |2. In fact we have

(∇2|X |2)(u, v) = 2(uφ) 〈X, v〉+ 2φ2〈u, v〉, (4)

for every u, v ∈ TM . From this, because both the Hessian ∇2|X |2 and the metric
〈, 〉 are symmetric tensors, we obtain

(uφ) 〈X, v〉 = (vφ) 〈X,u〉

for all u, v tangent to M . Hence

|X |2∇φ = (Xφ)X that is |X |2∇divX = (XdivX)X. (5)

Using these equalities and taking into account some results in [O], one can
prove the following Proposition 1, where we will gather some well-known facts for
Riemannian manifolds admitting such a vector field (see [M,RU] for a detailed
proof).

Proposition 1. Let Mn+1, n ≥ 1, be a Riemannian manifold endowed with a
nontrivial field X which is closed and conformal. Then we have that

a) The set Z(X) consisting of the points of Mn+1 where X vanishes is a
discrete set.

b) The unitary field N = X/|X | defined on the open dense set M ′ = Mn+1 −
Z(X) satisfies

∇NN = 0 ∇uN =
φ

|X | u if 〈u,N〉 = 0.

In particular, the flow of N is a unit speed geodesic flow.
c) The n-dimensional distribution D defined on M ′ by

p ∈M ′ 7−→ D(p) = {v ∈ TpMn+1 | 〈X(p), v〉 = 0}

determines a codimension one umbilical Riemannian foliation F(X) which is ori-
ented by N . Moreover, the functions |X | and φ are constant on connected leaves
of F(X) and each leaf has constant mean curvature H = −φ/|X |.
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Understanding the interaction between the geometries of the manifold Mn+1

and that of leaves of the foliation F(X) will be important before studying hyper-
surfaces of M . For example, one can derive, directly from (2), that

R(u, v)X = (uφ) v − (vφ)u u, v ∈ TM, (6)

where R is the curvature operator of M . From this, one has

S(X,u) = −nuφ that is Ric (X) = −n∇φ, (7)

where S and Ric are, respectively, the Ricci tensor and the Ricci operator of the
metric on M . So, according to (5) and (7), the closed and conformal field X is an
eigenfield of the Ricci operator on the open set M ′ = M − Z(X), corresponding
to the eigenvalue −n (Xφ)/|X |2.

Now, if we denote by R the curvature operator of the Riemannian induced
structures on leaves of F(X), since these leaves are umbilical with constant mean
curvature H = −φ/|X |, the Gauss equation gives us

R(u, v)w = R(u, v)w +H2 (〈v, w〉u− 〈u,w〉 v) , (8)

for all u, v, w ∈ TF(X). And so, if S represents the Ricci tensor of the metric
induced on leaves,

S(u, u) = S(u, u)−R(u,N ,N , u) + (n− 1)H2|u|2.

Using (6), we may write

|X |2S(u, u) = |X |2S(u, u) + (n− 1)φ2|u|2 + (Xφ) |u|2, (9)

for all u ∈ TF(X), that is, with 〈u,X〉 = 0.

We must point out that, because the flow of N transforms homothetically leaves
of F(X), the curvature operator R is invariant through that flow and, as a
consequence, the tensor S has this same property.

We have seen that the existence of a closed conformal field X on our manifold
Mn+1 gives a foliation F(X) by means of constant mean curvature (umbilical)
hypersurfaces. The same pleasing condition on the geometry ofM that allowed us
in [M] to prove some results of Liebmann and Alexandrov type implies here that
compact leaves of the foliation F(X) are stable.

Proposition 2. Let Mn+1, n ≥ 1, be a Riemannian manifold having a nontrivial
closed conformal field X and F(X) the corresponding umbilical foliation. Suppose
that the direction determined by X is the one of least Ricci curvature, that is,

|X |2S(u, u)− |u|2S(X,X) ≥ 0 u ∈ TMn+1. (10)
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Then, each compact connected leaf of the foliation F(X) is a stable constant mean
curvature hypersurface of Mn+1.

Proof. First of all, notice that the condition (10) on the Ricci tensor of M can be
rewritten, using (7) and (9), in this way

|X |2S(u, u) ≥ (n− 1)(φ2 −Xφ)|u|2 for all u ∈ TF(X). (11)

Since, from Proposition 1,
(
φ2 −Xφ

)
/|X |2 is a constant on each leaf of F(X), we

can apply the Lichnerowicz theorem ([L]) on each compact leaf Σ of the foliation
and deduce

λ1(Σ) ≥ n φ
2 −Xφ
|X |2 (Σ),

where λ1 stands for the first nonzero eigenvalue of the Laplacian of a compact
Riemannian manifold. But, if h ∈ C∞(Σ) is a smooth mean zero function, from
definition (1) we have

Q(h) ≥
∫

Σ

{
λ1(Σ)−

(
S(N,N) + |σ|2

)}
h2 dA.

Since Σ is a leaf of F(X) we can take N = N and so, from (7),

S(N,N) = −n Xφ

|X |2 is constant on Σ.

Also, as Σ is umbilical, from Proposition 1 we obtain

|σ|2 = nH2 = n
φ2

|X |2 also constant on Σ.

So, the above lower bound for λ1 suffices to finish the proof. �

3. Riemannian warped products

Suppose that I denotes a 1-dimensional manifold (either circle or open interval
of R), that Pn is an n-dimensional Riemannian manifold and that f : I → R is
a positive function. Then we can construct the so called warped product I ×f P ,
which will be the (n+ 1)-dimensional differentiable manifold I × P endowed with
the metric

〈, 〉 = π∗I (ds2) + (f ◦ πI)2 π∗P 〈, 〉P ,
where πI and πP are the projections from I × P on each factor and 〈, 〉P is the
metric on P . Also, we will write for simplicity

〈, 〉 = ds2 + f2〈, 〉P .



590 S. Montiel CMH

One can easily check that the vector field

X(s, q) = f(s)(∂/∂s)(s,q) s ∈ I q ∈ P

is a closed conformal nowhere vanishing field on this manifold. Moreover, the
warped metric will be complete, for any f , if and only if P is complete and I
is either a circle or the whole R. It is noticeable that this is, basically, the only
possible situation. In other words

If M is a Riemannian manifold having a nontrivial closed and conformal field,
then it is, near a point where the field does not vanish, locally isometric to a
warped product with a 1-dimensional factor.

When our manifold Mn+1 having a non trivial closed conformal field is com-
plete, we can globalize the assertion above. In fact, a more or less elaborated
consequence of known facts (see [M] for a proof), is the following result.

Proposition 3. Let Mn+1, n ≥ 1, be a complete Riemannian manifold having
a non-trivial closed conformal field X. Then, X has at most two zeroes and the
following alternatives are the only possible ones, corresponding respectively to the
cases where X has one, two or no zeroes on Mn+1:

a) Mn+1 is an Euclidean space with a rotationally invariant metric, that is,
Mn+1 = Rn+1 and the metric, expressed in polar coordinates (x = rp) on Rn+1−
{0} = R+ × Sn, is, up to homotheties,

dr2 + f(r)2 dσ2
n,

where dσ2
n is the constant curvature one metric on the sphere Sn and f is the pos-

itive restriction to R+ of an odd differentiable function with f ′(0) = 1. Moreover,
the field X is given by X(r, p) = f(r) p for r ∈ R+ and p ∈ Sn ⊂ Rn+1 and the
leaves of the foliation F(X) are the spheres centered at the origin r = r0.

b) Mn+1 is a sphere with a rotationally invariant metric, that is, Mn+1 = Sn+1

and the metric, expressed polar coordinates (x = a cos θ + p sin θ) on Sn+1 −
{a,−a} =]0, π[×Sn, where a ∈ Sn+1 is arbitrary and Sn is the equator orthogonal
to a, is given, up to homotheties, by

dθ2 + f(θ)2 dσ2
n,

where f is the restriction to ]0, π[ of a 2π-periodic odd function with f ′(0) = 1
having no zeroes in ]0, π[. Moreover the field X is X(θ, p) = f(θ)(a sin θ−p cos θ),
for each θ ∈]0, π[ and p ∈ Sn ⊂ Sn+1. In this case, the leaves of F(X) are the
small spheres of Sn+1 parallel to the equator Sn.

c) The simply connected Riemannian covering of Mn+1 is a warped product
R ×f Pn, where Pn is a complete simply connected Riemannian n-dimensional
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manifold and f is a positive function defined on R. Moreover, the group Γ of
deck isometries is a subgroup of Iso (R) × Iso (Pn). In this case, the function f
is invariant by the translations in the projection of Γ on Iso (R), the field X is
determined by the projection of f(s) (∂/∂s)(s,p), for any s ∈ R and p ∈ Pn, and
the foliation F(X) consists of the projections of the slices {s} × Pn, s ∈ R.

Remark 1. Proposition 3 describes all complete manifolds Mn+1 carrying a non-
trivial closed conformal field as either a quotient of a warped product (in the case
c)) or as a warped product completed with one or two points (in the cases a) and b)
of rotationally invariant metrics on Euclidean or spherical spaces). Let I×f Pn be
the warped product appearing in each case. Then, Proposition 3 asserts that the
geometry of M and that of the foliation F(X) is completely described by means
of the geometry of a standard leaf of the foliation F(X), that is, the geometry of
P , and by the warping function f . The corresponding translation between these
two languages can be easily done. For example, the function |X | is now f ◦ πI
(for the sake of simplicity, we will omit the projections and write f); the function
φ appearing in (2) is the derivative f ′; the mean curvature function H of leaves
becomes −(log f)′; vectors tangent to each leaf of the foliation, that is, vectors in
TF(X) are canonically identified with vectors tangent to P ; and, finally, one can
also see that, with this identification, equation (8) is now

S(u, v) = SP (u, v)−
(
ff ′′ + (n− 1)f ′2

)
〈u, v〉P u, v ∈ TP.

Thus, for instance, M has constant sectional curvature c̄ if and only if (see [On],
p. 345) P has constant sectional curvature c and f is a positive solution of the
equation f ′2 + c̄f2 = c.

We said in Section 2 that a non-trivial closed conformal fieldX on a Riemannian
manifold Mn+1 is always an eigenfield of the Ricci operator corresponding to the
eigenvalue −n(Xφ)/|X |2, away from its zeroes. Ambient spaces where we will
be able to classify all stable constant mean curvature hypersurfaces are those
Riemannian manifolds where this eigenvalue is constant. That is, when

S(X,X) = nκ |X |2 or Xφ = −κ |X |2 for some κ ∈ R.

If this occurs, then, from (5), we obtain

∇φ = −κX.

And, so, from (2), the function φ satisfies an Obata type equation

∇2φ+ κφ 〈, 〉 = 0. (12)

From Proposition 3, such M is either a warped product completed with one or
two points (when it is a rotationally invariant Euclidean or spherical space) or it
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is a quotient of a warped product. In any of these two cases the warping function
f which appears in Proposition 3 is, according to Remark 1 and taking (12) into
account, a solution of the Jacobi equation

f ′′ + κf = 0.

If our manifold is in the case a) of Proposition 3, that is, if it is Rn+1 with a
rotationally invariant metric, we have that f only vanishes at 0, so κ ≤ 0, and
either f(r) = λr for some λ ∈ R − {0} or f(r) = sinh

√
−κ r for each r ∈ R+,

according as κ = 0 or κ < 0. Then M is either an Euclidean or a hyperbolic space.
Analogously, in the case b) of Proposition 3, we have κ > 0 and f(θ) = sin

√
κ θ

for θ ∈ R. Hence, in this case, M is a spherical space. Finally, if M is in the case
c) of this same Proposition 3, then the warping function f of its simply connected
Riemannian covering must be constant if κ = 0 and, if κ < 0, it must be, up to
changes of origin in R, one of these two functions

f(s) = cosh
√
−κs f(s) = e

√
−κs s ∈ R.

Since these two functions are not invariant through any isometry ofR, our manifold
must be, up to homotheties, a quotient of a Riemannian product R×Pn (and, in
this case, the field X must be parallel), or a warped product R×es Pn, or finally,
a warped product R ×cosh s P

n. These last two types of Riemannian manifolds
have been sometimes refered to as pseudo-hyperbolic spaces (see [Ta]). Then we
may state the following

Proposition 4. Let Mn+1, n ≥ 1, a complete Riemannian manifold with a non-
parallel closed conformal field X such that the direction determined by X has
constant Ricci curvature. Then Mn+1 is either a Euclidean space or a sphere or,
up to homotheties, a warped product R×es Pn or a warped product R×cosh s P

n,
being Pn any complete Riemannian manifold.

Remark 2. It would be interesting to remark that, among all the possible
pseudo-hyperbolic spaces that we can find in Proposition 4 above, there are some
of them specially important: those where Pn is chosen to be a flat or hyperbolic
space form. That is

R×es (Rn/Γ) R×cosh s (Hn/Ψ) ,

where Γ is a torsion-free crystallographic group and Ψ is a group of hyperbolic
transformations acting properly and discontinuously, giving an orientable quotient.
These quotients can be also viewed as

(R×es Rn) / (IR × Γ) (R×cosh s Hn) / (IR ×Ψ) .

But it is immediate to check that R ×es Rn and R ×cosh s Hn are respectively
isometric to the hyperbolic spaceHn+1. Hence, these two types of warped products
appearing in Proposition 4 are hyperbolic space forms. Recall also that the ends of
complete three dimensional hyperbolic space forms are all of the form ]−∞, a]×es
T2, where a ∈ R and T2 is a flat two torus.
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4. Minkowski formulae

Consider now an orientable compact hypersurface Σn immersed into our Rieman-
nian manifold Mn+1 endowed with a non-trivial closed conformal field X and, so,
with the corresponding umbilical foliation F(X). Denote by divΣ the divergence
of vector fields tangent to Σ and by XT the component of X tangent to Σ, that is
XT = X − 〈X,N〉N , where N is a unit normal field to the immersion. From (2),
it is clear that divΣX

T = nφ+ nH〈X,N〉. Hence∫
Σ
{φ+H 〈X,N〉} dA = 0, (13)

where H is the mean curvature function corresponding to that choice of orientation
and dA is the Riemannian measure induced on Σ. This integral formula should be
called first Minkowski formula for Σ because, when the manifold is the Euclidean
space Rn+1 and the field X is the position vector field, it yields the so-called
classical formula, which has been traditionally used to obtain rigidity theorems
for hypersurfaces. Analogous formulae have been derived when the manifold M
is another simply connected space form, that is, M = Sn+1 or M = Hn+1 (see
[Biv,MR]).

In [M], we used a second Minkowski formula obtained from the first one, by
following the same method as we had already made in [MR] where we dealt with
the case of simply connected space forms. We include here a sketch in order
to make the paper selfcontained. In fact, if ψ : Σ → M is our immersion, we
know that, for s close enough to zero, the parallel map ψs : Σ → M given by
ψs(p) = expψ(p) sN(p), p ∈ Σ is another immersion and Σs = ψs(Σ) is called the
parallel hypersurface at distance s. For each small s, we have a corresponding first
Minkowski formula (13) for the hypersurface Σs. In fact, we have∫

Σ
{φ ◦ ψs +Hs 〈X ◦ ψs, Ns〉} dAs = 0,

where
Ns(p) =

d

ds
expψ(p) sN(p) p ∈ Σ,

is a unit field normal to the immersion ψs, Hs is the mean curvature of ψs with
respect to Ns and dAs the Riemannian measure induced on Σs. Now, we derive
with respect to the variable s at s = 0 in this equality. Recalling that the mean
curvature of hypersurfaces is the gradient of the induced Riemannian measure,
that is,

d

ds

∣∣∣∣
s=0

dAs = −nH dA,

we have∫
Σ

{
d

ds

∣∣∣∣
s=0

[φ ◦ ψs +Hs 〈X ◦ ψs, Ns〉]− nH [φ+H 〈X,N〉]
}
dA = 0.
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On the other hand, using (7), we obtain

d

ds

∣∣∣∣
s=0

φ ◦ ψs = 〈∇φ,N〉 = − 1
n
S(X,N).

In the same way, using (2) and recalling that Ns(p) is the tangent field along the
geodesic ψs(p), for each p ∈ Σ, we get

d

ds

∣∣∣∣
s=0
〈X ◦ ψs, Ns〉 = 〈∇NX,N〉 = φ.

Moreover the Weingarten map As of the immersion ψs, defined by Asu = −∇uNs,
for each u tangent to Σs, satisfies a Ricatti evolution equation

d

ds
As −A2

s −RNs = 0,

where RNs is the curvature operator of M in the direction of Ns. This is a
consequence from (2) and the Ricci identities on M . This, or a direct computation,
gives

d

ds

∣∣∣∣
s=0

Hs =
1
n

{
|σ|2 + S(N,N)

}
,

where σ denotes the second fundamental form of Σ. Substituting the three equal-
ities above in the last integral formula, one has∫

Σ
{n(n− 1) [H φ+H2 〈X,N〉] + S(X,N)− S(N,N) 〈X,N〉} dA = 0,

where H2 is defined by the equality n(n− 1)H2 = n2H2 − |σ|2, that is, H2 is the
normalized second elementary symmetric polynomial in the principal curvatures of
Σ (see, for example, [MR]). We are going to modify slightly this integral formula.
Since the zero set Z(X) is discrete, there is only a finite number of zeroes of X
on the compact hypersurface Σ. Then, the unit field N is defined on Σ except a
finite number of points and we have that X is an eigenvector of the Ricci operator
on Σ−Z(X). So

S(X,N) = S(N ,N ) 〈X,N〉

is true unless for a finite number of points. Using this fact, we finally may write
the second Minkowski formula for the compact hypersurface Σ.∫

Σ
{n(n− 1) [H φ+H2 〈X,N〉] + [S(N ,N ) − S(N,N)] 〈X,N〉} dA = 0, (14)

which is significative only when n > 1.
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5. Stability results

Since we have all the necessary preliminaries, let us consider the geometric situ-
ation being the main purpose of this paper. Let Σn be a stable constant mean
curvature compact orientable hypersurface immersed in a Riemannian manifold
Mn+1, n ≥ 1, endowed with a nontrivial closed conformal field X . Using the first
Minkowski formula (13), we can see that h ∈ C∞(Σ) defined by

h = φ|Σ +H〈X,N〉,

is a mean zero function, where N is a unit normal field on Σ and H the corre-
sponding (constant) mean curvature. Then, because the stability of Σ, we can use
it as a test function in (2).

Take a vector u ∈ TΣ tangent to the hypersurface. Then, according to Propo-
sition 1, as φ is locally constant with respect to the directions orthogonal to the
field X , we have

uφ|Σ =
Xφ

|X |2 〈u,X〉.

Suppose now that the field X is in the conditions of Proposition 4, that is, that
Ric (X) = nκX or Xφ = −κ|X |2 for some κ ∈ R. Then, taking derivatives again
with respect to another tangent vector v ∈ TΣ, we obtain

(∇2φ|Σ)(u, v) = −κ (〈Au, v〉〈X,N〉+ φ〈u, v〉) , (15)

where A is the Weingarten map of the hypersurface associated to the unit field N .
In a similar way, we can compute the Hessian of the function 〈X,N〉 getting

(∇2〈X,N〉)(u, v) = −φ〈Au, v〉 − 〈X, (∇vA)u〉 − 〈Au,Av〉〈X,N〉, (16)

for all u, v ∈ TΣ. Taking traces in both (15) and (16) and using the Codazzi
equation and (7), we have

∆h = −nκφ− nH2φ−H〈X,N〉S(N,N)−H|σ|2〈X,N〉.

Now, we can evaluate the selfadjoint operator associated to the index form Q over
the function f and obtain

(∆ + S(N,N) + |σ|2)h =
(
|σ|2 − nH2 + S(N,N)− nκ

)
φ.

Hence, we conclude finally that

Q(h) = −
∫

Σ
h
(

∆ + S(N,N) + |σ|2
)
h dA

= −
∫

Σ

(
|σ|2 − nH2 + S(N,N)− nκ

)
φ (φ+H〈X,N〉) dA. (17)
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On the other hand, since the mean curvature H of Σ is constant, we can combine
the two Minkowski formulae (13) and (14) and take into account that S(N ,N ) =
nκ to deduce that∫

Σ

{
|σ|2 − nH2 + S(N,N)− nκ

}
〈X,N〉 dA = 0.

Substituting this equation in the right side of (17) and recalling that our hyper-
surface Σ is stable (1), we finally have

0 ≤ Q(h) = −
∫

Σ

{
|σ|2 − nH2 + S(N,N)− nκ

}
φ2 dA. (18)

From this inequality we will argue to classify the stable constant mean curvature
compact orientable hypersurfaces of a wide set of Riemannian manifolds including
simply connected space forms and, also, many nonsimply connected space forms
and manifolds having nonconstant sectional curvature.

Theorem 5. Let Mn+1, n ≥ 1, be a Riemannian manifold with a non parallel
closed conformal field X whose direction is the one of the least Ricci curvature nκ,
κ ∈ R. Moreover, suppose that the Ricci curvature in that direction is constant.
Then, each connected component of a stable constant mean curvature compact
orientable hypersurface of Mn+1 is either an umbilical round sphere or a leaf of
the corresponding foliation F(X). When the first case holds Mn+1 must have
constant sectional curvature κ near to that connected component.

Proof. Firstly notice that, from our hypothesis, we have the inequality (18) on
our stable hypersurface. Now, let us see that those same hypothesis imply that
the integrand in (18) is nonnegative. In fact, we have that |σ|2 − nH2 ≥ 0 from
the Schwarz inequality. On the other hand, since the inequality (10) holds and
S(X,X) = nκ|X |2 with κ ∈ R, we have S(N,N) − nκ ≥ 0. Thus, the stability
assumption implies that

|σ|2 − nH2 = 0 and S(N,N) = nκ,

because φ = f ′ ◦πR only vanishes on isolated leaves of the corresponding foliation,
beingX nonparallel. That is, our hypersurface is umbilical and its normal direction
attains the least value of the Ricci curvature of the ambient space M . From the
first of these two assertions we have that, if u ∈ TΣ is a vector tangent to the
hypersurface,

u〈X,N〉 = −H〈X,u〉.

Then, we see that the function Hφ− κ〈X,N〉 is constant on each connected com-
ponent of Σ. Let us work on such a connected component Σ0. So, we suppose
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Hφ− κ〈X,N〉 = d with d ∈ R on Σ0. From this, (15), (16) and recalling that Σ0
is umbilical, we have

∇2φ = −{(κ+H2)φ−Hd}〈, 〉 ∇2〈X,N〉 = −{(κ+H2)〈X,N〉+ d}〈, 〉.

From these two equations, using Theorem 2 of [Ta], and recalling that Σ0 is com-
pact, we can conclude that either Σ0 is a sphere with constant curvature κ+H2 > 0
or these two functions are constant and, so, either XT = 0, that is, the field X
is normal to our hypersurface and it must be a leaf of the foliation F(X), or
κ = H = 0 . So, it only remains to analyze the two cases when Σ0 is a round
sphere with curvature κ+H2 and the case κ = H = 0.

In the first one, we have that, if RΣ0 is the curvature operator of the induced
metric on the hypersurface Σ0, then RΣ0 = (κ+H2)R0, where R0 represents the
curvature operator of a constant one curvature space. Hence, taking into account
the Gauss equation for the immersion of Σ in M , and the fact that this immersion
is totally umbilical,

R(u, v)w = RΣ(u, v)w −H2R0(u, v)w = κR0(u, v)w u, v, w ∈ TΣ0.

This last equation and the fact that

R(u, v)X = κ {〈v,X〉u− 〈u,X〉v} = κR0(u, v)X u, v ∈ TΣ0, (19)

which is a consequence from (5) and (6), give us (notice that X is transverse to
Σ0 unless perhaps on a zero measure set)

R = κR0 at the points of Σ0.

Now, using the Gauss equation (8) for the foliation F(X), one has

R(u, v)w = (κ+H2)R0(u, v)w u, v, w ∈ TpF(X) p ∈ Σ0.

But, since the operator R is invariant through the flow of N , as we had pointed
out at the end of Section 2, we obtain that

R = (κ+H2)R0 on Ω,

being Ω a certain neighborhood of Σ0. We use again the Gauss equation (8) and
see that

R(u, v)w = κR0(u, v)w u, v, w ∈ TxF(X) x ∈ Ω.

Hence, as X is orthogonal to F(X) and we have (19), we deduce that R = κR0
on Ω, that is, Ω has near to Σ0 constant curvature equal to κ.

In the second case we suppose κ = H = 0. Then, from the discussion before
Proposition 4, we have that φ is constant on M . But, using the first Minkowski
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formula (13), we conclude that φ is identically zero and, so, X would be parallel.
This is not possible according to our hypothesis. �

We know from Section 3 that, if I is an open interval of R and f ∈ C∞(I) is
a positive function, the warped product I ×f Pn, where Pn is any Riemannian
manifold, is a (n + 1)-manifold such that X = (f ◦ πI)(∂/∂s) is a non trivial
closed conformal field, which is nonparallel provided that f is nonconstant. From
Remark 1, one can see that the Ricci curvature of I ×f Pn attains its minimum
in the direction of X if and only if

SP ≥ (n− 1)
(
f ′

2 − ff ′′
)
〈, 〉P ,

where SP and 〈, 〉P are respectively the Ricci and the metric tensors of Pn. From
that same Remark 1, one deduces that the Ricci curvature in the direction of X
is constant if and only if the function f is a solution to the Jacobi equation

f ′′ + κf = 0 for some κ ∈ R.

In this case, notice that

f ′
2 − ff ′′ = f ′

2 + κf2 is a constant.

Finally, if one recalls that the leaves of the foliation F(X) are, in this situation,
the slices {s} × Pn, one obtains the following consequence of Theorem 5.

Corollary 6. Let f be a positive nonconstant solution of f ′′ + κf = 0, κ ∈ R
defined on an open interval I and let Pn be a Riemannian manifold whose Ricci
curvature satisfies SP ≥ (n−1)

{
f ′2 + κf2

}
. Suppose that Σn is a stable constant

mean curvature compact orientable hypersurface in the warped product I ×f Pn.
Then each connected component of Σn is either an umbilical round sphere (and,
in this case, πP (Σn) ⊂ Pn would have constant curvature κ) or a slice {s} × Pn,
for some s ∈ I. Moreover, there is at most one component of the first type and,
when κ ≥ 0 the hypersurface Σn is necessarily connected.

Proof. It only remains to prove the two last assertions concerning the connect-
edness of Σ. Firstly, notice that, if Σ has one connected component Σ1 of the
first type, since S(N,N) = nκ because M has constant curvature κ near to Σ and
|σ|2 = nH2 because Σ1 is umbilical, the index form Q|Σ1 becomes

Q|Σ1(u) =
∫

Σ1

{
|∇u|2 − n

(
κ+H2

)
u2
}
dA.

So, as κ+H2 > 0, this quadratic form Q|Σ1 has index one on the space C∞(Σ1).
Then, if Σ is stable, all the remaining connected components of Σ must be of
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the second type. Let Σ2 be such a component. As the least value of the Ricci
curvature is nκ = −nf ′′/f , we have

Q|Σ2(u) =
∫

Σ

{
|∇u|2 + n

(
f ′′

f
−H2

)
u2
}
dA,

for all u ∈ C∞(Σ2). But

H = − φ

|X | = −f
′

f
◦ πI .

If we have also that κ ≥ 0, then f ′2 + κf2 > 0 and Q|Σ2 has also index one, as
desired. �

When one requires the ambient space Mn+1 in Theorem 5 to be complete,
Proposition 4 lets us reduce to consider Euclidean spaces, spheres or the so called
pseudo-hyperbolic spaces. Then, one has the following new classification results.

Corollary 7. Let Σn be a stable orientable compact hypersurface with constant
mean curvature immersed in the warped product R ×cosh s P

n, where Pn is any
complete Riemannian manifold whose Ricci curvature satisfies SP ≥ −(n − 1).
Then, each connected component of Σn must be either an umbilical round sphere
(and, in this case, Pn is a hyperbolic space form near πP (Σn)) or a slice {s}×Pn,
s ∈ R, (and, in this case, Pn is compact). Moreover, there exists at most one
component of the first type.

Remark 3. If one chooses Pn in Corollary 7 above to be an orientable hyperbolic
space form, that is, Pn = Hn/Γ where Γ is a subgroup of Iso +(Hn) acting prop-
erly and discontinuously, then the corresponding ambient space R ×cosh s P

n is,
according to Remark 2, an orientable hyperbolic space form, which can be easily
identified with a quotient Hn+1/Ψ, where Ψ is a subgroup of Iso +(Hn+1) fixing
a given hyperbolic hyperplane.

Corollary 8. Let Σn be an orientable compact hypersurface with constant mean
curvature immersed in the warped product R ×es Pn, where Pn is any complete
Riemannian manifold with nonnegative Ricci curvature. Then, Σn is stable if and
only if it is either an umbilical round sphere (and, in this case, Pn is a flat space
form near πP (Σn)) or a finite number of slices {s}×Pn, s ∈ R (and, in this case,
Pn is compact).

Proof. It only remains to see that it is not possible, with that ambient space, to
have one connected component Σ1 of the first class, that is, an umbilical round
sphere, and another one Σ2 of the second type, that is, a slice {s}×Pn. Reasoning
by contradiction, suppose that this is the case. Then, we already know that the
index formQ|Σ1 has index one on the spaceC∞(Σ1). On the other hand, the index
form Q|Σ2 is nonnegative on the whole C∞(Σ2) because S(N,N) = S(N ,N ) =
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−nκ = −n and |σ|2 = nH2 = n(f ′/f)2 = n and, so,

Q|Σ2(h) =
∫

Σ2

|∇h|2 dA,

for all h ∈ C∞(Σ2). This suffices to find a contradiction with the stability of Σ.
Moreover, this same equality proves that any finite number of slices is a stable
constant mean curvature hypersurface. �

Remark 4. If we put in Corollary 8 above Pn = Rn/Γ where Γ is a subgroup
of Iso +(Rn) acting properly and discontinuously, then the corresponding ambient
space R ×es Pn is, according to Remark 2, an orientable hyperbolic space form,
which can be easily identified with a quotient Hn+1/Ψ, where now Ψ is a subgroup
of Iso +(Hn+1) fixing a given horosphere.

One of the possible strategies to solve the isoperimetric problem in some Rie-
mannian manifolds is to find all stable compact constant mean curvature hyper-
surfaces. The reason is that, at least in the low dimensional cases, domains which
are solutions to that problem have as boundary smooth constant mean curvature
hypersurfaces which are stable (see, for example, [RR1]). In our situation, Corol-
lary 8 could be useful to solve the isoperimetric problem in R ×es Pn, where Pn

is a compact Riemannian manifold (this would include, for example, the ends of
complete three dimensional hyperbolic manifolds). But there is a shorter way in
order to get it, which also works without restrictions on the Ricci curvature of
Pn. In fact, let Ω be any finite volume domain in that manifold R×es Pn, whose
boundary is a compact hypersurface Σ. We represent by Ft, t ∈ R, the flow of
the corresponding closed conformal field X and by V (t) and A(t) the (n + 1)-
dimensional volume of the domain Ωt = Ft(Ω) and the n-dimensional volume of
the hypersurface Σt = Ft(Σ). Then

V ′(t) =
∫

Ωt
divX = −

∫
Σt
〈X,N〉 dA ≥

∫
Σt
|X | dA,

from the Schwarz inequality. But, in our case, |X |(s, q) = φ(s, q) = es for any
(s, q) ∈ R× P . So, using also the first Minkowski formula (13), we have

V ′(t) ≥
∫

Σt
φdA = −

∫
Σt
H〈X,N〉 dA.

Now, if one recalls that the first variation of the area formula says that

A′(t) = −n
∫

Σt
H〈X,N〉 dA,

one can finally deduce that

nV ′(t) ≥ A′(t) for each t ∈ R,
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and the equality holds if and only if all the connected components of Σ are slices
{s} × P . Integrating in this inequality and taking into account that, in this case,

lim
t→−∞

A(t) = lim
t→−∞

V (t) = 0,

we obtain that,

Proposition 9. If Σn is a compact hypersurface of R ×es Pn bounding a finite
volume domain Ωn+1, we have that

nVolume Ω ≥ Area Σ,

and the equality occurs if and only if Σn consists of an even number of slices
{s} × Pn.

Notice that this isoperimetric inequality was obtained by Yau in [Y] for domains
in hyperbolic spaces, that is, when Pn = Rn is the Euclidean space (see Remark
2), but that, in his case, the equality is never attained. An analogue also exists
for domains of minimal submanifolds in hyperbolic space (see [CG]). From this
Proposition 9 and after an easy computation about the most favourable number
of connected components of the hypersurface Σ = ∂Ω, we conclude that

The solutions to the isoperimetric problem in a warped product R×esPn, where
Pn is any compact Riemannian manifold are of the form ] −∞, a] × Pn, for
each a ∈ R.
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