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Abstract. We consider a Ginzburg-Landau type functional on S2 with a 6th order potential and
the corresponding selfduality equations. We study the limiting behavior in the two vortex case
when a coupling parameter tends to zero. This two vortex case is a limiting case for the Moser
inequality, and we correspondingly detect a rich and varied asymptotic behavior depending on
the position of the vortices. We exploit analogies with the Nirenberg problem for the prescribed
Gauss curvature equation on S2.
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1. Introduction

Functionals that exhibit a selfduality phenomenon in the sense that the absolute
minimizers satisfy a set of first order partial differential equations are important
in various areas of geometry and physics.

In the present paper, we investigate a special class of such functionals, namely
Ginzburg-Landau type functionals with a 6th order potential. Such functionals
arise in Chern-Simons Higgs theories, as will be explained in §2. We consider a
line bundle L over a compact Riemann surface Σ, and the Lagrangian density

L(A,φ) = |∇Aφ|2 +
k2

4
|F |2
|φ|2 +

1
k2 |φ|

2(1− |φ|2)2.

Here, φ is a section of L, and A is a unitary connection on L with curvature F . k is
a coupling parameter, and we are particularly interested in the limit analysis as k
tends to 0. This limit analysis reveals a geometrically interesting phase transition
that may also be relevant in superconductivity. The selfduality becomes manifest
by rewriting

L(A,φ) =
∫

Σ
L(A,φ) =

∫
Σ

{
|∂̄Aφ|2 + (

k

|φ|F +
2
k
|φ|(|φ|2 − 1))2

}
+
∫

Σ
F.
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If Σ is compact, or, more generally, if one requires certain decay conditions at
infinity, ∫

Σ
F = 2πN

is a topologically quantity, where N is an integer, the so-called vortex number that
fixes the number of zeroes of φ, the vortices. For N ≥ 0, absolute minimizers of L
then have to satisfy the selfduality equations

∂̄Aφ = 0

F =
2
k2 |φ|

2(1− |φ|2).

As k → 0, one expects that the minima of the potential

V (φ) = |φ|2(1− |φ|2)2

at |φ| = 1 and φ = 0 dominate the behavior of minimizers of L, except that the
topological constraint ∫

Σ
F = 2πN

fixes the number of zeroes of φ as well as the integral of F . One thus expects
a solution φ with |φ| close to one except in the vicinity of N vortices. In the
case were Σ is a torus, such a solution has been constructed by Caffarelli-Yang
[CaY]. One also expects a solution that approaches 0. Such a solution was recently
obtained in an interesting paper of Tarantello [T] in case N = 1, again for a torus.
While the methods employed in the proofs of those results extend to the case of
an arbitrary compact Riemann surface Σ, the method of Tarantello only works for
N = 1, because it depends on the Moser inequality. (She does obtain a second
solution for arbitrary N , but as we shall see in the present paper, the limiting
behavior will depend on N in general.) Here we consider the case N = 2 on the
sphere S2 . This case is a limiting case for the Moser inequality, and consequently
the analysis and the results become more subtle than for N = 1. In fact, one may
rewrite the selfduality equations by putting

u(x) = log |φ(x)|2

to obtain

∆u =
4
k2 e

u(eu − 1) + 4π
N∑
j=1

δpj

where δp is the Dirac distribution concentrated at p, and p1, ..., pN are the pre-
scribed zeroes of φ, not necessarily all distinct. As will be explained in section 3,
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in our case N = 2 this equation can be related to the prescribed Gauss curvature
equation

∆u = −2Keu + 2.

Thus, one expects that the methods developed for the Nirenberg problem, i.e. the
existence problem for that equation, become relevant (see section3 for references).
That is indeed the case, and in the present paper we shall obtain two families
of solutions depending on the coupling parameter k with a precise asymptotic
behavior different from the one of the Caffarelli-Yang solution. The only exception
is the case of a single vortex with multiplicity two where the Kazdan-Warner
equation prevents the existence of a solution of the limiting equation and where
we only find one additional family. Such a case distinction is not untypical for limit
cases of embedding theorems. On the other hand, if the two vortices are antipodal,
then an easy symmetry argument produces one-parameter solution spaces, i.e.
infinitely many solutions for each sufficiently small value of k. The case of the torus
has been investigated in our companion paper [DJLW] and by Nolasco-Tarantello
[NT]. By their results, it may be possible that a solution with a blow-up of the
curvature at a non-vortex point also exists for certain conformal classes of tori.

In conclusion, the asymptotic analysis of the Chern-Simons Higgs function-
al considered here is much richer than the corresponding one for the Ginzburg-
Landau functional with a 4th order potential (|φ|2 − 1)2. There, it was shown in
[HJS] that asymptotically, as k tends to 0, φ becomes a covariantly constant sec-
tion of L with |φ|=1, and the connection A becomes flat, except near the vortices
where all the topology concentrates. Solutions of the type found by Tarantello and
in the present paper do not occur in that model. This is somewhat similar to the
situation in the Seiberg-Witten functional that again has a 4th order nonlinearity
where the limiting analysis was carried out by Taubes [T3]. We expect that a
Seiberg-Witten type functional with a 6th order potential will exhibit very inter-
esting features, partly analogous to the ones found in the present paper. We hope
to be able to study this more closely. In fact, we consider the present analysis as
a model study for that problem.

2. The Chern-Simons Higgs model

Let S2 be the standard sphere in R3 with the standard metric g0, and M = R×S2

with the Lorentzian metric g = dx2
0 − g0. Consider the (trivial) principal bundle

M × U(1) → M . Let A = −i Aµ dxµ, Aµ(x) ∈ R, x = (x0, x1, x2) ∈ M be a
connection on this principal bundle. The curvature of A is given by

FA =
−i
2
Fα,β dx

α ∧ dxβ

with Fα,β = ∂αAβ − ∂βAα, α, β = 0, 1, 2. The vector bundle associated to
M × U(1) is M × C, where C is the complex plane. Let φ(x) be a section of the



Vol. 74 (1999) Chern-Simons Higgs model on the two-sphere 121

vector bundle M × C, i.e. φ(x) is a Higgs field, in physical notation. Let DAφ
denote Dηφdx

η with Dηφ = ∂ηφ− iAηφ.
In this paper, we are interested in the following Chern-Simons-Higgs Lagrangian

action density

L(A,φ) = DηφDηφ+
1
4
kεαβγFαβAγ − V (φ) (2.1)

where k > 0 is the coupling constant which determines the strength of the Chern-
Simons term εαβγFαβAγ , V (φ) is the potential and the Levi-Civita tensor εαβγ ,
α, β, γ = 0, 1, 2 is fixed by ε012 = 1. This Lagrange density was first introduced
by Hong-Kim-Pac in [HKP] and Jackiw-Weinberg in [JW].

The Euler-Lagrange equations for (2.1) are
1
2
kεαβγFαβ = jγ = i(φDγφ− φ̄Dγφ),

∆φ = −∂V (φ)
∂φ

,
(2.2)

where jγ is the conserved matter current density. We are interested in static
solutions of (2.2) with V (φ) = 1

k2 |φ|2(1− |φ|2).
The energy density corresponding to the Lagrange density (2.1) is

E = |D0φ|2 + |D1φ|2 + |D2φ|2 +
1
k2 |φ|

2(1− |φ|2) (2.3)

supplemented by the Gauss law

F12 =
2
k
J0 = −2i

k
(φD0φ− φD0φ). (2.4)

Let ∂̄Aφ = D1φ+ iD2φ. We have

|D1φ|2 + |D2φ|2 = |∂̄Aφ|2 + F12|φ|2 −
1
2
εik∂ijk,

Therefore, the energy density (2.3) may be written as

E =
1
4

(
k

|φ|F12 +
2
k
|φ|(|φ|2 − 1)

)2
+ |∂̄φ|2 + F12 + Im {∂jεjkφ̄Dkφ},

where εjk = −εkj , j, k = 1, 2 and ε12 = 1. Thus we obtain the following energy
functional

E(A,φ) =
∫
S2
E =

∫
S2

1
4

∣∣ k
|φ|F12 +

2
k
|φ|(|φ|2 − 1)|2 +

∫
S2
|∂̄Aφ|2 +

∫
S2
F12. (2.5)



122 W. Ding et al. CMH

The absolute minimizers of E under the homotopically invariant constraint

1
2π

∫
S2
F12 = N (2.6)

satisfy the Bogomolny type self-dual equations{
∂̄Aφ = 0,
F12 + 2

k2 |φ|2(|φ|2 − 1) = 0,
(2.7)

with the Gauss law kF12 + 2A0|φ|2 = 0 (see (2.4)). Here N is an integer. One
can easily check that a solution of (2.7) with the Gauss law satisfies (2.2). In this
paper, we are interested in finding such special solutions of (2.2).

As in [CaY] and [T], one can first obtain a maximal solution as follows

Theorem 2.1. ([CaY]). Let p1, ..., pm be given points (or vortices) on S2 and
n1, ..., nm positive integers such that

∑m
j=1 nj = N ≥ 0. There exists a kc ∈

(0, 1
2

√
|S2|/πN) such that (2.7) admits a solution (Ak, φk) for which p1, ..., pm

are the zeroes of φ with multiplicity n1, ...nm if and only if 0 < k ≤ kc. Moreover
(i) The energy, magnetic flux and electric change of (Ak, φk) are respectively

given by
E = 2πN,Φ = 2πN,Q = 2πkN (2.8)

(ii) The solution (Ak, φk) is maximal in the sense that if (A′, φ′) is another
solution of (2.7) with the same vortices as (A,φ), then |φ′| < |φ|.

(iii) |φk| < 1 in S2 and |φk| → 1 as k → 0 a.e. in S2 and in H1,q(S2), 1 <
q < 2.

F
(k)
12 → 2π

N∑
j=1

δpj in the sense of measures as k → 0. (2.9)

where each Dirac distribution δpj occurs with multiplicity nj , j = 1, ...,m.

One can also obtain another solution by using the mountain pass Lemma as [T].
Here we are interested in solutions of (2.7) with a different asymptotic behavior
when k → 0. Motivated by Caffarelli-Yang’s variational method, when N = 1,
Tarantello obtained in [T],

Theorem 2.2. There exists a solution (Ãk, φ̃k) of (2.7) for small k > 0 such that
(2.8) holds and ‖φ̃k‖Cq(S2) → 0 as k→ 0 for any q ≥ 0.

Although they did not consider (2.7) on S2, the methods of Caffarelli-Yang
and Tarantello extend to this case.

Tarantello used the Moser inequality [M1,2] to study this problem. Here we
consider the case N = 2. As we already mentioned in the introduction, this case
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is a limiting case (a critical case). The main difficulty to find solutions of (2.7) is
the lack of a coercivity condition. A crucial observation is that our problem can
be seen as a perturbation of the well-known Nirenberg problem. Hence, methods
developed in the Nirenberg problem may be used to study (2.7). First we obtain
a solution of (2.7) which has a new asymptotic behavior as k → 0.

Theorem 2.3. Let N = 2 and P± two vortices. For small k > 0, there exists a
solution (A2

k, φ
2
k) such that

(i) (2.8) holds,
(ii) |φ2

k| → 0 in C0 uniformly,
(iii) F12(A2

k)→ 4πδQ,

where Q 6= P± is determined by P± (see section 3.). Moreover, if P+ = −P− there
exists a family of solutions (A2

k(ϑ), φ2
k(ϑ)) such that (i), (ii) and (iii) hold with

TϑQ, where Tϑ is the rotation with angle ϑ about the axis from P+ to P−.

This is a new interesting situation. We guess that such a solution exists in the
general case.

Theorem 2.4. Let N = 2 and P± two vortices. If P+ 6= P−, then for small k
there exists another solution (A3

k, φ
3
k) of (2.7) such that

(i) (2.8) holds,
(ii) φ3

k → 0 in Cq, as k → 0, for any q ≥ 0.

The potential |φ|2(|φ|2 − 1)2 has a minimum at |φ| = 1 and at φ = 0. The
solution of Theorem 2.1 corresponds to the minimum at |φ| = 1, the one of The-
orem 2.3 to the one at φ = 0, while the solution of Theorem 2.4 is a saddle point
solution for an associated functional. Of course, the vortices prevent that |φ| = 1
or φ ≡ 0 are exact solutions, but in the limit k → 0, the obstructions concentrate
at isolated points. According to the theorems, for N = 2, we have 3 different cases
for small k.

(1) If P+ = P−, (2.7) admits at least two solutions,
(2) If P+ = −P−, (2.7) admits infinitely many solutions,
(3) If P+ 6= ±P−, (2.7) admits at least three solutions.

It is clear that case (3) is the generic case. Before we start to prove the
theorems, we first reduce (2.7) to a semilinear equation. Such a reduction was
first used by Taubes in [T1], [T2].

It is clear that the first equation of (2.7) may be written as

2∂̄φ− iAφ = 0, (2.10)

where A = A1 + iA2 and ∂̄ = 1
2(∂1 + i∂2) is the usual Cauchy-Riemann operator.

Hence φ can be considered as a holomorphic section of a line bundle, and it there-
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fore admits a finite number of zeroes in S2 with integer multiplicities. Outside the
zero set of φ,Z(φ), we have

A = −2i∂̄ logφ. (2.11)

Set u(x) = log |φ(x)|2. From (2.7) and (2.11) u satisfies

∆u =
4
k2 e

u(eu − 1) in S2 \ Z(φ) (2.12)

and
u(z) = nk log |z − Pk|2 as z → Pk. (2.13)

On the other hand, if we have a solution u of (2.12)–(2.13), set

φ(z) = exp

1
2
u(z) + i

N∑
j=1

arg(z − Pj)


and A = −2i∂̄ logφ, then one can check that (A,φ) satisfies (2.7). Therefore, we
only have to consider (2.12) and (2.13). Clearly (2.12)–(2.13) is equivalent to

∆u =
4
k2 e

u(eu − 1) + 4π
N∑
j=1

δPj , (2.14)

where δP is the Dirac distribution concentrated at P .

Proof of Theorem 2.3

Let P+ and P− be two vortices on S2. Let u0 be the unique solution of{
∆u0 = −2 + 4π(δP+ + δP−), in S2∫
S2 u0 = 0.

(3.1)

Let λ = 4/k2 and K = eu0 . (2.12) is equivalent to

∆u = λKeu(Keu − 1) + 2 in S2. (3.2)

We first summarize some simple properties of K in three different cases.

Lemma 3.1. case (i): P+ = −P−. After a change of coordinates, we may
assume that P+ is the north pole. Then K is axially symmetric, i.e. invariant
under rotations about the axis between north and south pole, i.e. between P+ and
P−, as well as invariant under reflections about the equator of S2, i.e. K(x) =
K(−x) for all x ∈ S2. K achieves its maximum for any point on the equator.
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case (ii): P+ = P−, i.e. P+ is a double vortex. K is again axially symmetric
about the line between P+ and −P+. It achieves its unique maximum at −P+.

case (iii): P+ 6= ±P− ( the generic case). K has a unique maximum point
Q̄ 6= P+, P− and a unique saddle point Q = −Q̄. �

Equation (3.2) is the Euler-Lagrange equation of the following functional

Iλ(u) = −
∫

1
2
|∇u|2 + 2u+

λ

2
(Keu − 1)2,

where −
∫
u is the average of u over S2, i.e. −

∫
u = 1

4π
∫
S2 u. As in [T], motivated

by the variational method used in [CaY], we consider the following functional

Jλ(u) = −
∫

(
1
2
|∇u|2 + 2u+

λ

2
(Ke(u+ρ(u)) − 1)2) (3.3)

+ 2ρ(u)− λ

2
+ 2 logλ

in

Aλ =

u ∈ H1,2(S2)
∣∣−∫ eu = 1 & (−

∫
Keu)2 − 8

λ
−
∫
K2e2u ≥ 0

 , (3.4)

where

ρ(u) = log

−∫ Keu −
√

(−
∫
Keu)2 − 8

λ −
∫
K2e2u

−
∫
K2e2u

 .

The term −λ2 + logλ ensures that Jλ has a uniform lower bound (see Lemma 3.4
below). This value of ρ(u) is needed to satisfy the constraint that comes from
integrating (3.2). Alternatively, this value of ρ(u) is determined by minimizing Jλ
among functions of the form u+ ρ w.r.t. ρ for given u satisfying −

∫
eu = 1.

Set H = {u ∈ H1,2(S2)| −
∫
eu = 1}.

Lemma 3.2. If u ∈
◦
Aλ, the interior of Aλ, is a critical point of Jλ, then v =

u+ ρ(u) is a solution of (3.2).

Proof. The proof is straightforward (cf. [T]). �

A crucial observation is that we may rewrite Jλ in a suitable form as follows.
By the definition of ρ, we have

λeρ(u) −
∫
Keu =

4−
∫
Keu

−
∫
Keu +

√
(−
∫
Keu)2 − 8

λ −
∫
K2e2u

. (3.5)
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Consequently,

2 < λeρ(u) −
∫
Keu ≤ 4, for any u ∈ Aλ. (3.6)

Set Bλ(u) = λeρ(u) −
∫
Keu. Again, by definition, we have

λ−
∫
K2e2(u+ρ(u)) − λ−

∫
Keu+ρ(u) = −2.

Thus, we can rewrite Jλ as follows (deleting an irrelevant additive constant)

Jλ(u) = −
∫

(
1
2
|∇u|2 + 2u)− 2 log−

∫
Keu + 2 logBλ(u)− 1

2
Bλ(u)

Set αλ = infu∈Aλ Jλ(u). In this section, we shall prove that αλ is achieved by

some uλ ∈
◦
Aλ. For simplicity of notation, let f(t) = 2 log t− 1

2 t and fλ = f ◦Bλ.
Then Jλ is written as

Jλ = J + fλ,

where

J(u) = −
∫

(
1
2
|∇u|2 + 2u)− 2 log−

∫
Keu.

The corresponding Euler-Lagrange equation of J is given by

∆u = −2Keu + 2, (3.7)

which is the so-called prescribed Gauss curvature equation. The corresponding
problem of existence of solutions of (3.7) is called the Nirenberg problem. This
problem has been studied by many mathematicians. (See [M2], [A], [H], [CD],
[CY1,2] and [CkL] and references therein.) Jλ can be considered as a perturbation
of J for large λ. So it is natural to apply methods developed for the Nirenberg
problem in our problem.

Now let us first introduce the definition of the center of mass of a function
u ∈ H1,2(S2) which was first used in [CD] in the Nirenberg problem. For u ∈
H1,2(S2), the center of mass is defined as

P (u) =
−
∫
S2 xe

u

−
∫
S2 eu

.

Given q ∈ S2, we choose coordinates x = (x1, x2, x3) ∈ S2 such that q = (0, 0, 1).
The stereographic projection Π : S2 → Ĉ = C ∪ {∞} with respect to q is defined
by

(x1, x2, x3) 7→ z =
x1 + ix2
1− x3

.
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For t > 0, let mt : C→ C be the usual multiplication by t, i.e mt(z) = tz for any
z ∈ C. For any u ∈ H1,2(S2), there is (q, t) ∈ S2 × [1,+∞) and

w = uϕq,t := u ◦ ϕq,t + ψq,t.

such that P (w) = 0, where ϕq,t = Π−1 ◦mt ◦ Π and ψq,t = log det(dϕq,t). (Note
that our notation differs slightly from the one in [CY1] and [CkL]). In [CkL], (see
also [O], [CD] and [CY1]) the authors proved

Lemma 3.3. H is diffeomorphic to H0×B3 by sending u ∈ H to (w = uϕq,t , q, 1−
t−2 log t), where H = {u ∈ H1,2(S2) : −

∫
eu = 1} and H0 = {u ∈ H|P (u) = 0}.

Now we can rewrite Jλ by this decomposition. First, let S(u) =
∫ 1

2 |∇u|2 +2u.
It is important that S is invariant under conformal transformations, namely,

S(u) = S(uϕq,t)

for any conformal transformations ϕq,t of S2. Let u = (w, q, t) ∈ H. We write Jλ
as

Jλ = Jλ(w, q, t) = S(w)− 2 log−
∫
K ◦ ϕq,tew + fλ(w, q),

where
fλ(u) = f ◦Bλ(w, q, t) (3.8)

and

Bλ(w, q, t) = 4

(
1 +

√
1− 8

λ

−
∫
K2 ◦ ϕq,te2w(det(dϕq,t))−1

(−
∫
K ◦ ϕq,tew)2

)−1

(3.9)

For simplicity of notation, let
b(u) = b(w, q, t) = −

∫
K2 ◦ ϕq,te2w(det(dϕq,t)−1)/(−

∫
K ◦ ϕq,tew)2. We need

Lemma 3.4. ([CY1]). If u ∈ H0, then −
∫
|∇u|2 ≤ 2(1−a0)−1S(w) for a constant

a0 < 1.

The following asymptotic behavior for large t is crucial for the proofs of the
Theorems.

Lemma 3.5. For any b0 > 0, we have for all w with S(w) ≤ b0 uniformly in t as
t→∞

(i) −
∫
K ◦ ϕq,tew = K(q) +O(t−1 log 1/2t),
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(ii)

−
∫
K2 ◦ ϕq,te2w(det(dϕq,t))−1 = t2K2(q)−

∫
e2w

(
1 + x3

2

)2
+O(t),

(iii)

−
∫
K4 ◦ ϕq,te4w(det(dϕq,t))−2 = t4K4(q)−

∫
e4w(

1 + x3
2

)4 +O(t3).

Proof. (i) was proved in [CY1].
(ii) We use the plane coordinates induced from the stereographic projection

with respect to q (see above). By the Taylor expansion of K around q = (0, 0, 1),
we have

K(x) = K(q) + a1x1 + a2x2 +O(|x|)

in {x ∈ C
∣∣|x| ≥M} for a fixed large M > 0. By a direct computation, we have

det(dϕq,t)(z) = t2
(

1 + |z|2
1 + t2|z|2

)2

Let Rt = {z ∈ C
∣∣|z| ≥ M/t} and Rct = C \ Rt. We decompose the left hand side

of (ii) as follows

1
4π

(∫
Rt

+
∫
Rct

)
K2(tz) e2w(z) t−2 (1 + t2|z|2)2

(1 + |z|2)2 dA(z)

where dA(z) = d|z|2
(1+|z|2)2 . A direct computation shows that

∫
Rct

K2(tz) e2w(z) t−2 (1 + t2|z|2)2

(1 + |z|2)2 dA(z) ≤ O(t−2)

and ∫
Rt

x1(tz) e2w(z) t−2 (1 + t2|z|2)2

(1 + |z|2)2 dA(z)

≤ 2
∫
Rt

t|z|
1 + t2|z|2 e

2w(z) t−2 (1 + t2|z|2)2

(1 + |z|2)2 dA(z)

= 2
∫
Rt

1 + t2|z|2
1 + |z|2 t−1 |z| e2w(z) dA(z)
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= 4
∫
|z|≥Mt

1 + t2|z|2
1 + |z|2 t−1 |z| e2w(z) |z|

(1 + |z|2)2 d|z|

≤ 8t
∫
|z|≤Mt

|z|4
(1 + |z|2)3 d|z|

≤ O(t).

Similar ∫
Rt

x2(tz) e2w(z) t−2 (1 + t2|z|2)2

(1 + |z|2)2 dA(z) = O(t).

We also have

−
∫
Rt

K2(tz) e2w(z) t−2 (1 + t2|z|2)2

(1 + |z|2)2 dA(z)

= t2 −
∫
Rt

K2(q) e2w(z) |z|4
(1 + |z|2)2 dA(z) +O(t)

= t2−
∫
K2(q) e2w(z)

(
1 + x3

2

)2
dA(z) +O(t).

for z = (x1 + ix2)/(1− x3). The preceding estimates prove (ii).
(iii) The proof is similar to that of (ii). �

Lemma 3.6. ([H],[CY2]) Infu∈HJ(u) = − log(maxx∈S2 K(x)), and J does not
achieve its infimum, if K is not constant. �

Now we have

Proposition 3.7. For all sufficiently large λ, there exists uλ ∈
◦
Aλ with Jλ(uλ) =

αλ.

To prove the proposition, we need one more Lemma. We recall αλ = infu∈Aλ Jλ(u).

Lemma 3.8. (i) limλ→+∞ αλ = − log(max K)− 1 + 2 log 2
(ii) infu∈∂Aλ Jλ(u) ≥ − log(maxK)− 2 + 2 log 4.

Proof. By Lemma 3.6, for any ε > 0 there exists u0 ∈ H with

J(u0) ≤ − log(maxK) + ε/2

On the other hand, Bλ :=
{
u ∈ Aλ

∣∣b(u) ≤ logλ
}

converges to H as λ → +∞.
Hence we can choose λ0 such that u0 ∈ Bλ for any λ ≥ λ0. If we choose λ0 large
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enough, we have

Jλ(u0) = J(u0) + fλ(u0)

≤ − log(maxK) + ε/2 + f(
1

1 +
√

1− 8
λ logλ

)

≤ − log(maxK)− 1 + 2 log 2 + ε.

Clearly, for any u ∈ Aλ, Jλ(u) ≥ − log(maxK)− 1 + 2 log 2. Hence limλ→∞ αλ =
− log(maxK)− 1 + 2 log 2.
(ii) If u ∈ ∂Aλ, by definition, f◦Bλ(u) = −2+2 log 4. Hence Jλ(u) ≥ − log(maxK)−
2 + 2 log 4. �

Remark. By Lemma 3.8, limλ→∞ αλ < infu∈∂Aλ Jλ(u) for any λ.

Proof of Proposition 3.7. Consider a minimizing sequence {ui} ∈ Aλ of Jλ. Ac-
cording to Lemma 3.3, we rewrite it as ui = (wi, qi, ti). First we claim that S(wi)
is bounded. This is easy to prove, for fλ(ui) is bounded and − log−

∫
K◦ϕqi,ti eui ≥

− log(maxK). By Lemma 3.4, the boundedness of S(wi) implies that

−
∫
|∇wi|2 is bounded.

Second, we claim that {ti} is also bounded. Assume by contradiction that {ti} is
unbounded. There are two possibilities

(1)qi → q and q is one of the vortices,
(2) qi → q and q is not equal to P+ or P−.

Case (1). Since S(wi) is bounded, from (i) of Lemma 3.5 we have

− log−
∫
K ◦ ϕqi,ti ewi → +∞

as i → +∞. Since S(wi) ≥ 0 and fλ is bounded, it follows that Jλ(ui) → +∞, a
contradiction.
Case (2). Recalling (3.8), (3.9) and the boundedness of fλ(ui), Lemma 3.5 implies
that

t2i −
∫
e2wi (1 + x3)2 ≤ cλ.

Recall that we have

t2i −
∫
e2wi = 1 and −

∫
ewi x3 = 0.
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This implies that

−
∫
e2wi(1 + x3)2 ≥ −

∫
ewi(1 + x3) = 1.

So
t2i ≤ cλ

is bounded.
Now it is clear that the boundedness of {ti} implies that of {‖ui‖H1,2}. Hence

we may assume that there exists uλ ∈ H1,2(S2) such that ui converges to uλ
weakly in H1,2, and strongly in Lq for any q > 1 and almost everywhere in S2. It
follows that

−
∫
Keui → −

∫
Keuλ

and

−
∫
K2e2u

i → −
∫
K2e2u

λ

as i → +∞. Therefore Jλ(uλ) ≤ αλ and uλ ∈ Aλ. Now, in view of Lemma 3.8,

uλ ∈
◦
Aλ.

Remark. We can prove the proposition in a different way which does not use
conformal transformations. Actually, we can prove proposition 3.7 for any compact
surface in [DJLW].

By Lemma 3.2, we know that uλ + ρ(uλ) is a solution of (3.2).
Now we consider the behavior of uλ as λ → +∞. First, it is clear that uλ

cannot converge in H1,2. Otherwise, we can obtain a minimum of J in H, which
contradicts Lemma 3.6.

Proposition 3.9. If we write uλ as (wλ, qλ, tλ) then wλ → 0 strongly in H1,2, tλ →
∞ and qλ → Q as λ→ +∞, where Q is one of the maximum points of K. More-
over, wλ → 0 strongly in C1 as λ→ +∞.

Proof. Since limλ→∞ αλ = − log(maxK)− 1 + 2 log 2, {S(wλ)}, hence {‖wλ‖H1,2}
is bounded. From the above discussion, we know that {tλ} is unbounded. Assume
qλ → Q and wλ → w0 weakly in H1,2 as λ → ∞. By a direct computation we
have

lim
λ→∞

αλ = lim
λ→∞

Jλ(uλ) ≥ S(w0)− logK(Q)− 1 + 2 log 2

Consequently, S(w0) = 0, hence w0 ≡ 0. K(Q) = maxK and wλ converges to
w0 = 0 strongly in H1,2. Clearly, wλ satisfies a suitable equation similar to (3.7),
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from which we can show that wλ → 0 strongly in C1 as λ → +∞ by elliptic
estimates. �

Corollary 3.10. When P+ = −P−, there are infinitely many solutions of (3.2).

Proof. In this case, K is axially symmetric along the axis crossing P+ and P−.
Denote by Tϑ the rotation along this axis with angle ϑ. It is clear that Tϑuλ is
also a critical point of Jλ for any ϑ ∈ (0, 2λ]. From the previous proposition, we
know P (uλ)→ Q as λ→∞. Hence, for large λ, P (uλ) is not the origin of R3. On
the other hand, it is clear that Tϑ(P (uλ)) = P (Tϑ uλ) and Tϑ has no fixed points
except the origin. Hence P (Tϑuλ) 6= P (uλ) for any ϑ ∈ (0, 2π], which implies

uλ 6= Tϑuλ for any ϑ ∈ (0, 2λ].

Hence (3.2) admits infinitely many solutions. �

Now we can prove Theorem 2.3.

Proof of Theorem 2.3. From Propositions 3.8 and 3.9, all properties except (ii) are
easy to check. Now we prove (ii). Recall that |φλ| = eu0+u

λ
+ρ(u

λ
) = Keuλ+ρ(u

λ
).

We claim
t2λ
λ
→ 0 as λ→∞,

where uλ = (wλ, qλ, tλ). If the claim is true, by (3.5) and Lemma 3.5 we have

λeρ(uλ )→ 2
K(Q)

as λ→ +∞.

By Proposition 3.9, we can show that

max euλ ≤ ct2λ
for some constant c > 0. In fact, we have

euλ◦ϕq,t = ewλ(det dϕq,t)−1

and wλ → 0 strongly in C1. Hence, we have

|φλ| = Keuλ+ρ(u
λ
)

≤ cλ−1t2 → 0

again by the claim. Therefore, we only have to prove the claim.
Assume t2λ

λ → a0 as λ→∞ with a0 ∈ (0,∞]. By Lemma 3.5

b(wλ, q, tλ)→ a0

which implies that

Jλ(uλ)→ − log(maxK) + f(a0) > − log(maxK)− 1 + 2 log 2,

a contradiction. This completes the proof of the Theorem.
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Proof of Theorem 2.4.

We first consider a simple case

Proposition 4.1. If P+ = −P−, then for large λ > 0, there exists a solution

vλ of (3.2) with vλ(x) = vλ(−x) (∀x ∈ S2) such that vλ − −
∫
evλ converges to

u0 ∈ H1,2(Σ) strongly for λ → ∞, where u0 is the solution of (3.7) obtained by
Moser [M2].

Proof. The proof of the existence of a solution is very similar to the one in [M2]
(see also [T]). If P+ = −P−, Lemma 3.1 says that K(x) = K(−x) for each x ∈ S2.
Therefore, we consider a special subspace Hs = {u ∈ H1,2 ∣∣u(x) = u(−x),∀x ∈
S2}. For each u ∈ Hs, there is the improved Moser inequality

log−
∫
S2

eu ≤ 1
8
−
∫
S2

|∇u|2 + c−
∫
S2

u (4.1)

for some constant c > 0. From this inequality, it is easy to show that Jλ satisfies
the Palais-Smale condition and the coercivity in Hs ∩ Aλ. The latter is

Jλ(u) ≥ c1−
∫
|∇u|2 − c2 for u ∈ Hs ∩ Aλ (4.2)

for some positive constant c1, c2. Actually, by (4.1) one can choose c = 1/8.
Set αsλ = infu∈Hs∩Aλ Jλ(u). As in section 3, we have

lim
λ→∞

αsλ = αs0 − 1 + 2 log 2 (4.3)

and
inf

u∈∂Aλ∩Hs
Jλ(u) ≥ αs0 − 2 + 2 log 4, (4.4)

where αs0 = infu∈Hs J(u) was studied by Moser in [M2]. By a standard method, we

show that αsλ is achieved by usλ ∈
◦
Aλ∩Hs. The “symmetric variational principle”

[P] implies that usλ is a critical point of Jλ in
◦
Aλ. Hence vλ = usλ + ρ(usλ) is a

solution of (3.2) by Lemma 3.2.
Moreover, (4.2) and (4.3) imply that

−
∫
|∇usλ|2 ≤ c
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for some constant c, provided that λ is large enough. In view of the normalization
−
∫
eu = 1. This implies that usλ is bounded in H1,2.
Assume usλ → us∗ ∈ H1,2 weakly in H1,2 and strongly in Lp(S2) for any 1 <

p < +∞. As in section 3, we have −
∫
Keu

s
λ → −

∫
Keu

s
∗ and −

∫
K2e2usλ → −

∫
K2e2us∗ .

Thus (4.3) implies that usλ converges to us∗ strongly in H1,2. Clearly, us∗ satisfies
(3.7) and was obtained in [M2]. �

Proposition 4.2. If P+ = P−, there is no solution vλ of (3.2) for large λ such
that vλ −−

∫
evλ converges strongly in H1,2.

Proof. Assume that uλ = vλ − −
∫
evλ converges to ũ strongly in H1,2. It is easy

to check that ũ satisfies (3.7). However, in this case, i.e. P+ = P− the equation
(3.7) admits no solution by the Kazdan-Warner identity∫

〈∇K,∇xi〉eu = 0

that has to hold for any solution of (3.7), see [KW].
Now we consider the general and more difficult case P+ 6= ±P−. In this case, by

Lemma 3.1, we know that K has a unique saddle point Q and a unique maximum
point Q̄(= −Q). Moreover minx∈ΓK(x) = K(Q), where Γ is the great circle
crossing Q and (Q̄). This Γ satisfies the condition (5.1) in [CY2], hence we can
define a minimax value of Jλ as in [CY2] (see also [CkL] and [CD]).

Let γ : ∂D→ Γ be a parametrization of Γ, where D is the unit disc in R2 with
boundary ∂D.

Definition 4.3. ([CY2]) D(Γ) = {h : D → H is a continuous map with the
following asymptotic behavior for all z0 ∈ ∂D :

lim
z→z0

S(h(z)) = 0 (4.5)

lim
z→z0

P (h(z)) = γ(z0) ∈ S2}. (4.6)

(Here, P is the center of mass defined in section 3, and S(h) = −
∫

1
2(|∇h|2 + 2h)).

Set β0 = infh∈Dmaxz∈D J(h(z)).

Lemma 4.4. ([CY2], [CkL]) β0 > − logK(Q) + c0 for a constant c0 > 0.

For our problem, we need to modify the definition of D.

Definition 4.5. D′ = {h : D → H is a continuous map satisfying the following



Vol. 74 (1999) Chern-Simons Higgs model on the two-sphere 135

asymptotic conditions for all z0 ∈ ∂D

lim
z→z0

S(h(z)) ≤ δ (4.7)

lim
z→z0

P (h(z)) ∈ Bδ(γ(z0)) (4.8)

for a fixed small δ > 0}.

We show that for small δ,D′ and D are essentially the same in the following
Lemma.

Lemma 4.6. There exists δ0 > 0 such that for any δ < δ0,
(i) maxz∈D J(h(z)) is achieved in the interior of D for any h ∈ D′,
(ii) β′0 := infh∈D′ maxz∈D J(h(t)) = β0.

Proof. For each h ∈ D′, we first construct an h̃ ∈ D such that
(1) S(h̃(t)) ≤ δ and P (h̃(t)) ∈ Bδ(γ( z

|z| )), if 1/2 ≤ |z| ≤ 1

(2) h̃(z) = h(2z), if |z| ≤ 1/2.
As in section 3, we decompose h(z) as (wz , tz, qz) for z ∈ D, where qz =

P (h(z))
|P (h(z))| , 1−t−2

z log tz = |P (h(z))| and wz = h(z)◦ϕqz,tz+ψqz,tz . By the definition
of D′, q(z0) ∈ Bδ(γ(z0)) and S(wz) = S(h(z)) < δ for any z0 ∈ ∂D. We extend h
to D2 = {z ∈ C

∣∣|z| ≤ 2} by

h′(z) =

{
(wz , qz, tz) if |z| ≤ 1,
((2− |z|)w z

|z|
, q̃z, t̃z) ≤ |z| ≤ 2,

where q̃z and t̃z (1 ≤ |z| ≤ 2) are defined by

q̃z =
Qz
|Qz|

and 1− t̃z
−2 log t̃z = Qz

and
Qz = (2− |z|)P (h(

z

|z|)) + (|z| − 1)γ z
|z|
.

Since P (h( z
|z| )) ∈ Bδ(γ( z

|z| )), h
′ is well-defined. Now, let h̃(z) = h′(2z) for z ∈ D.

Clearly, h̃ ∈ D. By Lemma 4.4. we have

max
z∈D

J(h̃(z)) ≥ β0 > − logK(Q) + c0.

On the other hand, it is clear that for small δ > 0 S(u) ≤ δ and P (u) ∈ Bδ(γ(z0))
for some z0 ∈ ∂D imply that

J(u) ≤ − logK(Q) + ε0
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for ε0 < c0/2. Hence, we have maxz∈D J(h̃(z)) = maxz∈D J(h(z)). Now it is clear
that (i) and (ii) follow. �

Now we return to consider our functional Jλ. Let Dλ = {h ∈ D′
∣∣h(D) ⊂ Bλ}.

Recall that Bλ = {u ∈ H
∣∣b(u) ≤ logλ}. For a fixed δ0 (for example δ0 as in

Lemma 4.6) it is clear that Dλ 6≡ ∅, if λ is sufficiently large. Set

βλ = inf
h∈Dλ

max
z∈D

Jλ(h(z)).

Lemma 4.7. limλ→∞ βλ = β0 − 1 + 2 log 2.

Proof. In view of Lemma 4.6, for any ε > 0 there exists h0 ∈ D′ such that

|max
z∈D

J(h0(z))− β0| < ε/2.

Since Bλ → H as λ → +∞, we can choose λ0 > 0 such that h0(D) ⊂ Bλ for any
λ > λ0. Hence

max
z∈D

Jλ(h0(z)) ≤ maxJ(h0(z)) + f(
1

1 +
√

1− 8
λ logλ

)

≤ β0 + ε− 1 + 2 log 2

provided that λ0 is large enough. On the other hand, for each h ∈ Dλ, we have

max
z∈D

J(h(t)) ≥ β0 − 1 + 2 log 2.

This proves the Lemma. �

Lemma 4.8. Jλ satisfies the Palais-Smale condition in Aλ.

In fact, this was proved in the argument of Proposition 3.7. �

Now we state our main result in this section.

Proposition 4.9. βλ is achieved by ūλ ∈
◦
Bλ, provided that λ is large enough.

Proof. We divide the proof into several steps.

Step 1. We have
(i) For ε0 > 0 and large T1, there exist M0 > 0 and γ0 > 0 such that any

u = (w, q, t) with Jλ(u) ≤ β0−1 + 2 log 2 + ε0 and t ≥ T1 satisfies that S(u) < M0
and u = (w, q, t) with q 6∈ Bγ0(P±).
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(ii) There exist small δ > 0 and large T2 > 0 such that, if u = (w, q, t) with
S(u) ≤ δ, q ∈ Bδ(γ) and t ≥ T2, then Jλ(u) ≤ β0 − 1 + 2 log 2− c0/2.
Note that (ii) was used in the proof of Lemma 4.6.

Step 2. From [CkL, p51] there exist b0, e0, e1, T3 and N0, N1 > 0 such that if
u = (w, q, t) with q 6∈ Bγ0(P±) and S(w) ≤M0, then

(i) ‖∂wJ‖ ≥ e0 −N0t
−1 log1/2 t, if S(w) ≥ b0 and t > T3,

(ii) 〈∂wJ, ṽ〉 ≥ e1S
1/2(w)−N1t

−1 log1/2 t, if S(w) ≤ b0 and for any ṽ ∈ TwH0.
Here ∂wJ(u) is the derivative with respect to w. Let T0 = max{T, T1, T2, T3},
where T is determined in Lemma 3.5.

Note that in steps 1 and 2, all constants are independent of λ.

Step 3. There exists λ0 > 0 such that for any λ > λ0

X := {u ∈ (w, q.t) | t ≤ T0} ⊂ Bλ.

u ∈ X .

Step 4. If u = (w, q, t) ∈ Bλ with S(w) ≤M0, q 6∈ Bγ0(P±) and t ≥ T0, then

‖∂wfλ(w, q, t)‖ ≤ c1
t

λ
≤ c1te−c2t

‖∂tfλ(w, q, t)‖ ≤ c1te−c2t
2

and
‖∂qfλ(w, q, t)‖ ≤ c1

t

λ
≤ c1te−c2t

2

for some positive constant c1 and c2.
It is enough to check that there exists a constant c such that

|〈∂wd(u), v〉| ≤ ct‖v‖

for any v ∈ TwH0.

〈∂wd(u)v〉 =
2
∫
K2 ◦ ϕq,t e2w · v(det(dϕq,t)−1)

(
∫
K ◦ ϕq,t ew)2

− 2
∫
K2 ◦ ϕq,t e2w(det(dϕq,t)−1)

∫
K ◦ ϕq,t ew · v

(
∫
K ◦ ϕq,t ew)3

≤ 2{K4 ◦ ϕq,t e4w(det(dϕq,t)−2}1/2(
∫
|v|2)1/2

(
∫
K ◦ ϕq,t ew)2

+
∫
K2 ◦ ϕq,t e2w(det(dϕg,t)−1)(

∫
K2 ◦ ϕq,t e2w)1/2(

∫
|v|2)

(
∫
K ◦ ϕq,t ew)2
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≤ ct2(
∫
|v|2)1/2, by Lemma 3.5.

Since u ∈ Bλ, we have, by Lemma 3.5

ct2 ≤ logλ.

This is equivalent to λ−1 ≤ e−ct2 . Step 4 follows.

Step 5. Extend Jλ|X to Y := {t ≤ T0} ∪ {u ∈ (w, q, t)
∣∣S(w) ≤M0 q 6∈ Bγ0(P±)}.

Let u ∈ Y define a functional H : Y → R as in [CkL] by

H(w, q, t) = S(w)− logK(q)− 2∆K(q)
K(q)

t−2 log t.

One can check that

|J −H| ≤


N0t

−1 log1/2 t if S(w) ≥ bt > T0

N1 (|∇K(q)| t−1 log1/2 t S(w)

+ t−2 + S2(w))
if S(w) ≤ bt > T0

see [CkL, p51]. Extending J as in [CkL], we obtain J̃ in Y . We define fλ|X
smoothly to f̃λ = Y → R such that

(i) f̃λ|X = fλ|X ,
(ii) f̃ satisfies Step 4,
(iii) f̃λ = −1 + 2 log 2, when t is sufficient large.

Now we obtain a new functional J̃λ = J̃ + f̃λ defined in Y satisfying
(a) ∂J̃λ(w) 6≡ 0 if u = (w, q, t) with t ≥ T0
(b) J̃λ satisfies the Palais-Smale conditions on (βλ − ε0, βλ + ε0) for a fixed

small constant ε0 > 0
(c) J̃λ|X = Jλ|X .

(d) J̃λ satisfies Steps 1-4.

(a) We can follow [CkL] to prove (a). Here we give a sketch.
If S(w) ≥ t−1 log t, then ‖∂wJ̃‖ ≥ N0t

−1 log1/2 t (see [CkL]). (ii) and Step 4
implies that if t ≥ T0

‖∂wf̃‖2 ≤ c te−ct
2
. (4.9)

Hence ‖∂wJ̃λ‖ ≥ N0
2 t
−1 log1/2 t, provided that T0 is sufficient large.

If S(w) ≤ t−1 log t, it was shown in [CkL] that near Q or Q̄

∣∣∂tJ̃(u)− 2∆K(q)
K(q)

∣∣ (4.10)
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is controlled by c log−1 t if t ≥ T0 and away from Q and Q̄

∣∣∂qJ̃(u) +
∂qK(q)
K(q)

∣∣ (4.11)

is controlled by ct−1+µ log t, if t ≥ T0. Here 0 < µ < 1. By (ii) and Step 4 it is
clear that (4.10) and (4.11) hold also for J̃λ. Thus there are no critical points of
J̃λ if t ≥ T0.

(b) If {ui} ⊂ Y is a Palais-Smale sequence for J̃λ, the argument in (i) implies
that we may assume that {ui} ⊂ X . Hence (b) follows from Lemma 4.8.

(c) and (d) are clear.

Step 6. Now we set β?λ = infh∈D?
λ

supz∈D J̃λ(h(z)), where D?λ = {h ∈ D′
∣∣h(D) ⊂

Y }. Using the above argument, we have

D?λ 6≡ ∅

and
lim
λ→∞

β?λ = β0 − 1 + 2 log 2.

Thus, for large λ > 0, β?λ ∈ (β0 − 1 + 2 log 2 − ε0, β − 1 + 2 log 2 + ε0). Since J̃λ
satisfies the Palais-Smale condition on (β0− 1 + 2 log2− ε0, β− 1 + 2 log2 + ε0), if
β?λ is not a critical value of J̃λ, we can find a deformation T (·, t) : Y × [0, 1]→ Y
ε1 > 0 such that

(i) T (u, 0) = u,
(ii) T (u, 1) ⊂ J̃β?

λ
−ε1 , if u ∈ J̃β?

λ
+ε1

(iii) T (u, t) = u, if u ∈ J̃β?
λ
−2ε1 ∪ (Y \ J̃β?

λ
+2ε1),

where J̃b := {u ∈ Y |J̃λ(u) ≤ b} and ε1 < ε0/4. The construction of such a
deformation is standard. We refer to [Ck]. We claim

T (u, t) = u

if u ∈ ∂Y ∪ {u = (w, q, t)|S(w) ≤ δ, P (u) ∈ Bδ(γ)}.
If u = (w, q, t) with S(w) ≤ δ and P (u) ∈ Bδ(γ), then by Step 1 Jλ(u) ≤

β0−1+2 log 2− c0
2 . By (iii) in the construction of the deformation T , T (u, t) = u.

If u ∈ ∂Y , then u = (w, q, t) satisfies either S(w) = M0, q ∈ ∂Bγ0(P±) and
t ≥ T0 or S ≥ M0, q ∈ Bγ0(P±) and t = T0. Again by Step 1, we have Jλ(u) >
β0 − 1 + 2 log 2 + ε0, hence T (u, t) = u by (iii) above.

Hence T ◦ h ∈ D?λ for any h ∈ D?λ. Now it is clear that the existence of such a
deformation contradicts the definition of β?λ. Therefore β?λ is a critical value and
there is uλ ∈ Y such that uλ is a critical point of J̃λ and J̃λ(uλ) = β?λ. By the
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construction of J̃λ, we know uλ ∈ X and J̃λ(uλ) = Jλ(u) = βλ. This completes
the proof of the proposition. �

Proposition 4.10. By taking a subsequence, uλ converges to u0 strongly in Cq

for any q > 1, where u0 is a solution of (3.7) obtained in [CkL] and [CY].

Proof. From the argument in the proof of the previous proposition, we have uλ ∈ X .
Therefore uλ is bounded in H1,2. Assume uλ converges to u0 weakly in H1,2,
strongly in Lp for p > 1 and almost everywhere. As before, by Lebesgue’s theorem,
we have ∫

Keuλ →
∫
Keu0 and

∫
K2e2uλ →

∫
K2e2u0 .

Hence,

λeρ(uλ) → 2
−
∫
Keu0

as λ→ +∞.
Since vλ = uλ + ρ(uλ) satisfies (3.2), i.e.∫

〈∇vλ · ∇ϕ〉+ λ

∫
Kevλ(Kevλ − 1)ϕ+ 2

∫
ϕ = 0, (4.12)

we have ∫
∇u0 · ∇ϕ− 2

∫
Keuoϕ+ 2

∫
ϕ = 0, (4.13)

which implies that u0 is a solution of (3.7). Choosing ϕ = uλ − u0 in (4.12) and
(4.13), we conclude∫

|∇uλ −∇u0|2 = −λ
∫
Keρ(uλ)euλ(Keρ(uλ)euλ − 1)(uλ − u0)

+ 2
∫
Keu0(uλ − uo)

= −λ
∫
Keρ(uλ)euλ(uλ − u0)

+ 2
∫
Keu0(uλ − uo) + o(1)

= o(1) as λ→ +∞.

It follows that uλ converges to u0 in H1,2. Now it is easy to conclude that uλ → u0
in Cq(S2) for any q ≥ 1 by the elliptic estimates. �

Proof of Theorem 2.4. It follows from Proposition 4.9 and 4.10. �

Remark. FA2
k
→ 4π eu0+u0∫

eu0+u0
as k → 0, where u0 is a solution of (3.2) and u0 is

a solution of (3.7) with K = eu0 .
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