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On the dilatation of extremal quasiconformal mappings of
polygons

Kurt Strebel

Abstract. A polygon PN is the unit disk D with n distinguished boundary points, 4 ≤ n ≤ N .
An extremal quasiconformal mapping f0 : Dz → Dw maps each polygon PN inscribed in Dz
onto a polygon P ′N inscribed in Dw. Let fN be the extremal quasiconformal mapping of PN
onto P ′N . Let KN be its dilatation and let K0 be the maximal dilatation of f0. Then, evidently
supKN ≤ K0. The problem is, when equality holds. This is completely answered, if f0 does
not have any essential boundary points. For quadrilaterals Q and Q′ = f0(Q) the problem is
sup(M ′/M) = K0, with M and M ′ the moduli of Q and Q′ respectively.
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Introduction

1. Let h be a quasisymmetric mapping of the boundary of the unit disk Dz onto
the boundary of Dw and let f be a quasiconformal extension of h into the disk.
It is called extremal and denoted by f0 if its maximal dilatation K0 is smallest
possible. We always assume K0 > 1. The disk Dz becomes a quadrilateral Q
if we mark four different points zj, j = 1, . . . , 4, in the positive direction on its
boundary ∂Dz. The mapping f0 takes the vertices zj into points wj = f0(zj) on
∂Dw and thus the quadrilateral Q into a quadrilateral Q′ = f0(Q) inscribed in Dw.
It follows from the definition of quasiconformality that the conformal moduli M
and M ′ of Q and Q′ respectively satisfy (for general properties of quasiconformal
mappings, see [3])

1
K0

M ≤M ′ ≤ K0M. (1)

It has been a question for some time, if the bound K0 is best possible in
the inequality (1), in other words, if the maximal dilatation K0 of the extremal
quasiconformal extension f0 of h can be determined by the ratio of the moduli of
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inscribed quadrilaterals,

sup
M ′

M
= K0. (2)

The question has recently been answered in the negative by Anderson and Hinkka-
nen [1] by laborious computations of a counterexample (horizontal stretching of a
parallelogram) and by Reich [4] who reduced it to an approximation problem for
holomorphic functions. More counterexamples are given in [9].

2. It is easy to find examples where (2) holds; the above solutions consist therefore
in the construction of examples where it does not hold. A type of the first kind
is a vertical half strip S and its horizontal stretching by K0. Let z = x + iy,
S = {z; 0 < x < a, 0 < y}, w = u+ iv, S′ = {w; 0 < u < K0a, 0 < v}. We make
S to a quadrilateral by marking the vertices (0, a, a + ib, ib) for arbitrary b > 0,
and similarly S′ by marking the image points (0,K0a,K0a + ib, ib). Making use
of the extremal length definition of the modulus of a quadrilateral ([3], p. 21) as
the extremal distance of the vertical sides we easily find the estimates

M ≤ a/b, M ′ ≥ K0a/(b+K0a) (3)

and thus

K0 ≥
M ′

M
≥ K0a

b+K0a
· b
a
, (4)

which gives

lim
b→∞

M ′

M
= K0. (5)

3. The problem with the moduli of quadrilaterals has a different interpretation.
We look at the extremal quasiconformal mapping f ofQ ontoQ′. This is a mapping
of Dz onto Dw which takes the vertices of Q into those of Q′. Its dilatation is
K = M ′/M , and the question is now what happens with K if we vary the vertices
of Q in all possible ways? Of course we always have K ≤ K0, but will we have
supK = K0? In this formulation the problem has a natural generalization to
polygons, i.e. disks with an arbitrary finite number n ≥ 4 of vertices. The basic
extremal qc mapping f0 assigns a polygon P ′n inscribed in Dw to each polygon Pn
inscribed in Dz . The extremal qc mapping fn of Pn onto P ′n (i.e. of course of Dz
onto Dw, but with the only requirement that the vertices of Pn go into the vertices
of P ′n) is a Teichmüller mapping with a complex dilatation κn = kn(ϕn/|ϕn|),
kn = (Kn − 1)/(Kn + 1). The quadratic differential ϕn is rational, with at most
first order poles at the vertices of Pn. Moreover, ϕn(z) dz2 is real along the sides
of Pn. Since f0 also maps the vertices of Pn onto those of P ′n and fn is extremal
with this property, we have Kn ≤ K0. The question arises if, by varying the
polygon Pn in all possible ways, we have

supKn = K0. (6)
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4. It follows from general principles of qc mappings (we refer to [3] for the general
theory) that this is in fact true if we allow the number n of vertices to become
arbitrarily large (for a proof see [5], p. 385, bottom). But how is it, if this number
is bounded, n ≤ N say? With a certain natural restriction we will characterize
the extremal mappings f0 for which this happens. The proof is an application of
the “polygon inequality” ([5], p. 384) and a theorem of R. Fehlmann ([2], p. 567).

The polygon inequality

5. Let f0 be an extremal qc mapping of Dz onto Dw with f0 | ∂Dz = h. Let
κ0 with ‖κ0‖∞ = k0 be its complex dilatation and K0 = (1 + k0)/(1 − k0) its
maximal dilatation. Mark n points zj , j = 1, . . . , n, on ∂Dz, 4 ≤ n ≤ N . The disk
Dz with the marked boundary points zj is called a polygon Pn. The image of Pn
by f0 is the polygon P ′n, inscribed in Dw, with vertices wj = f0(zj). Let fn be the
extremal qc mapping of Pn onto P ′n, fn(zj) = wj , and let ϕn, ‖ϕn‖ = 1, denote
the associated quadratic differential. The complex dilatation of fn is kn(ϕn/|ϕn|).
Then, the Polygon Inequality holds:

Re
∫∫
|z|<1

κ0(z)ϕn(z)
1− |κ0(z)|2 dx dy ≥

kn
1− kn

−
∫∫
|z|<1

|ϕn(z)| |κ0(z)|2
1− |κ0(z)|2 dx dy. (7)

For the proof I refer to ([5], p. 384). In that paper, the inequality was used
to prove that the “polygon differentials” ϕn form a Hamilton sequence for κ0 if
the number of vertices tends to infinity and the sides of the polygons Pn become
arbitrarily short. This led to a proof of the necessity of the Hamilton–Krushkal
condition for extremality. Now, on the contrary, we restrict the number of vertices
by a fixed number N , and we denote a polygon with n ≤ N vertices generically
by PN .

6.

Theorem 1. Let f0 : Dz → Dw with complex dilatation κ0, ‖κ0‖∞ = k0, be
extremal for its boundary values h. Assume that for a fixed number N the polygon
mappings fN : PN → P ′N = f0(PN ) with complex dilatation kN (ϕN/|ϕN |) satisfy

sup kN = k0. (8)

(This is of course equivalent to supKN = K0.) Then, there is a sequence of
polygon mappings f (i)

N the quadratic differentials ϕ(i)
N of which, ‖ϕ(i)

N ‖ = 1, form a
Hamilton sequence for κ0, i.e.

Re
∫∫

κ0(z)ϕ(i)
N (z) dx dy → k0, i→∞. (9)
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Proof. Assume first that f0 has constant dilatation |κ0(z)| = k0 a.e. Then, the
polygon inequality yields

1
1− k2

0
Re
∫∫

κ0(z)ϕN (z) dx dy ≥ kN
1− kN

− k2
0

1− k2
0

(10)

for all polygons PN . Let P (i)
N be a sequence of polygons the extremal mappings

f
(i)
N of which satisfy k(i)

N → k0. Then

lim
i→∞

Re
∫∫

κ0(z)ϕ(i)
N (z) dx dy ≥ k0

1− k0
(1− k2

0)− k2
0 = k0. (11)

On the other hand

Re
∫∫

κ0(z)ϕ(i)
N (z) dx dy ≤

∣∣∣∣∫∫ κ0(z)ϕ(i)
N (z) dx dy

∣∣∣∣ ≤ k0. (12)

This gives the result (9) in the case where |κ0(z)| = k0 a.e. If |κ0(z)| is not
constant a.e. we proceed as in ([5], p. 386 and p. 382). However, in our present
work we only need the case of constant |κ0(z)|. �

Since the number of vertices of the polygons P (i)
N is smaller or equal to N , we

can assume, by passing to a further subsequence, that they converge to a finite
number ≤ N of points on ∂Dz. We write P (i)

N → PN .
The vertical half strip in the introduction is an example where the given quadri-

laterals give rise to a Hamilton sequence for the horizontal stretching (which is
uniquely extremal).

Extremal mappings without essential boundary point

7. Let f0 with complex dilatation κ0, ‖κ0‖∞ = k0, be extremal for its boundary
values h. A boundary point z of Dz is called essential, if the following is true: For
every neighborhood U of z and every qc mapping g of U ∩Dz which is equal to h
on U ∩∂Dz the maximal dilatation of g is at least equal to K0 = (1+k0)/(1−k0).

A theorem of R. Fehlmann ([2]), p. 567) says: If the complex dilatation κ0 has
a degenerating Hamilton sequence (i.e. which tends to zero locally uniformly in
the domain), then f0 has an essential boundary point.

Combining this result with the considerations in ([7], p. 466) we can say: If
f0 does not have an essential boundary point, then, every Hamilton sequence for
κ0 converges in norm to a holomorphic quadratic differential ϕ0, ‖ϕ0‖ = 1, and
κ0 = k0(ϕ0/|ϕ0|) is the complex dilatation of f0.
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8. Let us apply this to our case. Every polygon differential ϕ(i)
N can be continued

across the boundary ∂Dz by reflection to a rational differential in the whole plane,
of norm two. Therefore the limit ϕ0 can be reflected. Since its norm is finite, it
has at most first order poles at the n ≤ N limits of the vertices of the P (i)

N , and
ϕ0(z) dz2 is real along the subintervals of ∂Dz between these limits. Our main
result is

Theorem 2. Let f0 : Dz → Dw be a qc mapping which is extremal for its boundary
values, and assume that it does not have an essential boundary point. For fixed
N ≥ 4 denote the polygons with 4 ≤ n ≤ N vertices inscribed in Dz generically
by PN . To every PN the mapping f0 determines a polygon P ′N inscribed in Dw,
simply by mapping the vertices of PN onto those of P ′N . Assume that the extremal
mappings fN : PN → P ′N satisfy sup kN = k0. Then, there is a convergent sequence
f

(i)
N of polygon mappings with ϕ(i)

N → ϕ0 in norm, where κ0 = k0(ϕ0/|ϕ0|) is the
complex dilatation of f0. f0 itself is the extremal qc mapping of a polygon with
n ≤ N vertices, and every maximizing sequence f

(i)
N , k(i)

N → k0, tends to f0

uniformly, ϕ(i)
N → ϕ0 in norm.

9. In order to see that the theorem is not empty, let f : Dz → Dw be an extremal
polygon mapping and let ϕ be the associated rational quadratic differential, κ =
k(ϕ/|ϕ|) the complex dilatation. The vertices zj are either first order poles or
regular points (i.e. ϕ(zj) 6= 0) or zeroes of ϕ of any order. Along the sides we
have ϕ(z) dz2 real, and thus the sides are composed of trajectories and orthogonal
trajectories.

The first order poles and the zeroes are clearly the only candidates for an
essential boundary point of f . In order to find the local maximal dilatation Hz

at such a point z we first apply the mapping Φ =
∫ √

ϕ and then the horizontal
stretching by K. The integral Φ maps an interior half neighborhood of z onto an
angle with a horizontal and a vertical side. It is a right angle in the case of a first
order pole and an angle which is a multiple of 1

2π in the case of a zero, possibly
many sheeted. In the image Dw we have the same situation, with a quadratic
differential ψ and an integral Ψ =

∫ √
ψ. The horizontal side of the angle is

stretched by K while the vertical side is mapped identically. It is known (and
easy to see, using logarithms on both sides, see [6], p. 323) that the local extremal
mapping with the given boundary values has dilatation < K. Since f itself is
extremal with dilatation K, it does not have any essential boundary point, thus
satisfying our requirement.

10. Let now f0 : PN → P ′N with complex dilatation κ0 = k0(ϕ0/|ϕ0|) be an
extremal polygon mapping. We can clearly take fN = f0 itself and get sup kN =
k0. Actually we only need to consider the substantial boundary points of f0 (=
poles of ϕ0), since the extremal mapping of the restricted polygon P̃N onto P̃ ′N is
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the same as f0.
Let Ñ be the number of substantial boundary points of f0. If, however, we

only admit polygons with at most N ′ ≤ Ñ −1 vertices, we find sup kN ′ < k0. For,
if sup kN ′ = k0 we would again arrive, by the same considerations as before, at
an extremal polygon mapping fN ′ with a quadratic differential ϕN ′ with at most
N ′ first order poles, whereas ϕ0 has Ñ first order poles. Therefore ϕN ′ 6= ϕ0, a
contradiction.

11. We started with the following question. Let f0 with complex dilatation κ0,
‖κ0‖ = k0, be a qc mapping of Dz onto Dw which is extremal for its boundary
values and which does not have an essential boundary point. Inscribe quadrilat-
erals Q into Dz and denote their images by f0 in Dw by Q′. The image Q′ has, as
its vertices, the images by f0 of the vertices of Q. Let M and M ′ be the moduli
of Q and Q′ respectively. The question is, if (2) can hold.

Let f with dilatation K be the extremal mapping of Q onto Q′. The equation
(2) is equivalent with

supK = K0 (13)

where the sup is taken over all quadrilaterals Q. This is the special case of (8) for
N = 4. We find

Theorem 3. The extremal mapping f0 satisfies (13) for the inscribed quadrilat-
erals Q if and only if it is the extremal mapping of a quadrilateral itself.

This means that in all other cases we have inequality in (13). The example
of Anderson and Hinkkanen is the horizontal stretching of a parallelogram. This
mapping f0 has no essential boundary point and is, in their situation, not the
mapping of quadrilaterals. Therefore sup(M ′/M) < K0.

The example of Reich has analytic boundary values. Therefore we have again
sup(M ′/M) < K0.

Clearly, in both examples, we still have inequality in (13) even if we allow any
inscribed polygons with an arbitrary fixed bound N for the number of vertices.

Added in Proof. After the completion of this paper I have become aware of two
papers with related results: Shanshuang Yang, On dilatations and substantial
boundary points of homeomorphisms of Jordan curves, Results Math. 31 (1979),
180–188, and Qi Yi, A problem in extremal quasiconformal extensions, Sci. China
Ser. A 41:11 (1998), 1135–1141.
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