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Spherical minimal immersions of the 3-sphere
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Abstract. In 1966 Takahashi [11] proved that a minimal isometric immersion f : Sm(1) →
SN (r) of round spheres exists iff r =

√
m/λp, where λp is the p-th eigenvalue of the Laplacian

on Sm; in this case, the components of f are spherical harmonics on Sm of order p. This
immersion is unique up to congruence on the range and agrees with the generalized Veronese
map if m = 2 as was shown in 1967 by Calabi [1]. In 1971 DoCarmo and Wallach [3] proved
that the same rigidity holds for p = 2, 3. The main aim of their work, however, was to show
that, for m ≥ 3 and p ≥ 4, unicity fails, and, indeed, the set of (congruence classes of) minimal
isometric immersions f : Sm → SN (

√
m/λp) can be parametrized by a moduli space Mp

m, a
compact convex body in a representation space Fpm of SO(m+ 1) of dimension ≥ 18. In 1994,
the first author [14] determined the exact dimension of the moduli, and with Gauchman [5] in
1996, revealed intricate connections beween the irreducible components of Fpm and the geometry
of the immersions these components represent. The purpose of the present paper is to provide a
complete geometric description of the fine details of the (boundary of the) 18-dimensional space
M4

3, the first nontrivial moduli. This is made possible by several reductions that make use of the
splitting SO(4) = SU(2) · SU(2)′ as well as rely on the structure of SU(2) equivariant minimal
isometric immersions treated in the work of DeTurck and the second author [2] in 1992. The
equivariant imbedding theorem [14] asserts that the structure of M4

3 reappears in the moduli
Mp

m for m ≥ 3 and p ≥ 4.
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Minimal isometric immersions of round spheres into round spheres form an inter-
esting subject that has been studied by a number of authors, see e.g. [2,3,11,12].
We can write such maps either as isometric minimal immersions f : Sm(1) →
SN (r) as was done in [2], or as we do here and as was done in [12], as minimal
immersions f : Sm(1)→ SN (1) with homothety 1/r2 (which we call spherical min-
imal immersions). The components of such an immersion must be eigenfunctions
of the Laplacian on Sm(1) which are hence harmonic homogeneous polynomials of
degree p with eigenvalue λp = p(p+m− 1), in which case the homothety is equal
to λp/m. As is well known, if m = 2, or if m ≥ 3 and p = 2, 3, the immersion is
unique up to congruence and agrees with the generalized Veronese immersion. But
for m ≥ 3 and p ≥ 4, there are many such immersions, and for a fixed degree p the
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congruence classes of such minimal immersions form a convex compact body in a
vector space of high dimension. The dimension of this convex body was computed
explicitly in [14]. In particular, if m = 3 and p = 4, it is equal to 18 (see also [9]
for this special case) and the dimension quickly grows with m and p.

The main purpose of the present paper is to examine this convex body in detail
in the special case of m = 3, p = 4, although some of the results also apply to the
general case. In this special case we are able to describe the structure of the convex
body and its boundary completely with a number of interesting consequences. This
is due to the fact that this low degree is the only case where the full convex body
can be reconstructed in a certain way from the special subclass of equivariant
minimal isometric immersions studied in more detail in [2,5,6]. This structure is
also important for higher degrees and higher domain dimensions, since, according
to the equivariant embedding theorem [14], the moduli space for degree four and
domain dimension three can be equivariantly embedded into that for any degree
≥ 4 and domain dimension ≥ 3. In particular, using the examples developed here
and in [2], a variety of spherical minimal immersions can be explicitly constructed
from any domain of dimension ≥ 4 and any degree ≥ 3.

Before we describe our results, we set up some notation. If f is a spherical
minimal immersion f : Sm(1)→ SN (1) ⊂ RN+1 = V which uses degree p homo-
geneous harmonic polynomials, we denote by Mf the set of all spherical minimal
immersions f ′ = A ◦ f with A : RN+1 → RN ′+1 any linear map (in other words,
the components of f ′ ∈ Mf are linear combinations of the components of f). Mf

is a compact convex body in a linear subspace Ff ⊂ S2V parametrized by A>A−I.
The points on the boundary of Mf consist of spherical minimal immersions with
ambient dimension less than N . If fp is the standard spherical minimal immersion
of Sm, consisting, up to homothety, of an orthonormal basis of the set Hp of all
homogeneous harmonic polynomials of degree p, then Mfp =Mp is by definition
the set of all spherical minimal immersions of degree p. For f ∈Mp, Mf forms a
linear slice in Mp. If f lies in the interior of Mp, Mf is of course equal to Mp.
But if f lies on the boundary of Mp, then Mf is a linear slice contained in the
boundary of Mp. We call f linearly rigid if Mf = {f}. The linearly rigid spher-
ical minimal immersions are precisely the extremal points of Mp in the sense of
convex geometry (by the connecting lemma in Section 1.1). By the Krein-Milman
theorem, a convex set is the convex hull of its subset of extremal points, so that
Mp is the convex hull of the linearly rigid spherical minimal immersions.

SO(m+1) acts onMp via precomposition f → f ◦A, f ∈ Mp, A ∈ SO(m+1),
which makes Fp a linear SO(m+1) representation space. A groupG is the isotropy
group of that action at a point f iff f is equivariant under G. We will say that f
is full if the image of f spans all of V .

What is special about m = 3 is that SO(4) = SU(2) · SU(2)′ with each SU(2)
acting transitively on S3. Hence we can consider the SU(2) and SU(2)′ equivariant
spherical minimal immersions, which can also be viewed as the fixed point set
(Mp)SU(2) or (Mp)SU(2)′ . We will show that for p = 4, and this is what makes
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m = 3, p = 4 so special, that F4 = (F4)SU(2) ⊕ (F4)SU(2)′ , each one being a
9 dimensional linear subspace of F4. As an SO(4) representation, this splitting
is R′8 ⊕ R8 where SU(2) acts trivially on R′8 and via the unique 9 dimensional
irreducible representation on R8 and in a reversed role for SU(2)′. Furthermore,
we show that each point in ∂M4 lies on a straight line in F4 connecting a point
f1 ∈ ∂(M4)SU(2) with a point f2 ∈ ∂(M4)SU(2)′ . This straight line consists of
the immersions (

√
c1f1,

√
c2f2) with c1 > 0, c2 > 0, c1 + c2 = 1. An orientation

reversing isometry of S3 will interchange R′8 and R8 and hence ∂(M4)SU(2) with
∂(M4)SU(2)′ . Thus the boundary immersions ∂M4 are completely determined
by the equivariant boundary immersions in ∂(M4)SU(2). Equivariant immersions
in (M4)SU(2) have ambient dimension N + 1 = 5, 10, 15, 20 or 25, and one can
easily exclude N + 1 = 5. This will enable us to completely determine all ambient
dimensions:

Theorem A. If f : S3 → SN is a full degree 4 spherical minimal immersion, then
the only possible ambient dimensions are N + 1 = 10, 15, 16, or 19− 25, and each
one occurs.

Furthermore, it will follow that the spherical minimal immersions with N+1 =
10, 15, or 20 consist only of SU(2) or SU(2)′ equivariant ones. Combining this
with Proposition 1 in [2], p.449, yields the following uniqueness result for the
lowest possible ambient dimension:

Theorem B. There exists a degree 4 spherical minimal immersion I : S3 → S9

such that if f : S3 → S9 is any degree 4 spherical minimal immersion, then there
exist isometries A ∈ O(10) and B ∈ O(4) such that f = A ◦ I ◦B. Furthermore I
is SU(2) equivariant with image an embedded space form S3/D∗2, where D∗2 is the
quaternion group {±1,±i,±j,±k}.

One can easily describe I : S3 → S9 explicitly:

I(z, w) =
(

(1/
√

2)(z4 − w̄4),
√

6z2w̄2,
√

2(z3w + z̄w̄3),
√

6(zz̄2w − z̄w2w̄),

√
3/2(z2w2 − z̄2w̄2), (1/

√
2)(|z|4 − 4|z|2|w|2 + |w|4)

)
.

Here z and w are complex with |z|2+|w|2 = 1. Notice that the first four coordinates
are complex, the fifth is purely imaginary and the sixth is real so that I maps into
R10 and one easily checks that it maps into the unit sphere in R10. Also notice
that the map is invariant under (z, w)→ (iz, iw) and (z, w)→ (

√
iw̄,−

√
iz̄) which

generate a group isomorphic to D∗2. It will follow that I is an embedding of S3/D∗2
into S9.
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Finally we describe the equivariant boundary immersions in (M4)SU(2) ⊂ F4.
They naturally divide into 3 subsets, denoted by I, II, and III, depending on if
the ambient dimension is N + 1 = 10, 15, or 20. Notice that the action of SO(4)
reduces to an SU(2)′ action on (M4)SU(2) and hence each set is the union of
SU(2)′ orbits. We will show:

Theorem C. ∂(M4)SU(2) = I ∪ II ∪ III and one has:
a) I is a single SU(2)′ orbit (the SU(2)′ orbit of I) and is an octahedral man-

ifold S3/O∗ embedded minimally in a sphere in R′8 = (F4)SU(2), the embedding
given by a degree 8 equivariant minimal isometric immersion.

b) II = II0∪II1 where II0 is a 6 dimensional connected set consisting of linearly
rigid immersions, and II1 is the 4 dimensional set SU(2)′ · intD where D is a flat
2-dimensional disk with boundary circle on the octahedral manifold I. Furthermore
D =MJ , where J is the unique U(2) equivariant minimal immersion in II.

c) III is dense, open and connected in the 8 dimensional boundary ∂(M4)SU(2).
The opposite J o of J on the boundary ∂(M4)SU(2) is of type III. MJo is 6
dimensional and

III = SU(2)′ · intMJo .

The U(2) equivariant map J : S3 → S14, is given explicitly as follows:

J (z, w) = (1/
√

2)
(
z4, w4, 2

√
3z2w̄2, 2z3w, 2zw3,

2
√

3(zz̄2w − z̄w2w̄),
√

6z2w2, |z|4 − 4|z|2|w|2 + |w|4
)
.

J is invariant under (z, w) → (iz, iw) and the image is an embedded lens space
S3/Z4. J is at the center of the disk D =MJ and the center of U(2) acts as a
rotation on this disk and hence SU(2)′ · D = SU(2)′ · MJ is 4-dimensional. This
gives an explicit description to all elements in II1.

There exists only a 1-dimensional space of U(2) equivariant immersions in
(M4)SU(2) and hence only two U(2) equivariant elements in ∂(M4)SU(2), one of
which is J and the other one the antipodal point Jo (which lies in III). The orbit
SU(2)′J (and hence also SU(2)′Jo) is a minimally embedded RP 2 in a sphere in
R′8 which is in fact the standard rigid minimal isometric immersion for m = 2 and
p = 4.

It is more difficult to find explicit examples in the 6-dimensional set of linearly
rigid elements in II0. One explicit example in II0 is Io, the antipodal to the
immersion I in Theorem B. Since the components of I are orthogonal of equal
length, one can easily write down Io explicitly by choosing such a basis for the
orthogonal complement of the subspace spanned by the components of I in H4.
In particular Io : S3 → S14 and we will show that Io is linearly rigid.
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By Theorem C, the only exremal points in (M4)SU(2) are the elements in I and
II0. Hence (M4)SU(2) is the convex hull of such immersions. As a consequence,
all ofM4 is the convex hull of I, II0 and the images I′, II′0 in ∂(M4)SU(2)′

Also, notice that if we connect a linear slice Mf in III with a corresponding
linear slice in ∂(M4)SU(2)′ , we obtain a 13 dimensional linear slice in ∂M4, which
is the largest dimensional linear slice in the 17-dimensional boundary.

Another interesting question that one can ask, is about the image f(S3). Are
they embeddings or immersions of a quotient S3/G and what quotients can arise?
For interior points of Mp, it was observed in [18] that they are always embedded
spheres or projective spaces, depending on if p is odd or even. But on ∂Mp

many other images can occur. It is still an open problem whether all space forms
can arise. In [2] it was shown that every homogeneous space form admits an
equivariant minimal isometric embedding and in [4] an example was constructed
of an inhomogeneous lens space with a minimal isometric immersion into S190 with
degree 32 polynomials. It follows from [2] that for the equivariant maps in M4,
the images are embedded homogeneous space forms S3/D∗2, lens spaces S3/Z4,
or projective spaces (the generic case). It also follows that there exist many non
equivariant minimal isometric embeddings of the homogeneous space forms S3/D∗2
and S3/Z4.

For m = 3 and p > 4 there are corresponding results, but they only describe a
portion of the moduli space which are not sufficient to prove analogues of Theorems
A and B. See Theorems 4 and 5 for details. This is due to the fact that Fp splits
into many irreducible summands under SO(4) (see Theorem 3) and our methods
apply to only some of those summands.

It is interesting to compare the results in this paper with some of the results in
[15]. One can formulate the above mentioned connecting lemma, by saying that
M4 is the convex hull of its slices by the two irreducible components in F4. For
p = 6 (and m = 3) the moduli space of SU(2) equivariant immersions (M6)SU(2)

has two irreducible components and in [15] it is shown that a minimal immersion
in each component has ambient dimension N + 1 ≥ 14. The degree 6 minimal
immersion f : S3 → S6 constructed in [2] cannot lie in either component and
not in the convex hull of the linear slices with each component either. Thus for
larger degrees, the moduli space is not any more the convex hull of its linear
irreducible slices, which shows that the structure of the moduli space gets much
more complicated for p > 4.

In section 1 we collect several preparatory results that hold in the general case.
Section 2 describes some results about the SU(2) equivariant minimal maps of S3

but any degree p and in section 3 we prove the above results for m = 3 and p = 4.
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1. General theory

1.1. Eigenmaps

A spherical harmonic of order p on Sm is, by definition, an eigenfunction of
the Laplacian 4 on Sm with eigenvalue λp = p(p + m − 1), or equivalently,
the restriction (to Sm) of a harmonic homogeneous polynomial in the variables
(x0, . . . , xm) ∈ Rm+1. The linear space of spherical harmonics is denoted by
Hp = Hpm. (Unless important, we suppress the source dimension m.) In a similar
vein, a p-eigenmap f : Sm → SV , where V is a Euclidean vector space with SV ,
the unit sphere in V , is a map whose components α ◦ f , α ∈ V ∗, are spherical
harmonics of order p on Sm, or equivalently, a harmonic p-homogeneous spherical
polynomial map f : Rm+1 → V . Spherical means that f maps Sm into SV and,
in this case, we identify f : Rm+1 → V with its restriction f : Sm → SV .

f : Sm → SV is full if it has no zero component. In this case, precomposition
with f , α→ α ◦ f , α ∈ V ∗, gives a linear embedding V ∗ → Hp whose image; the
space of components of f , is denoted by Vf . Since V is Euclidean, we have the
isomorphisms

V ∼= V ∗ ∼= Vf ⊂ Hp.
In what follows, V , V ∗ and Vf will be identified under these isomorphisms.

Two p-eigenmaps f1 : Sm → SV1 and f2 : Sm → SV2 are said to be congruent
if f2 = U ◦ f1 for some isometry U : V1 → V2.

Let f : Sm → SV and f ′ : Sm → SV ′ be full p-eigenmaps. f ′ is said to be
derived from f , written as f ′ ↼ f , if there exists a linear map A : V → V ′ such
that A ◦ f = f ′. Since f is full, A is uniquely determined. Since f ′ is also full, A
is onto.

Let f : Sm → SV be a full p-eigenmap. Let Ef ⊂ S2V denote the orthogonal
complement of

Wf = span {f(x)� f(x) |x ∈ Sm}
in S2V . Let

Lf = {C ∈ Ef |C + I ≥ 0},
where I = IV = identity of V and ‘≥’ means ‘positive semidefinite’. Clearly, Lf
is a convex body in Ef and the origin of Ef is contained in the interior of Lf . A
DoCarmo-Wallach type argument gives the following:

Theorem 1. Given a full p-eigenmap f : Sm → SV , the set of congruence classes
of full eigenmaps f ′ : Sm → SV ′ that are derived from f can be parametrized by
the convex body Lf . The parametrization is given by associating to the congruence
class of f ′ the endomorphism

〈f ′〉f = A> · A− I ∈ S2V,

where f ′ = A ◦ f and > denotes transpose.
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Remark. For (all) spherical minimal immersions this is due to DoCarmo-Wallach
[3,17]. The present relative version is taken from [12].

The convex body Lf of Ef (⊂ S2V ) is called the moduli space associated to the
full p-eigenmap f : Sm → SV . f corresponds to the origin 0 (= 〈f〉f ). The interior
intLf parametrizes those full p-eigenmaps f ′ : Sm → SV ′ for which f ↼ f ′, or
equivalently, f ′ = A ◦ f with A : V → V ′ invertible. As A is onto, this holds
iff dim V = dim V ′. Thus the boundary ∂Lf corresponds to those p-eigenmaps
f ′ : Sm → SV ′ for which f ′ ↼ f and dimV ′ < dimV .

Since ↼ is a transitive relation, for f ′ ↼ f , Lf ′ can be embedded into Lf . The
image is an affine slice (that is, the intersection of Lf with an affine subspace).
More precisely, let f : Sm → SV and f ′ : Sm → SV ′ with f ′ ↼ f , i.e. f ′ = A ◦ f ,
and define

ι : S2V ′ → S2V

by
ι(C′) = A> ·C′ · A+ 〈f ′〉f = A> · (C′ + IV ′) ·A− IV .

Then, as easy computation shows, ι maps Ef ′ injectively into Ef and

ι(Lf ′) = ι(Ef ′) ∩ Lf .

From now on, we identify Lf ′ with its image in Lf .
Up to scaling the components of an orthonormal basis in Hp with respect to

the L2-scalar product give rise to the standard p-eigenmap fp : Sm → SHp . For
f = fp, we denote Lp = Lpm = Lfp , Ep = Epm = Efp etc. We call Lp the standard
moduli space. Since all p-eigenmaps are derived from fp, Lp parametrizes the
congruence classes of all full p-eigenmaps f : Sm → SV . For simplicity, we set
〈f〉fp = 〈f〉. We say that a full p-eigenmap f : Sm → SV is of boundary type
if dimV < dimHp, or equivalently, if 〈f〉 ∈ ∂Lp. Also, for any full p-eigenmap
f : Sm → SV , Lf is an affine slice of Lp. Integrating the condition of sphericality
for f , we see [3,17] that Ep consists of traceless endomorphisms of S2(Hp). We
thus have:

Corollary. Lp and (hence) Lf are compact.

Let f : Sm → SV and f ′ : Sm → SV ′ be full p-eigenmaps and assume that f ′ ↼ f
with f ′ = A◦ f , where A : V → V ′ is linear and onto. Then Vf ′ is contained in Vf
and the inclusion Vf ′ ⊂ Vf is given by sending α′ ◦ f ′, α′ ∈ (V ′)∗, to (α′ ◦A) ◦ f .
Connecting Lemma. Let f1 : Sm → SV1 and f2 : Sm → SV2 be full p-eigenmaps
and assume that they are incongruent. Let c1, c2 > 0 with c1 + c2 = 1. Then the
point

c1〈f1〉+ c2〈f2〉 ∈ Lp

on the segment connecting 〈f1〉 and 〈f2〉 is represented by the p-eigenmap f : Sm →
SV , V = V1 × V2, defined by f = (

√
c1f1,

√
c2f2) and made full. In particular,
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f ⇀ f1, f2 and
Vf = Vf1 + Vf2

so that
dimVf = dimVf1 + dimVf2 − dim(Vf1

⋂
Vf2).

Proof. Setting f1 = A1 ◦fp and f2 = A2 ◦fp with A1 : Hp → V1 and A2 : Hp → V2
linear and onto, we have

〈f1〉 = A>1 A1 − I and 〈f2〉 = A>2 A2 − I.

By definition, f = (
√
c1A1,

√
c2A2) ◦ fp so that

〈f〉 = (c1A>1 A1 + c2A
>
2 A2)− I

= c1(A>1 A1 − I) + c2(A>2 A2 − I)
= c1〈f1〉+ c2〈f2〉

since c1 + c2 = 1. The rest is clear.
Given a full p-eigenmap f : Sm → SV of boundary type, 〈f〉 ∈ ∂Lp, the

line R · 〈f〉 intersects ∂Lp in 〈f〉 and another point called the antipodal of 〈f〉.
A representative fo : Sm → SVo of the antipodal of 〈f〉 is called the antipodal
p-eigenmap of f . (fo is unique up to congruence.)

The connection between f and fo is subtle. A related (and again subtle)
problem has been posed by R.T.Smith in his Thesis [10]: Given a p-eigenmap
f : Sm → SV , does there exist a p-eigenmap f ′ : Sm → SV ′ such that Vf ′ is the
orthogonal complement of Vf in Hp? The following observation will be useful:

Antipodal Lemma. Let f : Sm → SV be a full p-eigenmap of boundary type
and assume that, relative to an orthonormal basis in V , the components of f are
orthogonal in Hp and have the same norm. Then the antipodal fo : Sm → SVo of
f has the same property and

Vf ⊕ Vfo = Hp

is an orthogonal direct sum.

Proof. Relative to an orthonormal basis in V and up to a constant multiple, the
components of f give an orthonormal basis V in Vf ⊂ Hp. Select an orthonormal
basis Vo from V ⊥f ⊂ Hp. Let fo : Rm+1 → Vo be a full harmonic p-homogeneous
polynomial map whose components, relative to an orthonormal basis in Vo, are the
elements of Vo. Since V

⋃
Vo (suitably normalized) gives the components of fp,

up to a constant multiple, fo is spherical so that it restricts to a full p-eigenmap
fo : Sm → SVo . By construction, fp = (cf, cofo) for some constants c, co > 0.
Taking norms, we have c2 + c2o = 1 so that the connecting lemma applies. We
obtain that the origin is on the segment connecting 〈f〉 and 〈fo〉. Since both f
and fo are of boundary type, fo is the antipodal of f .
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Let f : Sm → SV be a p-eigenmap and assume that f is equivariant with
respect to a homomorphism ρf : G → SO(V ), where G ⊂ SO(m + 1) is a closed
subgroup. Equivariance means that

f ◦ g = ρf (g) ◦ f,
for all g ∈ G. ρf defines an orthogonal G-module structure on V and therefore on
V ∗. Under the isomorphism V ∗ ∼= Vf ⊂ Hp, V becomes a G-submodule of Hp|G.
Indeed, since g ∈ G acts on V ∗ as g · α = α ◦ ρf (g)−1, α ∈ V ∗, we have

(g · α) ◦ f = (α ◦ ρf (g)−1) ◦ f = (α ◦ f) ◦ g−1.

The G-module structure on V extends to that of S2V given by

g · C = ρf (g) · C · ρf (g)−1.

Ef is clearly a G-submodule of S2V . In fact, Lf is G-invariant since, for f ′ ↼ f ,
we have

g · 〈f ′〉f = 〈f ′ ◦ g−1〉f .
Given a closed subgroup G′ ⊂ G, a p-eigenmap f ′ : Sm → SV ′ , f ′ ↼ f , is
equivariant with respect to a homomorphism ρf ′ : G′ → SO(V ′) iff 〈f ′〉f is left
fixed by G′. Thus the congruence classes of full p-eigenmaps that are equivariant
with group G′ are parametrized by the linear slice

(Lf )G
′

= Lf ∩ (Ef )G
′
.

Remark. Let f : Sm → SV be a full p-eigenmap and assume that, relative to an
orthonormal basis of V , the components of f in Hp form an orthogonal basis V
with the same norm. Then, the isotropy group at 〈f〉 ∈ Lp can be written as

SO(m+ 1)〈f〉 = {g ∈ SO(m+ 1) |Vf = Vf◦g}. (1)

Indeed, for g ∈ SO(m+ 1), U ∈ SO(V ) with U ◦ f = f ◦ g exists iff Vf = Vf◦g and
is the transfer matrix between V and V ◦g obtained by precomposing the elements
of V with g.

The following lemma is contained in [12] (pp.24-25).

Transversality Lemma. Let f : Sm → SV be a full p-eigenmap that is equivari-
ant with respect to a homomorphism ρf : G→ SO(V ), where G ⊂ SO(m+ 1) is a
closed subgroup. Let f ′ : Sm → SV ′ be a full p-eigenmap such that 〈f ′〉f ∈ intLf .
If a : R→ G is a 1-parameter subgroup such that the orbit t 7→ a(t) · 〈f ′〉f , t ∈ R,
is tangent to intLf at t = 0 then it is entirely contained in intLf .

The standard p-eigenmap fp : Sm → SHp is equivariant with respect to the
homomorphism ρp : SO(m+1)→ SO(Hp) that is just the orthogonal SO(m+1)-
module structure on Hp given by precomposing spherical harmonics by the inverse
of linear isometries on Sm. Thus Ep is an SO(m + 1)-submodule of S2(Hp). A
result of Calabi [1] asserts that Ep2 is trivial for any p ≥ 2. As we will see below
Epm is nontrivial for m ≥ 3 and p ≥ 2.
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1.2. Spherical minimal immersions

A spherical minimal immersion is a conformal p-eigenmap f : Sm → SV . The con-
formality factor is then λp/m. We say that f : Sm → SV is a minimal immersion
with homothety λp/m. The condition of homothety can be written as

〈f∗(X), f∗(Y )〉 = (λp/m)〈X,Y 〉,

for all vector fields X and Y on Sm.
Let f : Sm → SV be a full homothetic minimal immersion with homothety λp/m.
We define

Ff = span { f∗(X )̌ � f∗(Y )̌ |X,Y ∈ T (Sm)}⊥ ⊂ S2V,

whereˇdenotes translation of vectors to the origin. (Here and in what follows it is
understood that X and Y belong to the same tangent space of Sm.)
Let

Mf = {C ∈ Ff |C + I ≥ 0}.
A result of Takahashi [11] implies that

Ff ⊂ Ef

(cf. [12]). The defining relation for Lf in Ef is the same as for Mf in Ff . Thus,
the inclusion above gives

Mf = Ff ∩ Lf ,
as a linear slice of Lf . In particular,Mf is a compact convex body in Ff .

Theorem 2. Given a full homothetic minimal immersion f : Sm → SV , the set
of congruence classes of full homothetic minimal immersions f ′ : Sm → SV ′ that
are derived from f can be parametrized by the convex body Mf .

The convex body Mf is said to be the moduli space associated to the full
minimal immersion f : Sm → SV . We say that f is linearly rigid [17] if Mf

reduces to a point. Note that the connecting, antipodal and transversality lemmas
remain valid in the context of minimal immersions.

Since SO(m+1) acts transitively on the unit sphere bundle of Sm, the standard
p-eigenmap fp : Sm → SHp is conformal and thereby a minimal immersion with
homothety λp/m. The standard moduli space Mp = Mp

m = Mfp is the linear
slice of Lp by the SO(m + 1)-submodule Fp = Fpm = Ffp ⊂ S2(Hp) and it
parametrizes the congruence classes of all full minimal immersions with homothety
λp/m. The ultimate goal is to describeMp. As a first step, we need to determine
the SO(m+1)-module structure of (its linear span) Fp, that is, the decomposition
of Fp into irreducible submodules. By DoCarmo-Wallach [3,17], Fp is nontrivial
iff m ≥ 3 and p ≥ 4.
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1.3. Some representation theory

V (u1,... ,ud) = V
(u1,... ,ud)
m+1 , d = [(m+1)/2], denotes the (unique) complex irreducible

SO(m+1)-module with highest weight vector (u1, . . . , ud) relative to the standard
maximal torus in SO(m+1). In particular, V (p,0,... ,0) = Hp as complex SO(m+1)-
modules. (Here and in what follows we denote Hp and its complexification by the
same symbol.) For m = 3 and v > 0, V (u,v)

4 means V (u,v)
4 ⊕ V (u,−v)

4 .
By DoCarmo-Wallach [3]:

Hp ⊗Hq =
∑

(u,v)∈4p,q0 ;u+v≡p+q ( mod 2)

V (u,v,0,... ,0), p ≥ q ≥ 1, m ≥ 3,

where 4p,q0 is the closed convex triangle in R2 with vertices (p − q, 0), (p, q) and
(p+ q, 0).

Setting p = q and deleting the components that belong to the skew-symmetric
part of Hp ⊗Hp, we have

S2(Hp) =
∑

(u,v)∈4p0;u,v even

V (u,v,0,... ,0), (2)

where we simplified the notation by setting 4p0 =4p,p0 .
We have

Ep ⊗C =
∑

(u,v)∈4p1;u,v even

V (u,v,0,... ,0), (3)

where 4p1 is the closed convex triangle in R2 with vertices (2, 2), (p, p) and (2p−
2, 2). For a quick proof cf. [5].

Remark. Let f : Sm → SV be a full p-eigenmap and assume that

〈f〉 ∈ V (2p−2l,2l,0,... ,0), l = 1, . . . , [p/2].

These components correspond to the northeast side of the triangle 4p1. Then [14]
we have

dimV ≥ dimHp−1/(m+ 1). (4)

(This is because the condition guarantees that the partial derivatives of the com-
ponents of f span Hp−1.)

The main result of DoCarmo-Wallach [3,17] asserts that Fpm is nontrivial iff
m ≥ 3 and p ≥ 4.

The following result is proved in [14] and gives the positive resolution of the
so-called DoCarmo-Wallach conjecture:

Theorem 3. For m ≥ 3 and p ≥ 4,

V (2,2,0,... ,0), . . . , V (2p−2,2,0,... ,0)
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are not components of Fp so that we have

Fp ⊗C =
∑

(u,v)∈4p2;u,v even

V (u,v,0,... ,0), (5)

where 4p2 is the closed convex triangle in R2 with vertices (4, 4), (p, p) and (2p−
4, 4).

Remark. In the lowest nonrigid range m = 3 and p = 4, Theorem 3 has been
proved by Muto [9].

1.4. Isotropic minimal immersions

Let f : Sm → SV be a minimal immersion with homothety λp/m. We denote by
βk(f) and Okf , k ≤ p, the k-th fundamental form and the k-th osculating bundle
of f . We say that f is isotropic of order k, 2 ≤ k ≤ p, if, for 2 ≤ l ≤ k, we have

〈βl(f)(X1, . . . , Xl), βl(f)(Xl+1, . . . , X2l)〉
= 〈βl(fp)(X1, . . . , Xl), βl(fp)(Xl+1, . . . , X2l)〉

where X1, . . . , X2l are vector fields on Sm [5]. In this case, for 2 ≤ l ≤ k, the oscu-
lating bundles Olf and Olfp are isomorphic with a fibrewise isometry. Restricting
to the base point o = (1, 0, . . . , 0) ∈ Sm, as SO(m)-modules, we thus have

Olf ;o = Olfp;o = Hlm−1, 2 ≤ l ≤ k.
In particular, since the osculating bundles are in the normal bundle, we obtain
that, for a full minimal immersion f : Sm → SV with homothety λp/m, isotropy
of order k implies that

dimV ≥
k∑
l=0

dimHlm−1 = dimHkm.

(The last equality is because of branching over SO(m) ⊂ SO(m+ 1).)
According to a result of [5], the space of congruence classes of full minimal

immersions f : Sm → SV with homothety λp/m that are isotropic of order k,
2 ≤ k ≤ p, is parametrized by a linear sliceMp;k ofMp whose linear span Fp;k is
an SO(m+ 1)-submodule of S2(Hp). We have [5]

Fp;k ⊗C ⊃
∑

(u,v)∈4p
k
;u,v even

V (u,v,0,... ,0),

where 4pk ⊂ 4
p
2 is the subtriangle with vertices (2(k + 1), 2(k + 1)), (p, p) and

(2(p− k − 1), 2(k + 1)). Moreover (and this is more difficult), for m ≥ 4, equality
holds.

Combining this with the above, we see that given a full minimal immersion
f : Sm → SV with homothety λp/m, if 〈f〉 ∈ V (2l,2k), l = k, . . . , p− k, then (f is
isotropic of order k − 1) dimV ≥ dimHk−1

m .



96 G. Toth and W. Ziller CMH

1.5. Representations of SU(2) = S3

From now on we specialize the source dimension to m = 3. The case of the 3-
sphere S3 as a source deserves a special attention since it is itself a Lie group;
the Lie group of quaternions of unit length. We write an element of S3 as a+ bj,
where |a|2 + |b|2 = 1, a, b ∈ C. Associating to a + bj ∈ S3 the special unitary
matrix [

a b
−b̄ ā

]
∈ SU(2)

gives an isomorphism S3 ∼= SU(2). Viewing a complex 2-vector (z, w) ∈ C2 as
a real 4-vector (x, u, y, v) ∈ R4, z = x + iy, w = u + iv, gives an embedding
of SU(2) into SO(4) as a normal subgroup. The orthogonal transformation γ =
diag (1, 1, 1,−1) ∈ O(4) (or equivalently, γ : z 7→ z, w 7→ w̄) conjugates SU(2) to
the subgroup

SU(2)′ = γSU(2)γ, γ−1 = γ, (6)

of SO(4) and (as simple computation shows), we have

SU(2)
⋂
SU(2)′ = {±I} (7)

and (for reasons of dimension)

SU(2) · SU(2)′ = SO(4). (8)

The complex irreducible SU(2)-modules are parametrized by the dimension of
the module. More concretely, let Wp, p ≥ 0, be the linear space of complex
homogeneous polynomials of degree p in z and w. The standard basis in Wp is
{zp−qwq}pq=0. Wp is a complex irreducible SU(2)-module with dimWp = p + 1
and each complex irreducible SU(2)-module is equivalent to Wp for some p. As
SU(2)-modules, we have

Wr ⊗Ws =
s∑
t=0

Wr+s−2t, r ≥ s ≥ 0. (9)

Restricting from SO(4) to U(2), the SO(4)-module Hp of complex spherical har-
monics on S3 of order p splits as

Hp|U(2) =
∑

a+b=p; a,b≥0

Ha,b, (10)

where Ha,b is the complex irreducible U(2)-module of harmonic polynomials of
degree a in z, w and degree b in z̄, w̄. (This is easily seen by writing a harmonic p-
homogeneous polynomial in terms of the variables z, z̄, w, w̄.) The center Γ ⊂ U(2)
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acts on each Ha,b as a character. Restricting further to SU(2) ⊂ U(2), we thus
obtain

Hp|SU(2) = (p+ 1)Wp

as complex SU(2)-modules. More generally, by the local product structure (8),
the SO(4)-module Hp splits into the tensor product

Hp = Wp ⊗W ′p. (11)

Here we use the following notation. If W is an SU(2)-module then W ′ denotes
the SU(2)′-module obtained from W by conjugating first SU(2)′ back to SU(2)
within SO(4). Moreover, if −I acts on W ′ trivially then W ′ is also considered as
an SO(4)-module with trivial action of SU(2) on W ′. Similarly, if −I acts on W
trivially then W is also an SO(4)-module with W |SU(2)′ being trivial.

In the next lemma recall that we write V (u,v), v > 0, for V (u,v)
4 ⊕ V (u,−v)

4 .

Lemma. Let u ≥ v ≥ 1 and u+ v even. Then

V (u,v) = Wu−v ⊗W ′u+v ⊕Wu+v ⊗W ′u−v

and hence
V (u,v)|SU(2) = (u+ v + 1)Wu−v ⊕ (u− v + 1)Wu+v. (12)

Proof. The northern vertex (u, v) in 4u,v0 is missed by the subtriangles 4u−1,v−1
0

and 4u+1,v−1
0 overlapping in 4u,v−2

0 . We thus obtain

V (u,v) ⊕ (Hu−1 ⊗Hv−1)⊕ (Hu+1 ⊗Hv−1) = (Hu ⊗Hv)⊕ (Hu ⊗Hv−2).

We work out each tensor product using

Hr ⊗Hs = (Wr ⊗W ′r)⊗ (Ws ⊗W ′s)
= (Wr+s ⊕Wr+s−2 ⊕ . . .⊕Wr−s)
⊗ (W ′r+s ⊕W ′r+s−2 ⊕ . . .⊕W ′r−s), r ≥ s,

and arrive at the stated equality.

Corollary. Let u ≥ v ≥ 1 and u+ v even. Then V (u,v)|SU(2) contains the trivial
SU(2)-module iff u = v. The multiplicity of the trivial SU(2)-module in V (u,u) is
2u+ 1.

With the notation introduced above, we have

V (u,u) = W2u ⊕W ′2u (13)



98 G. Toth and W. Ziller CMH

as (complex) SO(4)-modules.
Finally, we make some comments on real irreducible SU(2)-modules. For p

even, Wp is the complexification of an irreducible real SU(2)-submodule Rp. In
fact, Rp is the real subspace of the complex antilinear map of Wp that sends
zqwp−q to (−1)qzp−qwq, q = 0, . . . , p. The standard basis of Rp is given by

zp + wp, i(zp − wp), zp−1w − zwp−1, i(zp−1w + zwp−1), . . . , ip/2zp/2wp/2.

Using (11) and (13), we obtain the following real SO(4) modules for p even

Hp = Rp ⊗R′p , Hp|SU(2) = (p+ 1)Rp , V (u,u) = R2u ⊕R′2u. (14)

For p odd, Wp, considered as a real SU(2)-module, is irreducible. We denote this
real representation by [Wp]R. Hence we obtain the following real SO(4)-modules
for p odd

Hp = [Wp ⊗W ′p]R , Hp|SU(2) =
p+ 1

2
[Wp]R , V (u,u) = R2u ⊕R′2u. (15)

2. SU(2) equivariant eigenmaps and minimal immersions

Since S3 acts on itself by left quaternionic multiplication, a p-eigenmap f : S3 →
SV is SU(2) equivariant if there exists a homomorphism ρf : SU(2) → SO(V )
such that

f ◦ Lg = ρf (g) ◦ f, g ∈ SU(2),

where Lg is left quaternionic multiplication on S3 by g as a quaternion. Clearly,
a p-eigenmap f is SU(2) equivariant iff f ◦ γ is SU(2)′ equivariant. The spaces
of congruence classes of full SU(2) (resp. SU(2)′) equivariant p-eigenmaps are
parametrized by the linear slices

(Lp)SU(2) = Lp ∩ (Ep)SU(2) ( resp. (Lp)SU(2)′ = Lp ∩ (Ep)SU(2)′).

We can find (Ep)SU(2) from the decomposition formula (3) by setting m = 3,
restricting both sides to SU(2) and counting the trivial components. In fact,
according to (14):

(V (u,u))SU(2) = R′2u ⊗C

as SU(2)′-modules. In view of this, (3) and Corollary in 1.5, we have

(Ep ⊗C)SU(2) =
[p/2]∑
k=1

(V (2k,2k))SU(2)

=
[p/2]∑
k=1

(R′4k ⊗C)
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so that, as real SU(2)′-modules:

(Ep)SU(2) =
[p/2]∑
k=1

R′4k.

Similarly

(Ep)SU(2)′ =
[p/2]∑
k=1

R4k

as real SU(2)-modules. In the lowest nonrigid range p = 2 (for eigenmaps), 4p1 in
(3) reduces to the single point (2, 2) so that we have

E2 = (E2)SU(2) ⊕ (E2)SU(2)′ = R′4 ⊕R4

as SO(4)-modules. Thus the moduli space L2 is ‘split’ by two 5-dimensional
orthogonal slices (L2)SU(2) = L2 ∩ R′4 and (L2)SU(2)′ = L2 ∩ R4 parametrizing
SU(2) and SU(2)′ equivariant quadratic eigenmaps. It is now a crucial observation
to be generalized below that L2 is the convex hull of these slices [13].

Remark. As a convex set (L2)SU(2) ∼= (L2)SU(2)′ is the convex hull of a projective
plane embedded into S4 as the Veronese surface [14]. More generally, for p even,

(Lp)SU(2) = {C0 ∈ S2(Rp) | traceC0 = 0 andC0 + I ≥ 0}.

This follows from Hp|SU(2) = (p + 1)Rp (cf. (14)) and Schur’s lemma applied to
symmetric endomorphisms of Hp in (Ep)SU(2) that commute with the action of
SU(2).

The situation is analogous for minimal immersions. We have

(Mp)SU(2) =Mp ∩ (Fp)SU(2),

and similarly for SU(2)′. Moreover, as SU(2)′-modules

(Fp ⊗C)SU(2) =
[p/2]∑
k=2

(V (2k,2k))SU(2)

=
[p/2]∑
k=2

(R′4k ⊗C).

As for eigenmaps, we see that the SU(2) and SU(2)′ equivariant minimal immer-
sions correspond to the northwest side of 4p2 in (5). As real SU(2)′-modules

(Fp)SU(2) =
[p/2]∑
k=2

R′4k.
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In particular, counting dimensions

dim(Mp)SU(2) = dim(Fp)SU(2)

=
[p/2]∑
k=2

(4k + 1)

= (2[p/2] + 5)([p/2]− 1).

This formula has been derived in [2] using a ‘heuristic argument’.
In the lowest nonrigid range p = 4 (for minimal immersions):

F4 = (F4)SU(2) ⊕ (F4)SU(2)′ = R′8 ⊕R8

as real SO(4)-modules. Intersecting with the moduli space we see thatM4 is ‘split’
by two 9-dimensional orthogonal slices (M4)SU(2) =M4 ∩R′8 and (M4)SU(2)′ =
M4 ∩R8 corresponding to SU(2) and SU(2)′ equivariant minimal immersions. It
is also clear that precomposing quartic minimal immersions with γ has the effect
of interchanging R8 and R′8.

Let Bp1 = (∂Mp)SU(2) and Bp2 = (∂Mp)SU(2)′ . Thus Bp1 (resp. Bp2) parametrize
the boundary type SU(2) (resp. SU(2)′) equivariant minimal immersions f : S3 →
SV with homothety λp/3.

Theorem 4. For p ≥ 4, ∂Mp ∩ V (2k,2k) is the union of segments with one end-
point on Bp1 ∩ V (2k,2k) and the other on Bp2 ∩ V (2k,2k). Equivalently, every full
(boundary) minimal immersion f : S3 → SV of degree p such that 〈f〉 ∈ V (2k,2k)

is congruent to one of the form (
√
λ1f1,

√
λ2f2 ◦ γ) : S3 → SV1×V2 , λ1 + λ2 = 1,

λ1, λ2 ≥ 0, where f1 : S3 → SV1 and f2 : S3 → SV2 are full SU(2) equivariant
(boundary) minimal immersions with 〈f1〉, 〈f2〉 ∈ R′4k ⊂ V (2k,2k).

Proof. The connecting lemma establishes the equivalence of the two statements.
To prove the first it is enough to show that any segment connecting Bp1 ∩ V (2k,2k)

and Bp2 ∩ V (2k,2k) is entirely contained in the boundary of Mp. Let f1 and f2 as
in the second statement and let 〈f〉 be in the interior of the segment connecting
〈f1〉 and 〈f2 ◦ γ〉. We need to show that 〈f〉 ∈ ∂Mp . By the connecting lemma
cited above, we have

Vf = Vf1 + Vf2◦γ .

Since f1 and f2 are SU(2) equivariant and of boundary type, Vf1 is a proper
SU(2)-submodule ofHp and Vf2◦γ is a proper SU(2)′-submodule ofHp = Wp⊗W ′p
(for simplicity we complexify again). We need the following elementary statement
whose proof is an easy application of Schur’s lemma.

Lemma. Let G be a compact Lie group, R an irreducible G-module and W a
trivial G-module. Then any G-submodule Z of R⊗W is of the form Z = R⊗W0,
where W0 ⊂W is a linear subspace.
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Returning to our previous setting, we have

Vf1 = Wp ⊗W ′0 and Vf2◦γ = W0 ⊗W ′p

where W0 ⊂Wp and W ′0 ⊂W ′p are proper linear subspaces. Hence

Vf = Vf1 + Vf2◦γ = Wp ⊗W ′0 +W0 ⊗W ′p.

But W0 ⊗W ′0 is equal to the overlap of both subspaces and hence Vf can never
have the full dimension. Thus f is of boundary type.

Theorem 4 gives a complete description of full minimal immersions f : S3 →
SV with homothety λp/3 whose parameter point 〈f〉 is in one of the irreducible
components V (4,4), V (6,6), . . . , V (2[p/2],2[p/2]) corresponding to the northwest side
of the triangle 4p2 in (5). It states that such minimal immersions are obtained
from SU(2) equivariant ones by the prescription given in the connecting lemma.
In particular, in the lowest nonrigid range p = 4, 44

2 collapses to the single point
(4, 4) so that Theorem 4 completely describes all full quartic minimal immersions
in terms of SU(2) equivariant ones. The proof of Theorem 4 also gives all possible
range dimensions of such minimal immersions for p ≥ 4. This gives a partial
answer to a problem posed by DoCarmo: What are the possible (in particular,
minimum) range dimensions of all spherical minimal immersions?

Theorem 5. Let f : S3 → SV be a full minimal immersion of degree p ≥ 4 and
assume that 〈f〉 ∈ V (2k,2k). Then the possible range dimensions of f (plus one)
are

a) For p even

dimV = (p+ 1)2 − rs, with 1 ≤ r, s ≤ p− [(p+ 1)/4] or
dimV = (p+ 1)r, with [(p+ 1)/4] + 1 ≤ r ≤ p+ 1 (for the equivariant ones).

b) For p odd

dimV = (p+ 1)2 − rs, with 1 ≤ r, s ≤ p− [(p+ 1)/8] or
dimV = (p+ 1)r, with [(p+ 1)/8] + 1 ≤ r ≤ p+ 1 (for the equivariant ones).

Proof. It follows from the proof of Theorem 4 that dimVf = (p + 1) dimW ′0 +
dimW0(p + 1) − dimW ′0 dimW0. Furthermore, notice that it follows from (15)
that for p odd, the dimension of W0 and W ′0 must be even. But there are further
restrictions on the possible dimensions of equivariant embeddings. In [15] it was
proved that if f : S3 → SV is a full SU(2) equivariant minimal immersion of degree
p and 〈f〉 ∈ V (2k,2k) then dimV ≥ (p+ 1)2/4. Of course for the equivariant ones
we also need that dimV is divisible by p + 1 if p is even and by 2(p + 1) if p is
odd. This easily implies the claim in the theorem.
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Remark. For p = 4 and p = 5, (Fp)SU(2) consists only of a single irreducible
summand. But starting with p = 6, it has at least two irreducible summands, in
particular (F6)SU(2) = R′8⊕R′12. In [15] it was shown that if p = 6 and if 〈f〉 lies
in R′8 or in R′12, then dimV ≥ 14. The connecting lemma hence shows that any
point in the convex hull of M6 ∩ R′8 with M6 ∩ R′12 also has dim V ≥ 14. But
in [2] an example was constructed of an equivariant minimal isometric immersion
with p = 6 and dimV = 7 (and was shown to be unique among such equivariant
isometric immersions). It follows that it cannot be in the convex hull of M6 ∩R′8
with M6 ∩ R′12, i.e this immersion must ”bulge out” in the moduli space. Thus
the moduli space for p ≥ 6 must have a much more complicated structure than for
p = 4. It was conjectured in [2] that this degree 6 immersion into S6 is the only
degree 6 immersion with dim V = 7. The above remarks show that a proof of this
fact must be much more complicated than the proof of theorem B.

3. Quartic minimal immersions

From now on we let p = 4 (and m = 3). Theorem 4 asserts that M4 is the
convex hull of (M4)SU(2) and (M4)SU(2)′ corresponding to SU(2) and SU(2)′

equivariant quartic minimal immersions. The possible range dimensions for a full
SU(2)-equivariant quartic minimal immersion f : S3 → SV are

dimV = 5, 10, 15, 20, 25.

This is because V is an SU(2)-submodule of H4|SU(2) = 5R4 so that it must be
a multiple of R4. The range dimension 5 is not realized. This follows from a
general theorem of Moore [8] or by easy computation in the use of the equivariant
construction below. Thus Theorem 5 gives all possible range dimensions of full
quartic minimal immersions f : S3 → SV :

dimV = 10, 15, 16, 19, 20, 21, 22, 23, 24, 25.

We will see later that the range dimensions 10, 15, and 20 actually occur for full
SU(2) equivariant quartic minimal immersions so that, without equivariance, all
the rest of the range dimensions above are realized. Notice that it also follows from
the proof of Theorem 5 that dimV = 10, 15 and 20 can only occur if the minimal
immersion is SU(2) equivariant or SU(2)′ equivariant. In [2] it was shown that
there exists a unique SU(2) equivariant minimal immersion with dimV = 10 (up
to precomposition with an isometry of the domain) and hence Theorems A and B
in the introduction follow.

We say that an equivariant minimal immersion is of type I, II, or III if the
ambient dimension is dimV = 10, 15, or 20. We denote by I, II, and III the set
of all minimal immersions of type I, II, and III. Similarly for I′, II′, and III′ in
∂(M4)SU(2)′ . It follows also, that for example the immersions with dimV = 16
in ∂M4 can only be obtained by connecting an immersion in I with one in I′.
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Furthermore, if we connect a linear slice Mf in III with another linear slice
Mf ′ in III′, we obtain a 13 dimensional linear slice in ∂M4, which is the largest
dimensional linear slice in the boundary ofM4. The equivariant immersions must
have an embedded image since they are given by orbits under the action of SU(2)
and SU(2)′, in fact the orbit of a polynomial p ∈ H4 is diffeomorphic to SU(2)/G
where G is the isotropy group of p. From [2] it follows that the possible isotropy
groups are D∗2, Z4 and Z2, Z2 being the principal isotropy group. Hence in the
equivariant case the images are embedded S3/D∗2, lens spaces S3/Z4, or projective
spaces RP 3. We will see that all three cases actually occur.

Since (M4)SU(2)′ is the γ-copy of (M4)SU(2), it remains to describe the lat-
ter and this is our main purpose in this section. For simplicity we denote B =
(M4)SU(2) and from now on all minimal immersions will be SU(2) equivariant.
The SO(4) action on (M4)SU(2) reduces to an action of SU(2)′ and hence I, II,
and III are each union of SU(2)′ orbits. The action of SU(2)′ on R′8 = (F4)SU(2)

is the action on polynomials in z, w of degree 8. The orbits are all 3-dimensional,
except one orbit, the one through z4w4, which gives rise to a minimal isometric
embedding of RP 2 into a sphere in R′8. It follows from [2] that the possible finite
isotropy groups of SU(2)′ acting on R′8 and hence also on ∂(M4)SU(2) consist of
the cyclic group Z8 (the principal isotropy group), the binary dihedral groups D∗2,
D∗3 and D∗4, and the binary octahedral group O∗. As was observed in [2], many of
the orbits are again minimal isometric immersions in their respective spheres.

We now turn to the ‘equivariant construction’ for SU(2) that provides an ex-
plicit description of all SU(2) equivariant minimal immersions as (constant curva-
ture) SU(2) orbits of polynomials in SU(2)-submodules ofHp. We first summarize
some of the results in [2]. Each equivariant construction used here is based on an
SU(2)-submodule of Hp, where we now (briefly) return to the general case p ≥ 4.
As a first example we take this to be Wp. Consider a polynomial ξ ∈ Wp, of unit
length. In terms of the standard basis in Wp, we write

ξ(z, w) = c0z
p + c1z

p−1w + . . .+ cpw
p, c0, . . . , cp ∈ C. (16)

Let fξ : S3 → SWp be the orbit map:

fξ(g) = g · ξ = ξ ◦ Lg−1 , g ∈ SU(2) = S3.

More explicitly, setting g = a+ bj ∈ S3, we have

fξ(a+ bj)(z, w) = ξ(āz − bw, b̄z + aw), z, w ∈ C.

It is important to note here that fξ is equivariant with respect to the conjugate
subgroup SU(2)′ (and not with respect to SU(2)). More precisely, by the identi-
fications we made, we have

fξ

(
γ

[
α −β
β̄ ᾱ

]
γ · (a+ bj)

)
=
[
α β
−β̄ ᾱ

]
· fξ(a+ bj).
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Note that the matrices differ by conjugation with diag (1, 1,−1,−1) (that preserves
the local product structure (8)). For this reason, we will usually make fξ SU(2)
equivariant by precomposing it with γ.

fξ is minimal iff

p∑
q=0

(2q − p)2(p− q)!q!|cq|2 =
p(p+ 2)

3
,

p∑
q=0

(p− q)!q!|cq|2 = 1,

p−2∑
q=0

(q + 2)!(p− q)!cq c̄q+2 = 0,

p−1∑
q=0

(p− 2q − 1)(q + 1)!(p− q)!cq c̄q+1 = 0.

The first two equations are real and the last two are complex so that we have 6
constraints on the 2(p+ 1) real variables <(cq) and =(cq), q = 0, . . . , p.

For p even, we can take Rp instead of Wp by requiring ξ ∈ Rp (so that fξ
will actually map into SRp). Using the standard basis in Rp, we obtain that this
additional requirement translates into

cp = c̄0, cp−1 = −c̄1, . . . , c(p/2)+1 = (−1)(p/2)+1c̄(p/2)−1, cp/2 = ip/2t, t ∈ R.

We incorporate these p+ 1 additional constraints by writing

ξ(z, w) = c0z
p + c̄0w

p + c1z
p−1w − c̄1zwp−1 + . . .+ ip/2tzp/2wp/2.

The system of equations for minimality of fξ thus reduces to

(p/2)−1∑
q=0

2(2q − p)2(p− q)!q!|cq|2 =
p(p+ 2)

3
,

(p/2)−1∑
q=0

2(p− q)!q!|cq |2 + ((p/2)!)2t2 = 1,

(p/2)−3∑
q=0

2(q + 2)!(p− q)!cq c̄q+2 + (−1)(p/2)+1(((p/2) + 1)!)2c2(p/2)−1

+ (−i)p/22(p/2)!((p/2) + 2)!c(p/2)−2t = 0,

(p/2)−2∑
q=0

(p− 2q − 1)(q + 1)!(p− q)!cq c̄q+1 + (−i)p/2(p/2)!((p/2) + 1)!c(p/2)−1t = 0.
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As a first explicit example we now show that there is no SU(2) equivariant quartic
minimal immersion with range V = R4. Indeed any such should come from the
equivariant construction above for p = 4. The equations for minimality reduce to

96|c0|2 + 6|c1|2 = 1,

48|c0|2 + 12|c1|2 + 4t2 = 1,

3c21 + 8c0t = 0,
6c0c̄1 − c1t = 0.

These equations are inconsistent and we are done.
Next we turn to the description of type I minimal immersions. These are

obtained from the equivariant construction applied to W4 = 2R4. Setting p = 4
the constraints for W4 specialize to

48|c0|2 + 3|c1|2 + 3|c3|2 + 48|c4|2 = 1,

24|c0|2 + 6|c1|2 + 4|c2|2 + 6|c3|2 + 24|c4|2 = 1,
4c0c̄2 + 3c1c̄3 + 4c2c̄4 = 0,
6c0c̄1 + c1c̄2 − c2c̄3 − 6c3c̄4 = 0.

This system has solutions, for example

c0 =
√

6/24, c1 = 0, c2 =
√

2/4, c3 = 0, c4 = −
√

6/24.

To work out the orbit map fξ : S3 → SW4 , we identify W4 with C5 by the
orthonormal basis

z4/
√

24, z3w/
√

6, z2w2/2, zw3/
√

6, w4/
√

24.

We obtain (replacing the variable a+bj with z+wj in S3, precomposing with γ and
up to an isometry on the range) the full quartic minimal immersion I : S3 → S9

of type I, given by

I(z, w) =
(

(1/
√

2)(z4 − w̄4),
√

6z2w̄2,

√
2(z3w + z̄w̄3),

√
6(zz̄2w − z̄w2w̄), (17)√

3/2(z2w2 − z̄2w̄2), (1/
√

2)(|z|4 − 4|z|2|w|2 + |w|4)
)
.

(The first four coordinates are complex, the fifth is purely imaginary and the sixth
is real so that I maps into C4 × (iR)×R = R10.) An important property of I is
that its components are orthogonal with the same norm.



106 G. Toth and W. Ziller CMH

According to a rigidity result in [2], up to isometries on the source and the
range, this is the only type I minimal immersion and the image of the immersion
is an embedded S3/D∗2. Hence

I = SU(2)′ · 〈I〉,

where we used SU(2) equivariance of I. For the next result we recall that the
octahedral manifold [2] is the quotient S3/O∗, where O∗ is the binary octahe-
dral group (that is the twofold cover of the group of symmetries of the regular
octahedron along S3 → SO(3)).

Theorem 6. I is a single SU(2)′-orbit. Furthermore, this orbit is an octahedral
manifold S3/O∗ embedded minimally in an 8-sphere of R′8. This embedding is
given by a degree 8 equivariant immersion of S3.

To prove the second part, we will have to show that O∗ is the isotropy group
of the SU(2)′ action at 〈I〉, a computation which we postpone for the moment.
Once this is done, it follows that the orbit S3/O∗ must be minimally embedded in
a sphere since according to [2] there exists only one orbit with isotropy O∗ which
is hence an isolated exceptional orbit and hence must be minimal. Or, as was
first observed in [18], S3/O∗ is isotropy irreducible and hence for every invariant
polynomial the orbit construction must give rise to an isometric embedding up to
scaling.

We will first consider the type II immersions:

Theorem 7. We have
dim II ≤ 6. (18)

The set II splits into the disjoint union

II = II0 ∪ II1 (19)

corresponding to linearly rigid and nonrigid quartic minimal immersions. We have

dim II0 = 6. (20)

and
II1 = SU(2)′ · D, (21)

where D is a flat 2-dimensional disk with boundary circle on the octahedral mani-
fold I.

Proof. We show (18) by a careful dimension computation. For type II minimal
immersions the SU(2)-module is 3R4. Since R4 can be thought of as the SU(2)-
module of quartic polynomials

ξ(z, w) = c0z
4 + c̄0w

4 + c1z
3w − c̄1zw3 − tz2w2, c0, c1 ∈ C, t ∈ R,
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we look upon a general element of 3R4 as a triple: a0z
4 + ā0w

4 + a1z
3w − ā1zw

3 − rz2w2

b0z
4 + b̄0w

4 + b1z
3w − b̄1zw3 − sz2w2

c0z
4 + c̄0w

4 + c1z
3w − c̄1zw3 − tz2w2


where a0, a1, b0, b1, c0, c1 ∈ C and r, s, t ∈ R. The decomposition 3R4(= V ) is not
unique, in fact, SO(3) acts on 3R4 in a natural way. Thus, rotating (r, s, t) ∈ R3,
we may assume that r = s = 0 and t ≥ 0. We still have the freedom to rotate
along the third axis. This amounts to the change

a0 7→ cosα · a0 − sinα · b0,
b0 7→ sinα · a0 + cosα · b0, (22)

and similarly for a1 and b1. The equations for minimality are

96(|a0|2 + |b0|2 + |c0|2) + 6(|a1|2 + |b1|2 + |c1|2) = 1,

48(|a0|2 + |b0|2 + |c0|2) + 12(|a1|2 + |b1|2 + |c1|2) + 4t2 = 1,

3(a2
1 + b21 + c21) + 8c0t = 0, (23)

6(a0ā1 + b0b̄1 + c0c̄1)− c1t = 0.

Note that these equations are invariant under the action (22) of SO(2). For fixed
t ∈ R we can solve the first two equations and obtain

|a0|2 + |b0|2 + |c0|2 = r0(t)2

|a1|2 + |b1|2 + |c1|2 = r1(t)2,

where

r0(t)2 =
1

144
(1 + 4t2)

r1(t)2 =
1
18

(1− 8t2).

The second equation reduces the range of t to

0 ≤ t ≤ 1/
√

8.

If t = 1/
√

8 then a1 = b1 = c1 = 0. The third equation in (23) gives c0 = 0 (the
fourth is automatically satisfied) so that we have

|a0|2 + |b0|2 = 1/96.
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We obtain that, for t = 1/
√

8, the solution set is the 3-sphere (of radius 1/
√

96).
The action of SO(2) on (a0, b0) (whose orbits are essentially given by the Hopf
fibration) reduces this to a 2-dimensional solution set.

Now let 0 ≤ t < 1/
√

8. Since both radii r0(t) and r1(t) are positive, the first
two equations above say that

(a0, b0, c0) ∈ S5
r0(t) and (a1, b1, c1) ∈ S5

r1(t)

in two copies of C3. If t = 0 then the third and fourth equations in (23) reduce to

a2
1 + b21 + c21 = 0

and
a0ā1 + b0b̄1 + c0c̄1 = 0.

The first of these is a complex quadric that intersected with S5
1/
√

18 gives a smooth
3-dimensional manifold for (a1, b1, c1). (In fact, this is the real projective space.)
For fixed (a1, b1, c1), the second equation is a complex plane that intersected
with S5

1/12 gives a great 3-sphere. Putting these together, the product is a 6-
dimensional manifold on which SO(2) acts without fixed points. The quotient
gives a 5-dimensional solution set.

Finally, let 0 < t < 1/
√

8. Given (a1, b1, c1) ∈ S5
r1(t), we use the third equation

in (23) to get

c0 = − 3
8t

(a2
1 + b21 + c21).

The fourth equation in (23) is an affine complex plane

a0ā1 + b0b̄1 + c0c̄1 =
1
6
c1t

that, intersected with S5
r0(t) and knowing the value of c0, reduces the solution set

for (a0, b0, c0) to at most one dimension. This is because a1 and b1 cannot vanish
simultaneously. (Indeed, if a1 = b1 = 0 then c0c̄1 = −3c21c̄1/(8t) = −3|c1|2c1/(8t).
On the other hand, c0c̄1 = c1t/6. Combining these we obtain t = 0; a contra-
diction.) This, combined with the 5-dimensional solution set for (a1, b1, c1) gives
a 6-dimensional solution set. As before, the action of SO(2) reduces this to 5-
dimensions.

Summarizing, for fixed 0 ≤ t ≤ 1/
√

8, the solution set is always at most 5-
dimensional. Varying t now gives (18).

Next we consider II1 in the splitting (19). Given a full minimal immersion
f : S3 → SV of type II, if f is linearly nonrigid, that is dimMf ≥ 1, then the
points on ∂Mf correspond to type I minimal immersions so that ∂Mf ⊂ I. Thus,
to describe II1 we consider line segments connecting pairs of points in I and use
the connecting lemma to make sure that the points in the interior of the segment
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correspond to type II quartic minimal immersions. Since I is a single orbit, we may
assume that one endpoint of the segment is 〈I〉. We now choose g = a+bj ∈ SU(2)
so that γgγ ∈ SU(2)′ and let the other endpoint be 〈I ◦ (γgγ)〉. By the connecting
lemma, the space of components of any quartic minimal immersion corresponding
to the interior of the segment connecting these two points is the SU(2)-module

VI◦(γgγ) + VI

and, assuming that the endpoints are distinct, the interior points correspond to
type II or type III according as this is 3R4 or 4R4. To simplify the computations,
we consider the quotient

(VI◦(γgγ) + VI)/VI = VI◦(γgγ)/(VI◦(γgγ)
⋂
VI).

This quotient is trivial iff
〈I ◦ (γgγ)〉 = 〈I〉,

a task we also have to carry out to prove Theorem 6 since γgγ then belongs to the
isotropy group of SU(2)′. The quotient is equal to R4 or 2R4 according to whether
we have type II or type III in the aforementioned segment. Technically speaking,
we need to make the substitution z 7→ az + bw̄ and w 7→ −bz̄ + aw corresponding
to γgγ, g = a+ bj, in each of the polynomials in

VI = span {z4 − w̄4, z2w̄2, z3w + z̄w̄3, zz̄2w − z̄w2w̄,

=(z2w2), |z|4 − 4|z|2|w|2 + |w|4}

and work out the components modulo VI . Elementary computations now give
that VI◦(γgγ) modulo VI is spanned by the following polynomials:

µz4 + 4βz3w̄ + 4β̄zw̄3 (24)

νz4 − 2αz3w̄ + 2ᾱzw̄3 (25)

µz3w − βz3z̄ + β̄ww̄3 + 3βz2ww̄ − 3β̄zz̄w̄2 (26)

− 2νz3w − αz3z̄ − ᾱww̄3 + 3αz2ww̄ + 3ᾱzz̄w̄2 (27)

=(µz2w2) + 4=(β(zw2w̄ − z2z̄w)) (28)

ν<(z2w2) + 2<(α(z2z̄w − zw2w̄)), (29)

where

α = ab̄(|a|2 − |b|2)

β = a3b+ āb̄3

µ = a4 − ā4 + b4 − b̄4

ν = a2b̄2 + ā2b2.
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Lemma. (24)− (29) are linearly dependent iff

<(αβ̄) = 0 and αµ+ 2βν = 0. (30)

Proof. We first observe that (24)-(25), (26)-(27) and (28)-(29) are mutually or-
thogonal. Thus, we need to study linear dependence of each pair of polynomials.
The proposition now follows by case-by-case verification by splitting the first two
pairs of polynomials into real and imaginary parts and evaluating each 4 × 4-
subdeterminant of the corresponding 4 × 6-matrices. The last pair gives only
2× 2-subdeterminants of a 2× 4-matrix.

The remaining task is to work out (30) in terms of a and b. The first equation
in (30) gives

(|a|2 − |b|2)<(a2b2) = 0. (31)

It is convenient to use ‘isoparametric’ coordinates on S3, that is to set

a = cos t eiθ and b = sin t eiφ. (32)

t = 0, π/2 correspond to the two great orthogonal circles cut out from S3 by the
span of the first and last two coordinate axes; a fixed 0 < t < π/2 corresponds to
the Clifford torus Tt parametrized by θ and φ.
Case I Let |a|2 = |b|2. We are on the ‘middle’ Clifford torus Tπ/4. We have α = 0
so that, the second equation in (30) reduces to βν = 0.

If β = 0 then, substituting (32) into the expression of β we obtain

φ = −θ + (2k + 1)π/4, k ∈ Z,

or equivalently,

a = (1/
√

2)eiθ, and b = (1/
√

2)e−iθε2k+1, k ∈ Z,

where ε = eiπ/4.
If ν = 0, we get

φ = θ + (2k + 1)π/4, k ∈ Z,

so that
a = (1/

√
2)eiθ and b = (1/

√
2)eiθε2k+1, k ∈ Z.

Summarizing Case I, the solution set is the union of 8 closed curves in Tπ/4 and
they lift to [0, 2π]2 to give straight segments with slope ±1 and θ- and φ-intercepts
being any odd multiples of π/4.
Case II We assume that t 6= π/4. If t = 0 then

a = eiθ and b = 0.
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We obtain the entire great circle T0.
If t = π/2 then

a = 0 and b = eiφ

and the solution set is Tπ/2.
Finally, let 0 < t < π/2 and t 6= π/4. Working out each coefficient α, β, µ,

ν and substituting them into the second equation in (30), we finally arrive at the
solution set

a = cos t εl and b = sin t εlε2k+1, k, l ∈ Z. (33)

For fixed t as above, this is the union of 32 points and on [0, 2π]2 they corre-
spond to the intersection points of the straight segments obtained above. As t
moves, these points sweep 32 curves that, on Tπ/4, meet the existing solution set
in triple intersection points and on T0 and Tπ/2 they also produce 8 triple inter-
section points distributed equidistantly. Summarizing, the solution set consists of
48 closed curves meeting in 48 triple intersection points. Looking at each case
separately, we see that the triple intersection points are given (as quaternions) by

(1/
√

2)(εk + εlj), k 6≡ l ( mod 2); εk, εlj, k, l ∈ Z. (34)

These form a group of order 48 and is conjugate in S3 to the binary octahedral
group O∗. By abuse of notation, we denote this conjugate by the same symbol.
We obtain that the orbit I is the ‘octahedral manifold’ S3/O∗ in B and the second
part of Theorem 6 follows.

Looking now back at the 48 curves above, we see that on the quotient I =
S3/O∗ they give exactly 3 closed curves intersecting at 〈I〉. After conjugation
with γ, they are orbits of the (mutually orthogonal) 1-parameter subgroups cor-
responding to Z, (1/

√
2)(Y +X) and (1/

√
2)(Y −X) in su(2), where

Z =
[
i 0
0 −i

]
, X =

[
0 1
−1 0

]
, Y =

[
0 i
i 0

]
.

form the standard orthonormal basis in su(2). Denote these orbits by σ, σ′ and
σ′′. More explicitly, σ is parametrized by

θ 7→ γeiθγ · 〈I〉, θ ∈ R

(corresponding to t = 0 in Case II) and σ′ (resp. σ′′) are parametrized by (33)
with k = l = 0 (resp. k = 1 and l = 0). Note that they intersect orthogonally at
〈I〉.

We now take a closer look at σ. A quick check of Case II reveals that VI◦(γeiθγ)
modulo VI does not depend on θ. The same is true for

VI◦(γeiθγ) + VI
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so that the connecting lemma implies that σ is on the boundary of the relative
moduli space corresponding to any interior point of any segment connecting two
distinct points of σ. We choose the midpoint of the segment connecting 〈I〉 and
eiπ/8 · 〈I〉 that has the type II representative J : S3 → S14 given by

J (z, w) = (1/
√

2)
(
z4, w4, 2

√
3z2w̄2, 2z3w, 2zw3,

2
√

3(zz̄2w − z̄w2w̄),
√

6z2w2, |z|4 − 4|z|2|w|2 + |w|4
)
.

Thus, we have σ ⊂ ∂MJ . Our immediate purpose is to show that σ = ∂MJ
holds. To prove this, we make a slight detour and, observing that J is U(2)
equivariant, we claim that the segment

R · 〈J 〉
⋂

(M4)SU(2) (35)

parametrizes all full quartic U(2) equivariant minimal immersions f : S3 → SV .
Indeed, the U(2) equivariant quartic minimal immersions are parametrized by the
fixed point set (M4)U(2) so that the claim follows once we show that (R′8)U(2) is
1-dimensional. Since R′8 is SU(2) fixed, we have (R′8)U(2) = (R′8)Γ, where

Γ = { diag (eiθ, eiθ) | θ ∈ R} ⊂ SU(2)′ (36)

is the center of U(2). As noted above, γ ∈ O(4) switches R′8 and R8 and Γ to

Γ′ = { diag (eiθ, e−iθ) | θ ∈ R}; (37)

the standard (1-dimensional) maximal torus in SU(2). Thus, (R′8)Γ corresponds
to (R8)Γ′ . On the other hand, Γ′ acts on the standard basis in R8 diagonally with
a unique Γ′-fixed polynomial −z2w2 and the claim follows.

Remark. For p even, Wp = Hp/22 , where the SU(2)-module structure on the
space of spherical harmonics on S2 is given by the projection SU(2) → SO(3).
Thus we also have Rp = Hp/22 as real modules. The SU(2)′ orbit of 〈J〉 is RP 2

embedded minimally into its respective 8-sphere as the image of the standard
minimal immersion f2 : S2 → S8. Indeed, (F4)SU(2) = R′8 = H4

2 and (R′8)U(2)

corresponds to the zonals (H4
2)SO(2) whose SO(3) orbit on the unit sphere gives

the image of f2.

We are now ready to prove that σ = ∂MJ . By the above, σ ⊂ ∂MJ so that
MJ is at least 2-dimensional. Since 〈J 〉 is Γ-fixed, Γ leavesMJ and its boundary
invariant. Γ acts on ∂MJ without fixed points since a fixed point is automatically
U(2) fixed and there are only two of these on the entire boundary. Thus, dimMJ
must be even, therefore 2 or 4. Finally, it cannot be 4 since, in that case, ∂MJ



Vol. 74 (1999) Spherical minimal immersions of the 3-sphere 113

would be a topological S3 (by convexity) and it would have to coincide with I
(for reasons of dimension). The latter is S3/O∗ that is topologically distinct from
S3. We obtain thatMJ is a flat 2-disk D with center 〈J 〉, in particular, ∂MJ is
1-dimensional, and thus it must coincide with σ.

The argument is entirely analogous for σ′ and σ′′ so that they are the boundary
circles of 2-disks D′ and D′′. Note that D, D′ and D′′ are orthogonal to each other
at the common boundary point 〈I〉. We now let SU(2)′ act on this configuration
and realize that D′ and D′′ are on the SU(2)′ orbit of D. We thus arrive at (21).

At this point, without having a detailed study of the type III quartic minimal
immersions, we can only assert that II0 is of dimension at least 3 and postpone
the proof of (20). More specifically, we claim now that the antipodal orbit

SU(2)′ · 〈Io〉

consists of type II linearly rigid quartic minimal immersions. To do this, we first
determine the antipodal of I. Recall that I has orthogonal components with the
same norm so that the antipodal lemma applies. It immediately gives that the
antipodal Io is of type II. The SU(2)′-orbit through 〈Io〉, being the antipodal of
I, is again an octahedral manifold. It remains to show that Io is linearly rigid.
Assume that MIo is nontrivial and consider a line segment through 〈Io〉 with
endpoints 〈f1〉 and 〈f2〉 on ∂MIo . Clearly, f1 and f2 are of type I. Consequently,
the antipodals fo1 and fo2 are of type II. Let 〈f〉 be the intersection of the segment
connecting 〈fo1 〉 and 〈fo2 〉 with the line R·〈Io〉. We claim that f is of type III which
is a contradiction since, in this case, it should be congruent to I (the antipodal of
Io) that is of type I. To prove the claim we use the connecting lemma and compute

Vf = Vfo1 + Vfo2

= V ⊥f1 + V ⊥f2

= (Vf1
⋂
Vf2)⊥.

On the other hand

dim(Vf1
⋂
Vf2) = dimVf1 + dimVf2

− dim(Vf1 + Vf2)
= 10 + 10− dimVIo
= 10 + 10− (25− 10) = 5.

Theorem 7 follows (with the proof of (20) postponed).

We now consider type III quartic minimal immersions, and claim that the
antipodal Jo of J is of type III. These are actually the two endpoints of the segment
(35) parametrizing the U(2) equivariant quartic minimal immersions. Recall that
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〈J 〉 is the midpoint of the segment connecting 〈I〉 and 〈I ◦ (γeiπ/8γ)〉 both of
type I. Thus, the antipodal of 〈J 〉 must be on the segment connecting 〈Io〉 and
〈I ◦ (γeiπ/8γ)o〉 provided that this segment is on the boundary B. Thus, by the
connecting lemma again, we need to work out

VIo + VI◦(γeiπ/8γ)o .

By the antipodal lemma, this is equal to

V ⊥I + V ⊥I◦(γeiπ/8γ) = (VI
⋂
VI◦(γeiπ/8γ))

⊥.

On the other hand

dim(VI
⋂
VI◦(γeiπ/8γ)) = dimVI + dimVI◦(γeiπ/8γ) − dim(VI + VI◦(γeiπ/8γ))

and this is 10 + 10− 15 = 5-dimensional and the claim follows.

Lemma. Let f : S3 → SV be a full SU(2) equivariant quartic minimal immersion
of type III. Then, we have

dimMf ≥ 4.

Proof. As before, the Lie algebra su(2) is considered as the tangent space of S3

at the identity. For U ∈ su(2), we denote by Ũ , the right invariant extension of U
on S3. Given C ∈ S2V , we define the linear map

Ψ(C) : su(2)× su(2)→ P8,

by
Ψ(C)(U,U ′) = 〈Cf∗(Ũ )̌ , f∗(Ũ ′)̌ 〉 = 〈CŨ (f), Ũ ′(f)〉,

where Pq is the space of homogeneous polynomials of degree q on R4. Evaluating
Ũ(f) on the basis Z,X, Y it follows easily that this function belongs to P4 so that
Ψ(C) maps into P8. Since Ψ(C) is symmetric in the arguments U and U ′, it can
be considered as a linear map

Ψ(C) : S2(su(2))→ P8,

or equivalently, an element Ψ(C) ∈ P8 ⊗ S2(su(2)). We now vary C in S2V and
obtain the linear map

Ψ : S2V → P8 ⊗ S2(su(2)).

Since the right invariant vector fields (pointwise) span each tangent space in S3,
we have

ker Ψ = Ff .
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To estimate this kernel we first observe that Ψ is a homomorphism of SU(2)-
modules, where the module structure on V is given by SU(2) equivariance of f .
Explicitly, for g ∈ SU(2), we have

Ψ(g ·C)(Ad(g)(U), Ad(g)(U ′)) = Ψ(C)(U,U ′) ◦ Lg−1 .

Since f is of type III, we have V = 4R4 as SU(2)-modules. Thus

S2V = S2(4R4) = 4S2(R4)⊕ 6(R4 ⊗R4)
= 10R8 ⊕ 6R6 ⊕ 10R4 ⊕ 6R2 ⊕ 10R0

(cf. (9)). On the other hand,

P8 = H8 ⊕H6 ⊕H4 ⊕H2 ⊕H0

= 9R8 ⊕ 7R6 ⊕ 5R4 ⊕ 3R2 ⊕R0,

where the first row is isomorphism as SO(4)-modules, the second as SU(2)-
modules. Finally, su(2) = R2 so that

S2(su(2)) = R4 ⊕R0.

Putting all these together, we obtain

P8 ⊗ S2(su(2)) = 9R12 ⊕ 16R10 ⊕ 30R8 ⊕ 31R6 ⊕ 30R4 ⊕ 18R2 ⊕ 6R0.

Comparing this with the domain of Ψ we see that 4R0 must be in the kernel.
Let III denote the set of points that correspond to type III quartic minimal im-

mersions. Recall also that Jo is the unique full U(2) equivariant quartic boundary
minimal immersion of type III.

Theorem 8. III is everywhere dense, open and connected in the 8-dimensional
boundary B. MJo ⊂ B is 6-dimensional and

III = SU(2)′ · intMJo .

Proof. First of all, by (18), the complement of III in B is of codimension 2 so that
III is everywhere dense, open and connected in B. We now claim that

dimMJo = 6.

U(2) leaves MJo invariant since it fixes 〈Jo〉. By local unicity of the U(2) fixed
points, the center Γ of U(2) acts on ∂MJo without fixed points. It follows that
dimMJo is even. By the previous lemma, dimMJo is either 4 or 6. The claim
will follow if we show that dimMJo ≥ 6.
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Consider the SU(2)-module homomorphism Ψ : S2V → P8 ⊗ S2(su(2)) intro-
duced in the previous lemma for f = Jo : S3 → SV . Since Jo is U(2) equivariant,
Ψ is a homomorphism of U(2)-modules, where the U(2)-module structure on V is
given by the equivariance of Jo, and the center Γ ⊂ U(2) acts on su(2) trivially.
Being a U(2)-submodule of H4, V (complexified) decomposes according to (10).
We have

V ⊗R C = H4,0 ⊕H3,1 ⊕H1,3 ⊕H0,4. (38)

Indeed, since dimV = 20, we need only to show that H2,2 is not a component of
V . This, however, follows from the antipodal and connecting lemmas. Indeed, I
and I ◦ (γeiπ/8γ) do have components in H2,2, and so does J since 〈J 〉 is the
midpoint of the segment connecting 〈I〉 and 〈I◦(γeiπ/8γ)〉. Since I has orthogonal
components with the same norm the antipodal lemma applies, and we see that Io
and I ◦ (γeiπ/8γ)o do not have components in H2,2. The same holds for Jo as 〈Jo〉
is the midpoint of the segment connecting 〈Io〉 and 〈I ◦ (γeiπ/8γ)o〉.

As in the previous lemma, we now count the trivial components in the U(2)-
modules that contribute to the domain and range of the (complexified) Ψ. Since Γ
acts on these components as a character, we will also keep track of the correspond-
ing weights. S2(V ) contains 6 trivial components with zero weight; 4 coming from
the symmetric squares of the components in (38) (e.g. S2(H3,1) is contained in
H3,1⊗H1,3 that has weight (3− 1) + (1− 3) = 0), and 2 coming from H4,0⊗H0,4

andH3,1⊗H1,3. In addition, S2(V ) contains one trivial component for each weight
6, 2,−2,−6, (e.g. H4,0⊗H3,1 has weight (4− 0) + (3− 1) = 6). As U(2)-modules,
S2(su(2)) = H2,2 ⊕H0 since Γ acts on su(2) trivially. All the trivial components
in P8 ⊗ S2(su(2)) are in H4 ⊗ (H2,2 ⊕H0), and, by (10), we have 2 trivial com-
ponents with zero weight, and one trivial component for each weight 4, 2,−2,−4.
Comparing, we see that the kernel of Ψ must contain at least 4 trivial components
with zero weight, and two trivial components with weights ±6. We see that ker Ψ
is at least 6-dimensional. The claim follows.

By the transversality lemma, the SU(2)′ orbit of intMJo is an 8-dimensional
smooth manifold since Γ leaves MJo invariant, and SU(2)′ does not have 2-
dimensional subgroups. This orbit must then be open in B. Its boundary is
contained in I ∪ II. It follows that SU(2)′ · intMJo is a connected component of
III (and its boundary is equal to I∪II). Since III is connected, Theorem 8 follows.
As a byproduct, we obtain that II and II0 are connected (and 6-dimensional) since
I ⊂ II and II1 ⊂ II are of codimension ≥ 2.
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