© 1999 Birkhauser Verlag, Basel
Comment. Math. Helv. 74 (1999) 53-62

0010-2571/99/010053-10 $ 1.50+0.20/0 [ Commentarii Mathematici Helvetici

On nonpositively curved Euclidean submanifolds: splitting
results

Luis A. Florit! and Fangyang Zheng?

Abstract. In this article, we prove that a n-dimensional, non-positively curved Euclidean sub-
manifold with codimension p and with minimal index of relative nullity ¥ = n —2p is (in an open
dense subset) locally the product of p hypersurfaces.

Mathematics Subject Classification (1991). Primary 53B25; Secondary 53C40.

Keywords. Isometric immersion, non-positively curved, Euclidean submanifold.

Let f:M™ — Q"*? be an isometric immersion from a Riemannian manifold
into a complete simply connected Riemannian manifold of constant sectional cur-
vature ¢ (superscripts will always denote dimensions). Denote by v the index of
relative nullity of f,

v(z) =dim{X e T,M : ay(X,Y)=0,VY € T, M},

where oy stands for the vector valued second fundamental form of f. It is well
known that having v > 0 imposes strong restrictions on the manifold M™ and on
its isometric immersion f. In [F1], the first author proved the inequality v > n—2p
when the sectional curvature of M™ satisfies Ky, < ¢ and gave several applications
of this result. First let us show that this estimate is sharp.

Example. For each i = 1,...,p, let S; C R3 be a negatively curved surface.
Then the product M2 = S1 x---x Sy C R3P satisfies the equality v = n—2p = 0.

More generically, let M;"" C R"*1 be nowhere flat nonpositively curved hyper-
surfaces, ¢ = 1,...,p. The Gauss equation tells us that the relative nullity v; of
M is v; = n; — 2. Then, the product manifold M™ = M{” X oo x My? C RHP
also have v = n — 2p.
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The first author proved in [F2] a general splitting theorem for Euclidean sub-
manifolds f of nonpositive sectional curvature, under the additional assumption
that the normal bundle of f is flat. The main purpose of this paper is to drop that
assumption in the borderline case v = n — 2p to prove that the above example is
essentially the unique one with minimal relative nullity index.

Theorem 1. Let f : M"™ — R™P be an isometric immersion into Euclidean
space of a Riemannian manifold with nonpositive sectional curvature. Assume
that v = n — 2p everywhere. Then there exists an open dense subset U C M™
such that fly splits locally as a product of p Euclidean hypersurfaces, that is, for
any x € U, there exist a neighborhood x € ¥V C U and p nowhere flat Fuclidean
hypersurfaces f; : M"" — R+ of nonpositive sectional curvature, such that

V:Mlx...pr and f|V:f1X"'Xfp
split.

First of all, note that when f is analytic, the splitting occurs on the entire M. In
the general case, each n; is constant in a connected components of i, in fact, the
universal covering space of any component of of I/ is the product of p Euclidean
hypersurfaces. However, there are examples in which the n;’s are not constant in
the entire U. Secondly, it is interesting to observe that, from Theorem 1 of [M] we
have that f|y in the above is isometrically rigid if and only if each factor is rigid.

Corollary 2. Let f : M" — Q""?, 2p < n, be an isometric immersion of a
connected Riemannian manifold M™ with Ky < ¢ and Ricci curvature Ricyr < c.
Then c =0, n = 2p and [ splits locally as a product of p negatively curved surfaces
of R3. Moreover, the splitting is global provided that M™ is a Hadamard manifold.

The assumption on the Ricci curvature in the above can be replaced by the weaker
one v = 0. Also, the Hadamard condition can probably be relaxed a bit. Combin-
ing our results and [Z], we can state the complex analogue of the above:

Theorem 3. Let X" be an immersed complex submanifold of CQ™ 1P, the complex
space form of constant holomorphic sectional curvature c. Assume that X™ has
nonpositive extrinsic sectional curvature. Then the index of relative nullity of X™
satisfies v > n — p and:

(1) when v =n —p =0, we must have ¢ = 0;

(2) when ¢ = 0 and v = n —p, X™ is locally holomorphically isometric to a
product

p
(CkxX"1><~-~><Xn”an+p, n:k“‘znzﬁ
=1

for some 0 < k < v, where each X™ C c™t s a nowhere flat nonpositively
curved hypersurface.
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Moreover, if X™ is complete, then its universal covering is holomorphically
isometric to the product C¥ x 31 x -+ X ¥,,, where each ¥; — C?isa complete
immersion of the unit disc. All dimensions here are the complex ones.

Notice that the real analyticity of X™ prevented k from jumping around. The last
part of Theorem 3 is because, by a theorem of Abe in [A], any complete immersed
complex submanifold of C™ with one dimensional Gauss image must be a cylinder.

Remark. Any Euclidean hypersurface g : H™ — R™t1 of nonpositive sectional
curvature without flat points can be described locally by means of the Gauss
parametrization in the following way (see [DG] for details). Take a surface ¢ :
V2 — S™ in the Euclidean unit sphere and a smooth function v on V2. The map
v TglV — R™*1 given by

U(v) =~ +grad y+v

parametrizes g over the normal bundle of £, in the open set of normal vectors v
which satisfies det(yId+Hess,—B,) < 0. Here, B, denotes the second fundamental
operator of £ in the direction v. In this parametrization, £ is the Gauss map of g
and v = (g, &) its support function. For a discussion on the isometric deformations
of those hypersurfaces see [DFT]. Observe that any isometric immersion f as in
Theorem 1 can now be explicitly parametrized locally along U using the Gauss
parametrization for each factor.

The flatness of the normal bundle

Let a : V" x V™ — WP be a symmetric bilinear map, where V' and W are real
vector spaces of dimension n and p, respectively, and W is equipped with an inner
product (, ). Assume « is nonpositive as defined in [F1], i.e.,

Ka(X,Y) = (a(X, X),a(Y,Y))~ | a(X,Y) <0,
for all X, Y € V. Denote by v the dimension of the null space N of «:
N={XeV | aX,Y)=0,VY e V}.
Recall that a subspace T' C V is said to be asymptotic, if a(X,Y) = 0 for all
X,Y € T. We know from [F1] that, for the above o, v > n — 2p. The main
technical part of this article is the following diagonalization result for the borderline

case v =n — 2p.

Proposition 4. Let a : V" x V" — WP be a symmetric, nonpositive bilinear
map. If v =n—2p, then there exist a basis {e1,... ,en} of V and an orthonormal
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basis {w1,... ,wp} of W such that {eap41,... ,en} is a basis of the null space N,
and for each i,j < 2p,

ale;, ej) = 5ij(—1)iUJ[7:-¢2-1] .

Proof.-We will carry out the induction on p. When p = 1, « is just a symmetric
bilinear form, so it can always be diagonalized. The nonpositivity condition will
force the rank of « to be less or equal than 2, and when it equals 2, the two nonzero
eigenvalues must be of opposite sign. Now assume that the result holds when dim
W < p, and consider the case dim W = p. _

By restricting o to a subspace V2P such that V = N @& V, we may assume
that n = 2p and v = 0. Denote by ax the endomorphism ax(Y) = a(X,Y). By
Proposition 6 of [F1] we know that there exists an asymptotic subspace TP C Ve
of a. Set

r = min{rank ax : 0# X € T} > 0.

Fix a vector X € T with rank ax = r and let V' = Ker(ax) 2 T. Thus, by the
first claim in the proof of Proposition 6 of [F1], we know that the image a(V' x V")
is perpendicular to the image subspace Im(ax), that is, we have the restriction
map
o |V’><V’: V, X V, — Im(aX)J‘.
Let N’ be its null space. If there is Y € N’ \ T, then span(T U {Y'}) would be
an asymptotic subspace of « of dimension p + 1. By Proposition 8 of [F1], we get
v > 1, a contradiction to our assumption. Therefore, N’ C T.
For each Y € N’ C T, we have Ker(ay) 2 V' = Ker(ax), so rank ay = r.
Therefore,
V' =Ker(ay), YO£Y € N'. (1)
>

Put Wy = span{Im(ay) : Y € N’} which has dimension r + s, for some s
0. Again from the proof of Proposition 6 of [F1], we know that a(V’' x V') is
perpendicular to Wy, that is,

ﬁ =« |V/><V/: VixV — Wd‘

is itself a symmetric, nonpositive bilinear map, with dim V' = 2p — r, dim W(f- =
p—r —s. Write ¢ = dim N’. Then by Proposition 9 of [F1] we have

q>2p—r)—2(p—r—3s)=7r+2s. (2)

On the other hand, if {Y7,...,Y,} is a basis of N and Z € V' \ V’, from (1) we
obtain that the set of vectors {a(Y1,2),---,a(Yy,Z)} in Wy must be linearly
independent. Thus

g<r+s. (3)

We conclude from (2) and (3) that s = 0 and ¢ = r. So we can apply the induction
hypothesis on 3. However, we want to show first that » = 1.
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Assume the contrary, that is, ¢ > 1. Take a subspace V] such that V1@V’ = V.
Choose any Y € N’ not collinear with X. Since s = 0, (the restriction of) both
ax and ay give isomorphisms between Vi and I/VOL Fix an orthonormal basis
{wi,...,w.} of WOL Let {v1,...,v,} be the basis of V] such that ax(v;) = w;
and write ay (v;) = 22:1 B;jw;. That is, we identify V4 and Wy through ax,
and use the matrix B to represent ay .

If B has a real eigenvalue A, then ay_)x would have rank less than r, which
contradicts (1). So the matrix B has no real eigenvalues. By considering a complex
eigenvector which corresponds to a complex eigenvalue of B, we obtain two 2-
planes P C Vi, @Q C W(f‘, such that both ax and ay give isomorphisms between
P and Q.

Now let us fix an orthonormal basis {w1, w2} of @, and let {es, e4} be the basis
of P such that ax(e3) = wy, ax(eq) = we. Write

ay(e3) = awy + bwa, ay(eq) = cwy + dwo.
Replacing Y by Y — dX, we may assume that
d=0.

We know that the 2 x 2 real matrix with entries a,b,c,0 can not have any real
eigenvalue, or equivalently,
4dbe + a? < 0.

Set ey = X, e = Y. For arbitrary real constants x and y, let us consider the
vectors Z = ze1 + xyes + xeg — eq and Z' = yes + e3. We have

ZNZ' =zyel Neg +xe1 Aes +yea Aeg +e3 A ey.
Define the symmetric bilinear form R on A2V, the curvature of «, as
R(Z1 N Za, Z3 N\ Zy) = (o Z1, Z3),c(Za, Z4)) — (a(Z71, Z4), a( Za, Z3)). (4)
Hence, the matrix of R under the partial basis {e] Aeg,e1 Aes,ea Aeg,e3Neq} is

0 0 0 c¢—b

o -1 b —f
R= 0 b - —g
c—b —f —g —h

Therefore —R(ZANZ',Z N Z") = 2% + y? + h + 2(2b — ¢)ay + 2fz + 2gy. Thus,
the nonpositivity of « gives us

Ay? +2((2b— c)z + g)y + (¢ + 2fz + h) > 0.
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Hence, the discriminant with respect to ¥y must be nonpositive, that is,
0 < (@2 42fx+h)—((2b—c)z+g))? = (4bc—4b%) 22 +2(? f+cg—2bg)z+(2h—g?).

Since a? + 4be < 0, the leading coefficient is negative, which is a contradiction for
x sufficiently large. This completes the proof of the claim that ¢ =r = 1.

Now applying the induction hypothesis on the restriction map (3, we obtain
an orthonormal basis {wy,... ,w,} of W and a basis {e},e2,€5,... ,ep,e,} of
V' = Ker(ax) such that X =¢€), Im(ax) = span{w},

alei, e) = dijwi, ale;,ef) = =dijwi, afe;,ej) =0, V2<1i,5<p,
and of course (e, e]) = a(e],e;) = a(e],e;) =0, forall 2 <i < p.

Choose a vector e; € V\V” such that a(e1, e}) = wi. Write a = (Al,... AP),
where each A%, = (a(eq, ep),wy) is a symmetric 2p x 2p matrix. Here for
convenience we adopt the notations e} = epy; and i = ¢ +p, for i < p. Under the
basis {eq Aey; 1 < a <b<2p} of A2V, the coordinate matrix of the bilinear

form R becomes
p

Rap,ca = Z(AgcAlljd — AgaAy.)-
k=1

The nonpositivity of « simply says that R(Z1 A Z2,Z1 A Z2) < 0. For any three
vectors Z;, i = 1,2,3, by considering the nonpositivity at Z1 A (Z2 + xZ3) for
arbitrary x, we have

R(Zl NZo, Z1 N\ ZQ) . R(Zl NZs, Z1 N\ Zg) > (R(Zl AN Zo, Z1 N\ Zg))Q. (5)

For all 2 < i <p and 2 < a ;é 1,1 ; from the above and Rjq i, = 0 we have
Ry = —Aj, = 0. That is, Allj = Allj, =0, for all 2 < i # j < p. Replacing e;
by €1 — > b 5(Al,e; — Al €}) , we may assume that

’ijEO, Vi,5>2. (6)
For 2<¢<p, set

i 1 1
bi = Ail? a; = Ahv, C; = Ali"

Thus,
Ry = -1,
2
Ry;1=bi—aj, Riv 1= —a,
2
Ryy 1y =b; —c¢i, Rive = —ci,

since Ah, = 1. From (5) and Ri1/ 11/ R141; > (RH/,“)Q we get b; < 0. Similarly,
replacing 7 by ', we have b; > 0. Therefore, all b; = 0.
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Now we take any nonsingular 2 x 2 matrix
a b
c d
a c|[Al; 1]Ja b] 1 0
b d 1 0||c d| |0 -1

€1 =aey +cey, € =bel +dej, & =e; —ae), € =¢c;—cie], 2<i<p.

such that

and set

Then under the new basis {€,} of V, we have «(é,,é) =0, if a # b, and

(Jé(éz,éz) = W;, Oé(é/' é/) = —w; , V1 < ) Sp.

2771

This completes the proof of Proposition 4. O
Let us examine the diagonalizing frame {w;} of Proposition 4. Set
D={XeV :rank(ax)<1}.

This set of course depends only on «. By Proposition 4, we know that D is
the union of p subspaces of dimension v + 2, denoted by D;, i = 1,... ,p, with
D;ND; = N for all i # j. If we choose a plane V; C D; which has trivial
intersection with N, then V' is the direct sum

V=NeVie oV,

and «(D; x D;) = 0 if i # j, while all a(D; x D;) are one dimensional and
mutually perpendicular. So the orthonormal frame {w;} is uniquely determined
up to permutations.

It is interesting to note that K < 0 does not implies in general that the symmet-
ric curvature operator R is negative semidefinite. However, it is easy to see using
Proposition 4 that, in our case, we really have R < 0. In fact, {e;Aejyp 1 1 <i < p}
is a basis of the orthogonal complement F of the nullity space of R in A2V formed
by the unique (up to scaling) decomposable elements in F. Indeed, e; A e;4p is
eigenvector of R of eigenvalue K (e;, e;4p) # 0.

We are now in position to give the remaining proofs.
Proofs of Theorem 1 and Corollary 2. For each x € M™, consider as(x) the vector

valued second fundamental form of f at x. Since Kj; < 0, the Gauss equation
tells us that af(x) is nonpositive. Thus, we apply Proposition 4 to it to obtain the
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special (smooth) orthonormal frame {w;,1 <4 < p}. By Theorem 1 and Corollary
2 of [F2], we only need to prove that the normal bundle of f is flat. We will show
indeed that this frame is normal parallel.

For each 1 < i < p, consider the shape tensor A,,;, on M™ defined by (4,,,X,Y) =
(af(X,Y),w;). By Proposition 4, V; = Im A,,, are two dimensional distributions
on M™ such that

Ne--- oV, =A% (7)
where A stands for the relative nullity distribution of f. Let v;; be the 1-forms

defined by 9;;(X) = (Vxw;, w;). We only need to show that v;; = 0, for all 4, j.
Recall that the Codazzi equation for A, is

Vx(Aw,Y) = Aw, VXY = Agr,, Y = Vy(Ay, X) — Ay, Vy X — Ag.,, X, (8)
Taking in (8) X,Y € V;t = Ker A,, we easily obtain using (7) that
A, (i (X)Y —9p5(Y)X) =0, VX, Y €V, 1<j<p.

Suppose that there is Xo € Vi, and j # i such that 9;;(Xo) # 0. The above
equation implies that Vﬁ C le @ span {Xg}, that is,

T.M # V- + Vit = (VinVy)*h,

which is a contradiction by (7). Thus V;* C Ker 1), for all 4, j. By the orthonor-
mality of {w;} we have t;; = —;;. Therefore, T,M = V;* + le C Ker 9;;.
Notice that the Ricci equations imply that the V;’s are orthogonal. This concludes
our proof. O

The proof of Theorem 3 can be obtained by combining the diagonalization
theorem of [Z] (together with the similar argument of the orthogonality of the
special frame) and the proof of the Theorem 1 of [F2]. So we shall omit it here.

Final comments

i) Let us explain Theorem 1 a little bit. We have everywhere on M™ the orthogonal
decomposition TM = N&V1@- - -@V,, of the tangent bundle into distributions. Let
V; be the distribution spanned by all vector fields in V; and all Vx, ---Vx Xsy1,
where all X; € V;. It is shown in [F2] that \Z 1 ‘N/j whenever ¢ # j, and all ‘N/z are
parallel distributions (in the neighborhood where they have constant dimensions).
Let n;(z) be the dimension of ‘Z at z. Each n; is a lower semicontinuous integer-
valued function. If k = n — Zle n;, then 0 < k < v. Let U be the open dense
subset of M™ which is the disjoint union of open subsets &f; in which k(z) takes
constant value j. All n; are necessarily constant in U;, and we have the desired
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local splitting on ¢;. Observe that, using the Gauss parametrization, it is easy to
construct examples of submanifolds with the functions n; nonconstant. Therefore,
for v > 0 we can only obtain the local splitting along an open dense subset. With
this is mind, the same argument as in Corollary 2 of [F2] proves the following

Theorem 5. Let f: M" — Qg”*'“ , 2 <r < n/2, be an isometric immersion
with flat normal bundle of a connected Riemannian manifold with Ky < ¢ and
Ricpyr < c. Then ¢ =0 and f splits locally as a product of 7 nonpositively curved
Euclidean submanifolds, that is, f = fi1x---x fr locally, with f; : M]'" — R2ni—1,
The splitting is global provided M™ is a Hadamard manifold.

Again, the assumption on the Ricci curvature can be replaced by v = 0.

i) We believe that the case v = n — 2p > 0 for an isometric immersion f :
M"™ — QTP | with ¢ # 0, cannot occur. It would be interesting either to prove
its nonexistence or to construct such an example. The complex case should be
similar.

i11) Taking the curvature tensor R as a 4-tensor on M™, it is defined the
nullity space of M™ at x as the subspace I'(z) = {X € T, M : R(X,Y,Z, W) =
0, VY, Z,W € T,M}. This is an intrinsic subspace, so its dimension pu(x) called
the nullity index of M™ is an intrinsic function. For an isometric immersion f of
M™ into Euclidean space we always have that the relative nullity distribution A
of f satisfies A C I". Thus, our assumption on the relative nullity distribution in
Theorem 1 can be replaced by the intrinsic one 4 = n — 2p. The same holds for
Corollary 2.

iv) Now let us consider the more general situation discussed in Theorem 1 of
[F2], namely, v = n —p —r, for some 2 < r < p. It is natural to ask if it can
be generalized by dropping the flatness of the normal bundle assumption as we
did for the case r = p. The answer to this question seems to be negative, since
the algebraic decomposition Proposition 4 does not generalizes, even for the case
r = p — 1, as the following example shows. Take A; defined as

1 0 000 000 0 0 0000 1
0 -1 0 00 000 0 0 0000 1
A;=]|0 0 00 0|, A=|001 0 0|, A3=100 0 01
0 0 000 000 —1 0 0000 1
0 0 000 000 0 0 11110

The bilinear form o = (Ay, As, A3) : R® x R® — R3 is nonpositive, has v =
n—p—r=0forr=p—1=2 but is not decomposable. It is easy to generalize
this example for all p. Thus the analogous result to Proposition 4 is false for
v=n—-p—rand2<r<p-1.
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