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Abstract. Schubert polynomials generalize Schur polynomials, but it is not clear how to gen-
eralize several classical formulas: the Weyl character formula, the Demazure character formula,
and the generating series of semistandard tableaux. We produce these missing formulas and
obtain several surprising expressions for Schubert polynomials.

The above results arise naturally from a new geometric model of Schubert polynomials in
terms of Bott-Samelson varieties. Our analysis includes a new, explicit construction for a Bott-
Samelson variety Z as the closure of a B-orbit in a product of flag varieties. This construction
works for an arbitrary reductive group G, and for G = GL(n) it realizes Z as the representations
of a certain partially ordered set.

This poset unifies several well-known combinatorial structures: generalized Young dia-
grams with their associated Schur modules; reduced decompositions of permutations; and the
chamber sets of Berenstein-Fomin-Zelevinsky, which are crucial in the combinatorics of canonical
bases and matrix factorizations. On the other hand, our embedding of Z gives an elementary
construction of its coordinate ring, and allows us to specify a basis indexed by tableaux.
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Introduction

The classical Schur polynomials appear in many contexts: 1) as characters of the
irreducible representations of GL(n,C) (the Schur modules); 2) as an algebraic
model for the cohomology ring of a Grassmannian (product of Schur polynomials
↔ intersection of Schubert classes); 3) as an orthogonal basis for the symmet-
ric functions in a polynomial ring; and 4) as generating functions enumerating
semistandard Young tableaux. (See [10] for a unified account of this theory.)

In recent decades many generalizations of Schur polynomials have appeared,
among the most interesting being the Schubert polynomials first defined by Las-
coux and Schutzenberger [15]. These are known to generalize each of the above
interpretations. They are: 1) characters of representations of the group B of upper

∗Partially supported by the National Science Foundation.



604 P. Magyar CMH

triangular matrices [12]; 2) an algebraic model of the cohomology ring of a flag
variety [4], [7]; 3) an orthogonal basis for a polynomial ring [15]; and 4) generating
functions for certain mysterious tableaux defined by compatiblity conditions in the
plactic monoid [16].

Nevertheless, many of the rich properties of Schur polynomials have no known
analogs for Schubert polynomials. In this paper we supply several such missing
analogs, mainly concerning interpretations 1) and 4): analogs of the Weyl and
Demazure character formulas; and a straightforward construction for the myste-
rious tableaux of Lascoux and Schutzenberger, showing how they “quantize” our
Demazure formula. These results also hold for a broad class of Schur-like polyno-
mials associated to generalized Young diagrams, such as skew Schur polynomials
[1], [23], [24], [25], [21].

These results are purely combinatorial, but we obtain them by generalizing
a powerful tool of representation theory, the Borel-Weil Theorem, which states
that Schur modules (whose characters are Schur polynomials) are graded pieces in
the coordinate ring of a flag variety (c.f. [10]). The theory of Schur polynomials
can be developed from this point of view, and this is what we do for Schubert
polynomials and their associated B-modules. Instead of flag varieties, however,
we must use the more general varieties defined by Bott and Samelson, which are a
well-known tool in geometric representation theory. (They are indexed by reduced
decompositions of permutations into simple transpositions.)

This method follows our paper [21], but we must do extra geometric work here,
giving a precise connection between our B-modules and the Bott-Samelson vari-
eties Z. As a by-product of our analysis, we obtain a new construction of the Bott-
Samelson varieties for an arbitrary reductive group G. In our case G = GL(n),
the new construction realizes Z as the variety of representations of a partially or-
dered set. This poset is equivalent to two well-known but previously unconnected
combinatorial pictures, and our approach reveals deep relations between them:
first, generalized Young diagrams, which are used to construct generalized Schur
modules; and second, reduced decompositions of permutations, which are pictured
via the wiring diagrams and chamber sets of Berenstein, Fomin, and Zelevinsky
[2], [18], crucial in the combinatorics of matrix factorizations, total positivity, and
canonical bases.

The paper is organized into three parts, which may be read independently and
have separate introductions. The first part (§1) introduces Bott-Samelson vari-
eties for a general reductive group, and shows the isomorphism between our new
construction and the classical one. This lays the groundwork for our papers [13],
[14] with V. Lakshmibai, giving a Standard Monomial Theory for Bott-Samelson
varieties.

The second part (§§2-3) makes this construction explicit for GL(n), discusses
the combinatorial models and their connections, defines generalized Schur modules
and Schur polynomials, and proves the Demazure character formula for them.

The last part (§4) states all the applications to Schubert polynomials in ele-
mentary combinatorial language.
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1. Bott-Samelson varieties

Let G be a complex reductive Lie group (or more generally a reductive algebraic
group over an infinite field of arbitrary characteristic or over Z), and let B be a
Borel subgroup.

The Bott-Samelson varieties are an important tool in the representation theory
of G and the geometry of the flag variety G/B. First defined in [5] as a desin-
gularization of the Schubert varieties in G/B, they were exploited by Demazure
[7] to analyze the singular cohomology or Chow ring H ·(G/B,C) (the Schubert
calculus), and the projective coordinate ring C[G/B]. Since the irreducible repre-
sentations of G are embedded in the coordinate ring, Demazure was able to obtain
an iterative character formula [8] for these representations.

Bott-Samelson varieties are so useful because they “factor” the flag variety into
a “product” of projective lines. More precisely, they are iterated P1-fibrations
and they each have a natural, birational map to G/B. The Schubert subvarieties
themselves lift birationally to iterated P1-fibrations under this map (hence the
desingularization). The combinatorics of Weyl groups enters because a given G/B
can be “factored” in many ways, indexed by sequences i = (i1, i2, . . . , il) such that
w0 = si1si2 · · · sil is a reduced decompostion of the longest Weyl group element
w0 into simple reflections.

The Bott-Samelson variety Zi is usually defined as a product of l minimal
parabolic subgroups modulo an action of Bl, but we give a new, dual construction
of Zi as a subvariety rather than a quotient. It is the closure of an orbit of the
Borel subgroup B inside a product of flag varieties:

Zi ∼= B · (si1B, si1si2B, . . . , w0B) ⊂ (G/B)l,

where B acts diagonally on (G/B)l. (We give several variations of this definition
below.)

This embedding of Zi allows us to apply the tools of Standard Monomial The-
ory, producing a standard monomial basis for the space of sections of an effective
line bundle (a graded piece of C[Zi]). We pursue this in our papers [13], [14] with
V. Lakshmibai.

In §1.3, we give another definition of the Bott-Samelson variety in terms of
incidence conditions; and in §1.4, we show that the map Zi → G/B compactifies
the matrix factorizations of Berenstein-Fomin-Zelevinsky [2], [3].

1.1. Three constructions

Let W be the Weyl group generated by simple reflections s1, . . . , sr, where r is
the rank of G. For w ∈W , `(w) denotes the length l of a reduced (i. e. minimal)
decompostion w = si1 . . . sil , and w0 denotes the element of maximal length.

We let B be a Borel subgroup, T ⊂ B a maximal torus (Cartan subgroup). Let
Pk ⊃ B be the minimal parabolic associated to the simple reflection sk, so that
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Pi/B ∼= P1, the projective line. Also, take P̂k ⊃ B to be the maximal parabolic
associated to the reflections s1, . . . , ŝk, . . . , sr. Finally, we have the Schubert
variety as a B-orbit closure inside the flag variety:

Xw = BwB ⊂ G/B

For what follows, we fix a reduced decompostion of some w ∈W ,

w = si1 . . . sil ,

and we denote i = (i1, . . . , il).
Now let P ⊃ B be any parabolic subgroup of G, and X any space with B-

action. Then the induced P -space is the quotient

P
B
×X def= (P ×X)/B

where the quotient is by the free action ofB on P×X given by (p, x)·b = (pb, b−1x).
(Thus (pb, x) = (p, bx) in the quotient.) The key property of this construction is
that

X → P
B
×X
↓

P/B

is a fiber bundle with fiber X and base P/B. We can iterate this construction for
a sequence of parabolics P, P ′, . . . ,

P
B
×P ′

B
× · · · def= P

B
×(P ′

B
×(· · · ) ).

Then the quotient Bott-Samelson variety of the reduced word i is

Z
quo
i

def= Pi1
B
×· · ·

B
×Pil/B.

Because of the fiber-bundle property of induction, Zquo
i is clearly a smooth, irre-

ducible variety of dimension l. It is a subvariety of

Xl
def= G

B
× · · ·

B
×G︸ ︷︷ ︸

l factors

/B.

B acts on these spaces by multiplying the first coordinate:

b · (p1, p2, . . . , pl)
def= (bp1, p2, . . . , pl).
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The original purpose of the Bott-Samelson variety was to desingularize the
Schubert variety Xw via the multiplication map:

Z
quo
i → Xw ⊂ G/B

(p1, . . . , pl) 7→ p1p2 · · · plB,

a birational morphism.
Next, consider the fiber product

G/B ×
G/P

G/B
def= {(g1, g2) ∈ (G/B)2 | g1P = g2P}.

We may define the fiber product Bott-Samelson variety

Zfib
i

def= eB ×
G/Pi1

G/B ×
G/Pi2

· · · ×
G/Pil

G/B ⊂ (G/B)l+1.

We let B act diagonally on (G/B)l+1; that is, simultaneously on each factor:

b · (g0B, g1B, . . . , glB) def= (bg0B, bg1B, . . . , bglB).

This action restricts to Zfib
i . The natural map to the flag variety is the projection

to the last coordinate:

Zfib
i → G/B

(eB, g1B, . . . , glB) 7→ glB

This construction is related to the correspondences of Fulton [10], Ch. 10.3.
Finally, let us define the B-orbit Bott-Samelson variety as the closure (in

either the Zariski or analytic topologies) of the orbit of a point zi:

Zorb
i

def= B · zi ⊂ G/P̂i1 × · · · ×G/P̂il ,

where
zi = (si1 P̂i1 , si1si2 P̂i2 , . . . , si1· · ·silP̂il)

Again, B acts diagonally. In this case the map to G/B is more difficult to describe,
but see the Examples in §2.3.
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1.2. Isomorphism theorem

The three types of Bott-Samelson variety are isomorphic.

Theorem 1. (i) Let

φ : Xl → (G/B)l+1

(g1, g2, . . . , gl) 7→ (e, g1, g1g2 , . . . , g1g2· · ·gl),

where g means the coset of g. Then φ restricts to an isomorphism of B-varieties

φ : Zquo
i

∼→ Zfib
i .

(ii) Let

ψ : Xl → G/P̂i1 × G/P̂i2 × · · · × G/P̂il
(g0, g1, . . . , gl) 7→ ( g1 , g1g2 , . . . , g1g2· · ·gl),

where g means the coset of g. Then ψ restricts to an isomorphism of B-varieties

ψ : Zquo
i

∼→ Zorb
i .

Proof. (i) It is trivial to verify that φ is a B-equivariant isomorphism from Xl to
eB× (G/B)l and that φ(Zquo

i ) ⊂ Zfib
i , so it suffices to show the reverse inclusion.

Suppose
zf = (eB, g1B, . . . , glB) ∈ Zfib

i .

Then
zq = φ−1(zf ) = (g1, g

−1
1 g2, g

−1
2 g3, . . . ) ∈ Xl.

By definition, ePi1 = g1Pi1 , so g1 ∈ Pi1 . Also g1Pi2 = g2Pi2 , so g−1
1 g2 ∈ Pi2 , and

similarly g−1
k−1gk ∈ Pik . Hence zq ∈ Zquo

i , and φ(zq) = zf .
(ii) First let us show that ψ is injective on Zquo

i . Suppose ψ(p1, . . . , pl) =
ψ(q1, . . . , ql) for pk, qk ∈ Pik . Then p1P̂i1 = q1P̂i1 , so that p−1

1 q1 ∈ P̂i1 ∩Pi1 = B.
Thus q1 = p1b1 for b1 ∈ B. Next, we have

p1p2P̂i2 = q1q2P̂i2 = p1b1q2P̂i2 ,

so that p−1
2 b1q2 ∈ P̂i2 ∩Pi2 = B, and q2 = b−1

1 p2b2 for b2 ∈ B. Continuing in this
way, we find that

(q1, q2, . . . , ql) = (p1b1, b
−1
1 p2b2, . . . , b

−1
l−1plbl)

= (p1, p2, . . . , pl) ∈ Xl
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Thus ψ is injective on Zquo
i .

Since we are working with algebraic morphisms, we must also check that ψ is
injective on tangent vectors of Zquo

i . Now, the degeneracy locus

{z ∈ Zquo
i | Ker dψz 6= 0}

is a B-invariant, closed subvariety of Zquo
i , and by Borel’s Fixed Point Theorem

it must contain a B-fixed point. But it is easily seen that the degenerate point

z0 = (e, . . . , e) ∈ Xl

is the only fixed point of Zquo
i . Thus if dψ is injective at z0, then the degen-

eracy locus is empty, and dψ is injective on each tangent space. The injectivity
at z0 is easily shown by an argument completely analogous to that for global in-
jectivity given above, but written additively in terms of Lie algebras instead of
multiplicatively with Lie groups.

Thus it remains to show surjectivity: that ψ takes Zquo
i onto Zorb

i . Consider

zquo
i = (si1 , . . . , sil) ∈ Xl,

a well-defined point in Zquo
i . Then

ψ(zquo
i ) = zi = (si1 P̂i1 , si1si2 P̂i2 , . . . ),

and ψ is B-equivariant, so that ψ(Zquo
i ) ⊃ ψ(B · zquo

i ) = B · zi. However Zquo
i

is a projective variety, so its image under the regular map ψ is closed. Hence
ψ(Zquo

i ) ⊃ B · zi = Zorb
i . �

1.3. Incidence relations

We give another characterization of the Bott-Samelson variety as a subvariety
Zorb

i ⊂ G/P̂i1 × · · · × G/P̂il in terms of certain incidence conditions, which can
easily be translated into algebraic equations defining Zorb

i as a variety.
Given two parabolic subgroups P,Q ⊃ B, we say the cosets gP and g′Q are

incident (written gP ∼ g′Q) if any of the following equivalent conditions holds:

(i) (gP, g′Q) lies in the image of the diagonal map G/(P ∩Q)→ G/P ×G/Q;
(ii) gP ∩ g′Q 6= ∅;
(iii) g−1g′ ∈ PQ;
(iv) g−1g′B ∈ Xw, the Schubert variety of G/B associated to the unique longest
element w in the set WPWQ ⊂W , the product of the subgroups of W correspond-
ing to P and Q.
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For G = GL(n) and P,Q maximal parabolics, the spaces G/P,G/Q are Grass-
mannians, and our definition of incidence reduces to the inclusion relation between
subspaces. (See §2.3.)

The incidence relation ∼ is reflexive and symmetric, but only partially transi-
tive. One substitute for transitivity is the following property. Suppose g1Q1, g2Q2,
g3Q3 are cosets of any parabolics with giQi ∼ gjQj for all i, j. Then there exists
g0 with g1Q1 ∼ g0(Q1 ∩ Q2) ∼ g2Q2, and since (Q1 ∩ Q2)Q3 = Q1Q3 ∩ Q2Q3
(by [6], Ch. 4, Ex. 1), we conclude that g0(Q1 ∩ Q2) ∼ g3Q3. An immediate
consequence of this property is:

Lemma 2. Consider any parabolics Q1, Q2, . . . ⊃ B. Then the point (g1Q1, g2Q2,
. . . ) lies in the image of the diagonal map G/(∩iQi) →

∏
iG/Qi if and only if

giQi ∼ gjQj for all i, j.

This lemma generalizes the description of GL(n)/B as the variety of flags of
subspaces.

The incidence relation has another transitivity property. Suppose s, s′, s′′ are
simple reflections of W such that s′ is between s and s′′ in the Coxeter graph of
W : that is, if s(1), s(2), . . . , s(N) is any sequence of simple reflections such that
s = s(1), s′′ = s(N) and s(j)s(j+1) 6= s(j+1)s(j) for all j, then s′ = s(j) for some j.
Let P̂ , P̂ ′, P̂ ′′ be the maximal parabolic subgroups of G corresponding to s, s′, s′′.
Then we may easily show that P̂ P̂ ′P̂ ′′ = P̂ P̂ ′′, so that

gP̂ ∼ g′P̂ ′ and g′P̂ ′ ∼ g′′P̂ ′′ ⇒ gP̂ ∼ g′′P̂ ′′ .

From this and the previous Lemma, we obtain:

Lemma 3. Let P̂1, . . . , P̂r ⊃ B be all the maximal parabolic subgroups of G. Then
the point (g1P̂1, . . . , grP̂r) lies in the image of the diagonal embedding G/B →∏r
i=1G/P̂i if and only if giP̂i ∼ gjP̂j for all i, j with sisj 6= sjsi.

To our word i = (i1, . . . , il) we now associate a graph Γi whose vertices are the
symbols 1∗, 2∗, . . . r∗ and 1, 2, . . . , l. (Recall that r = rankG.) The edges of Γi are
all pairs of vertices of the forms:

(i∗, k) with i 6= ip for 1 ≤ p ≤ k and sisik 6= siksi,

(j, k) with ij 6= ip for j < p ≤ k and sijsik 6= siksij .

The graph Γi is closely related to the wiring diagrams and chamber weights of
Berenstein, Fomin, and Zelevinsky [2], [3].

Now, it follows from Theorem 1 that Zorb
i is the image of Zfib

i under the natural
projection

(G/B)l+1 →
∏l
j=1 G/P̂ij

(g0B, g1B, . . . , glB) 7→ (g1P̂i1 , . . . , glP̂il).
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Translating this into incidence conditions using the above Lemmas, we obtain:

Theorem 4.

Zorb
i =

{
(g1P̂i1 , . . . , glP̂il)

∣∣∣∣∣ eP̂i ∼ gkP̂ik for all (i∗, k) ∈ Γi

gjP̂ij ∼ gkP̂ik for all (j, k) ∈ Γi

}

See §2.3 below for examples in the case of G = GL(n).

1.4. Open cells and matrix factorizations

In view of Theorem 1, we will let Zi denote the abstract Bott-Samelson variety
defined by any of our three versions. It contains the degenerate B-fixed point z0
defined by:

z0 = (e, e, . . . ) ∈ Zquo
i

= (eB, eB, . . . ) ∈ Zfib
i

= (eP̂i1 , eP̂i2 , . . . ) ∈ Zorb
i

as well as the generating T -fixed point whose B-orbit is dense in Zi:

zi = (si1 , si2 , si3 , . . . ) ∈ Z
quo
i

= (eB, si1B, si1si2B, . . . ) ∈ Zfib
i

= (si1 P̂i1 , si1si2 P̂i2 , . . . ) ∈ Zorb
i

Big cell. We may parametrize the dense orbit B · zi ⊂ Zi by an affine cell.
Consider the normal ordering of the positive roots associated to the reduced word
i. That is, let

β1 = αi1 , β2 = si1(αi2), β3 = si1si2(αi3), · · ·

Let Uβk be the one-dimensional unipotent subgroup of B corresponding to the
positive root βk. Then we have a direct product:

B = Uβ1 · · ·Uβl · (B ∩ wBw−1),

so that the multiplication map

Uβ1 × · · · × Uβl → B · zi
(u1, . . . , ul) 7→ u1 · · ·ul · zi

is injective, and an isomorphism of varieties. The left-hand side is isomorphic to
an affine space Cl (or Al for G over a general field).
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Opposite big cell. Zi also contains an opposite big cell centered at z0 which is
not the orbit of a group. Let U−αi be the one-dimensional unipotent subgroup of
w0Bw0 corresponding to the negative simple root −αi. The map

Cl ∼= U−αi1× · · · × U−αil → Z
quo
i

(u1, . . . , ul) 7→ (u1, . . . , ul)

is an open embedding.
In the case of G = GL(n), B = upper triangular matrices, we may write an

element of U−αik as uk = I + tkek, where I is the identity matrix, ek is the sub-
diagonal coordinate matrix e(ik+1,ik), and tk ∈ C. If we further map Zquo

i to G/B
via the natural multiplication map, we get

(t1, . . . , tl) 7→ (I + t1e1) · · · (I + tlel)
Cl → N−
∩ ∩

Zquo
i → G/B

(p1, . . . , pl) 7→ p1 · · · plB

where N− denotes the unipotent lower triangular matrices (mod B). Thus the
natural map in the bottom row compactifies the matrix factorization map in the
top row, which has been studied by Berenstein, Fomin, and Zelevinsky [2]; and
the corresponding statement holds in the general case of [3].

2. Bott-Samelson varieties for GL(n)

We begin again, restating our results in explicit combinatorial form for the general
linear group G = GL(n,C). We define the Bott-Samelson variety in an explicit
and elementary way, which will easily show that its coordinate ring consists of
generalized Schur modules. That is, a generalized Schur module bears the same
relation to a Bott-Samelson variety as an ordinary (irreducible) Schur module bears
to a flag variety according to the Borel-Weil Theorem. Therefore the characters,
generalized Schur polyomials, can be computed by powerful Riemann-Roch type
theorems just like ordinary Schur polynomials.

Our purpose in this section is to get enough combinatorial control over the Bott-
Samelson varieties to make such theorems explicit. For a reduced decomposition
i, the Bott-Samelson variety Zi is the space of flagged representations of a certain
partially ordered set D+

i : that is, the variety of all embeddings of the poset D+
i

into the poset of subspaces of Cn. (Such an embedding is flagged if a certain chain
in D+

i maps to the standard flag C1 ⊂ C2 ⊂ · · ·Cn.)
The posets D+

i can be specified by several equivalent combinatorial devices.
They can be naturally embedded into the Boolean lattice of subsets of [n] =
{1, 2, . . . , n}. The image of such an embedding is a chamber family, associated
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to a reduced decomposition via its wiring diagram. This is easily translated into
the language of generalized Young diagrams in the plane: the columns of a dia-
gram correspond to the elements of a chamber family. It is remarkable that these
different combinatorial pictures come together to describe our varieties.

In the rest of this paper, G = GL(n). To make our statements more elementary,
we will use C for our base field, but everything goes through without change over
an infinite field of arbitrary characteristic or over Z. We let B be the group of
invertible upper triangular matrices, T the group of invertible diagonal matrices,
and Gr(k,Cn) the Grassmannian of k-dimensional subspaces of complex n-space.
Also W = permutation matrices, `(w) = the number of inversions of a permutation
w, si = the transposition (i, i+ 1), and the longest permutation is w0 = n . . . 321.
We will frequently use the notation

[k] = {1, 2, 3, . . . , k}.

2.1. Chamber families

Define a subset family to be a collection D = {C1, C2, . . . } of subsets Ck ⊂ [n].
The order of the subsets is irrelevant in the family, and we do not allow subsets
to be repeated.

Now suppose the list of indices i = (i1, i2, . . . , il) encodes a reduced decompo-
sition w = si1si2 · · · sil of a permutation into a minimal number of simple trans-
positions. We associate a subset family, the chamber family

Di
def= {si1 [i1], si1si2 [i2], . . . , w[il]}.

Here w[j] = {w(1), w(2), . . . , w(j)}. Further, define the full chamber family

D+
i

def= {[1], [2], . . . , [n]} ∪Di.

We tentatively connect these structures with geometry. Let Cn have the stan-
dard basis e1, . . . , en. For any subset C = {j1, . . . , jk} ⊂ [n], the coordinate
subspace

EC = SpanC{ej1 , . . . , ejk} ∈ Gr(k) = Gr(k,Cn)

is a T -fixed point in a Grassmannian. A subset family corresponds to a T -fixed
point in a product of Grassmannians

zD = (EC1 , EC2 , . . . ) ∈ Gr(D) def= Gr( |C1| )×Gr( |C2| )× . . . .

We will define Bott-Samelson varieties as orbit closures of such points (see §2.3).
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Examples. For n = 3, G = GL(3), i = 121, we have the reduced chamber family

D121 = { s1[1], s1s2[2], s1s2s1[1] }
= { {2}, {2, 3}, {3} }
= {2, 23, 3}.

The full chamber family is D+
121 = {1, 12, 123, 2, 23, 3}. The chamber family of the

other reduced word i = 212 is D212 = {13, 3, 23}, D+
212 = {1, 12, 123, 13, 3, 23}.

For n = 4, the subset family D = {12, 123, 2, 3} is associated to the T -fixed
point

zD = (E12, E123, E2, E3) ∈ Gr(D) = Gr(2)×Gr(3)×Gr(1)×Gr(1). �

Chamber families have a rich structure. (See [18], [25].) Given a full chamber
family D+

i , we may omit some of its elements to get a subfamily D ⊂ D+
i . The

resulting chamber subfamilies can be characterized as follows.

For two sets S, S′ ⊂ [n], we say S is elementwise less than S′, S
elt
< S′, if s < s′

for all s ∈ S, s′ ∈ S′. Now, a pair of subsets C,C′ ⊂ [n] is strongly separated if

(C \ C′)
elt
< (C′ \ C) or (C′ \ C)

elt
< (C \ C′) ,

where C \ C′ denotes the complement of C′ in C. A family of subsets is called
strongly separated if each pair of subsets in it is strongly separated.

Proposition 5. (Leclerc-Zelevinsky [18]) A family D of subsets of [n] is a cham-
ber subfamily, D ⊂ D+

i for some i, if and only if D is strongly separated.

Remarks. (a) Reiner and Shimozono [25] give an equivalent description of strong-
ly separated families. Place the subsets of the family into lexicographic order.

Then D = (C1
lex
≤ C2

lex
≤ · · · ) is strongly separated if and only if it is “%-avoiding”:

that is, if i1 ∈ Cj1 , i2 ∈ Cj2 with i1 > i2, j1 < j2, then i1 ∈ Cj2 or i2 ∈ Cj1 .
(b) If i = (i1, . . . , il) is an initial subword of i′ = (i1, . . . , il, . . . , iN), then
Di ⊂ Di′. Thus the chamber families associated to decompositions of the longest
permutation w0 are the maximal strongly separated families.
(c) In §4.3 below, we describe the “orthodontia” algorithm to determine a chamber
family D+

i which contains to a given strongly separated family D. See also [25].

Examples. (a) For n = 3, the chamber families D+
121 = {1, 12, 123, 2, 23, 3} and

D+
212 = {1, 12, 123, 13, 3, 23} are the only maximal strongly separated families.

The sets 13 and 2 are the only pair not strongly separated from each other.
(b) For n = 4, the strongly separted family D = {24, 34, 4} is contained in the
chamber sets of the reduced words i = 312132 and i = 123212.
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line 4

line 3

line 2

line 1

123

1

12

124

1234

234

3424

42

Figure 1.

2.2. Pictures of chamber families

Wiring diagrams. Chamber families can be represented pictorially in several
ways, the most natural being due to Berenstein, Fomin, and Zelevinsky [2]. The
wiring diagram or braid diagram of the reduced word i is best defined via an
example.

Let G = GL(4), w = w0 (the longest permutation), and i = 312132. On the
right and left ends of the wiring diagram are the points 1,2,3,4 in two columns,
with 1 at the bottom and 4 at the top. Each point i on the left is connected to
the point w−1(i) on the right by a curve which is horizontal and disjoint from
the other curves, except for certain X-shaped crossings. The crossings, read left
to right, correspond to the entries of i. The first entry i1 = 3 corresponds to a
crossing of the curve on level 3 with the one on level 4. The curves on other levels
continue horizontally. The second entry i2 = 1 indicates a crossing of the curves
on levels 1 and 2, the others continuing horizontally, and so on.

If we add crossings only up to the lth step, we obtain the wiring diagram of the
truncated word si1si2 · · · sil .

Now we may construct the chamber family

D+
i = (1, 12, 123, 1234, 124, 2, 24, 4, 234, 34)

as follows. Label each of the curves of the wiring diagram by its point of origin on
the left. Into each of the connected regions between the curves, write the numbers
of those curves which pass below the region. Then the sets of numbers inscribed
in these chambers are the members of the family D+

i . If we list the chambers
from left to right, we recover the natural order in which these subsets appear in
D+

i . (Warning: In BFZ’s terminology, our D+
i would be the chamber family of

the reverse word of i, a reduced decomposition of w−1.)

Young diagrams. Another way to picture a chamber family, or any subset family,
is as follows. We may consider a subset C = {j1, j2, . . . , jc} ⊂ [n] as a column of c



616 P. Magyar CMH

squares in the rows j1, j2, . . . . For each subset Ck in the chamber family, form the
column associated to it, and place these columns next to each other. The result
is an array of squares in the plane called a generalized Young diagram.

For our word i = 312132, we draw the (reduced) chamber family as:

Di =

1 �
2 � � � �
3 � �
4 � � � � �

where we indicate the row numbers on the left of the diagram.

2.3. Varieties

To any subset family D we have associated a T -fixed point in a product of Grass-
mannians, zD ∈ Gr(D), and we may define the configuration variety of D to be
the closure of the G-orbit of zD:

FD = G · zD ⊂ Gr(D);

and the flagged configuration variety to be the closure of its B-orbit:

FBD = B · zD ⊂ Gr(D).

Furthermore, if D = Di, a chamber family, then the Bott-Samelson variety is the
flagged configuration variety of Di:

Zi = Zorb
i = FBD .

(We could also use the full chamber family D+
i , since the extra coordinates corre-

spond to the standard flag fixed under the B-action.)
Thus FD, FBD , and Zi can be considered as varieties of configurations of sub-

spaces in Cn, like the flag and Schubert varieties. We will give defining equations
for the Bott-Samelson varieties analogous to those for Schubert varieties.

For a subset family D with partial order given by inclusion, define the variety
of flagged representations of D

RBD =

{
(VC)C∈D ∈ Gr(D)

∣∣∣∣∣ ∀C,C
′ ∈ D, C ⊂ C′ ⇒ VC ⊂ VC′

and ∀ [i] ∈ D, V[i] = Ci

}
.

(“Flagged” refers to the condition that a space V[i] corresponding to an initial
interval [i] ∈ D is fixed to be an element of the standard flag C1 ⊂ C2 ⊂ · · · .)
Let B act diagonally on RBD.

The following proposition is a special case of Prop. 4 of §1.3.

Proposition 6. For every reduced word i, we have Zi ∼= RBD+ .
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2.4. Examples of varieties

Example. For n = 4, i = 312132, we may use the picture in the above example to
write the Bott-Samelson variety Zi = RB

D+ as the set of all 6-tuples of subspaces of

C4, (V124, V2, V24, V4, V234, V34) with dim(VC) = |C| and satisfying the following
inclusions:

C4 =
V1234

↗ ↑ ↖
C3 = V123 V124 V234

↑ ↗ ↖ ↑ ↖
C2 = V12 V24 V34
↑ ↖ ↗ ↑ ↗

C1 = V1 V2 V4
↖ ↑ ↗

0

where the arrows indicate inclusion of subspaces. The natural map onto the flag
variety projects (V124, . . . , V34) to the flag at the right edge of the picture: (0 ⊂
V4 ⊂ V34 ⊂ V234 ⊂ C4).

Example. Desingularizing a Schubert variety. Let n = 7, and consider the
family D comprising the single subset C = 12457. Its configuration variety is the
Grassmannian FD = Gr(5,C7), and its flagged configuration variety is a Schubert
variety Xλ in this Grassmannian:

FBD = Xλ = {V ∈ Gr(5,C7) | C2 ⊂ V, dim(C5 ∩ V ) ≥ 4}.

Here the indexing partition λ = (0, 0, 1, 1, 2) is obtained from the subset C = 12457
by subtracting 1, 2, . . . from its elements: 0 = 1 − 1, 0 = 2 − 2, 1 = 4 − 3,
1 = 5− 4, 2 = 7− 5.) Now, we know by Proposition 5 that any strongly separated
family is part of some chamber family Di. In fact, we may take i so that the
projection map Zi = FBD → FBD is birational. The orthodontia algorithm of §4.3
below produces such an i.

By orthodontia, we find that our variety is desingularized by the reduced word
i = 3465, for which Di = {124, 1245, 123457, 12457} and

Zi =


(V124, V1245, V123457, V12457) ∈ Gr(3)×Gr(4)×Gr(6)×Gr(5)

such that C2 ⊂ V124 ⊂ C4 ⊂ V123457 , V1245 ⊂ C5 ,

V124 ⊂ V1245 ⊂ V12457 ⊂ V123457

 .

The desingularization map is the projection

π : Zi → FBD = Xλ

(V124, V1245, V123457, V12457) 7→ V12457.
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In our paper [21] and Zelevinsky’s work [26], there are given other desingulariza-
tions of Schubert varieties, all of them expressible as flagged configuration varieties.

Conjecture 7. For any subset family D, a configuration (VC)C∈D ∈ Gr(D) lies
in FD exactly if, for every subfamily D′ ⊂ D,

dim(
⋂
C∈D′

VC) ≥ |∩C∈D′ C|

dim(
∑
C∈D′

VC) ≤ |∪C∈D′ C|

Remarks. (a) If D = Di is a chamber family, the conjecture reduces to the
previous theorem.
(b) The conjecture is known if D satisfies the “northwest condition” (see [21]):
that is, the elements of D can be arranged in an order C1, C2, . . . such that if
i1 ∈ Cj1 , i2 ∈ Cj2 , then min(i1, i2) ∈ Cmin(j1,j2). In fact, it suffices in this case to
consider only the intersection conditions of the conjecture.
(c) Note that a configuration (V1, . . . , Vl) ∈ Gr(D) lies in the flagged configuration
variety FBD if and only if (C1, . . . ,Cn, V1, . . . , Vl) lies in the unflagged variety FD+

of the augmented diagram D+ def= {[1], [2], . . . [n]}∪D. Hence the conjecture gives
conditions defining flagged configuration varieties as well as unflagged.
(d) It would be interesting to know whether the determinantal equations implied
by the conditions of the conjecture (and the previous theorem) define FD ⊂ Gr(D)
scheme-theoretically.

3. Schur and Weyl modules

The most familiar construction of Schur modules is in terms of Young symmetrizers
acting on a large tensor power of Cn. This construction is limited to characteristic
zero, however, so we use an alternative construction in the spirit of DeRuyts [10],
Desarmenien-Kung-Rota [9], and Carter-Lusztig. This construction is universal-
ly valid and is more natural geometrically. (We sketch the connection with the
symmetrizer picture at the end of §3.1.) Using the same arguments as in [21],
our Borel-Weil Theorem is immediate, and we work out a version of Demazure’s
character formula to get a new expression for generalized Schur polynomials.

3.1. Definitions

We have associated to any subset family D = {C1, . . . , Ck} a configuration variety
FD with G-action, and a flagged configuration variety FBD with B-action. Now,
assign an integer multiplicity m(C) ≥ 0 to each subset C ∈ D. For each pair
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(D,m), we define a G-module and a B-module, which will turn out to sections of
a line bundle on FD and FBD . We construct these “Weyl modules” MD,m inside
the coordinate ring of n× n matrices, and their flagged versions MB

D,m inside the
coordinate ring of upper-triangular matrices.

Let C[xij ] (resp. C[xij ]i≤j ) denote the polynomial functions in the variables
xij with i, j ∈ [n] (resp. xij with 1 ≤ i ≤ j ≤ n). For R,C ⊂ [n] with |R| = |C|,
let

∆R
C = det(xij)(i∈R,j∈C) ∈ C[xij ]

be the minor of the matrix x = (xij) on the rows R and the columns C. Further,
let

∆̃R
C = ∆R

C |xij=0, ∀ i>j ∈ C[xij ]i≤j

be the same minor evaluated on an upper triangular matrix of variables.
Now, for a subset family D = {C1, . . . , Cl}, m = (m1, . . . ,ml), define the Weyl

module

MD,m = SpanC

{
∆R11
C1
· · ·∆R1m1

C1
∆R21
C2

. . .∆
Rlml
Cl

∣∣∣∣ ∀ k,m Rkm ⊂ [n]
and |Rkm| = |Ck|

}
.

That is, a spanning vector is a product of minors with column indices equal to the
elements of D and row indices taken arbitrarily.

For two sets R = {i1 < · · · < ic}, C = {j1 < · · · < jc} we say R
comp

≤ C
(componentwise inequality) if i1 ≤ j1, i2 ≤ j2, . . . . Define the flagged Weyl
module

MB
D,m = SpanC

{
∆̃R11
C1
· · · ∆̃R1m1

C1
∆̃R21
C2

. . . ∆̃
Rlml
Cl

∣∣∣∣∣ ∀ k,m Rkm ⊂ [n]

|Rkm| = |Ck|, Rkm
comp

≤ Ck

}
.

(In fact, the condition Rkm
comp

≤ Ck is superfluous, since ∆̃R
C = 0 unless Rkm

comp

≤
Ck.)

For f(x) ∈ C[xij ], a matrix g ∈ G acts by left translation, (g ·f)(x) = f(g−1x).
It is easily seen that this restricts to a G-action on MD,m and similarly we get a
B-action on MB

D,m.
We clearly have the diagram of B-modules:

MD,m ⊂ C[xij ]
↓ ↓

MB
D,m ⊂ C[xij ]i≤j

where the vertical maps (xij 7→ 0 for i > j) are surjective. That is, MB
D,m is a

quotient of MD,m.
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The Schur modules are defined to be the duals

SD,m
def= (MD,m)∗ SBD,m

def= (MB
D,m)∗.

We will deal mostly with the Weyl modules, but everything we say will of course
have a dual version applying to Schur modules.

Example. Let n = 4, D = {234, 34, 4}, m = (2, 0, 3). (That is, m(234) = 2,
m(34) = 0, m(4) = 3.) We picture this as a generalized Young diagram by writing
each column repeatedly, according to its multiplicity. Zero multiplicity means we
omit the column. Thus

(D,m) =

1
2 � �
3 � �
4 � � � � �

τ =

1
2 1 1
3 3 2
4 4 3 2 4 3

The spanning vectors for MD,m correspond to all column-strict fillings of this
diagram by indices in [n]. For example, the filling τ above corresponds to

∆134
234 ∆123

234 ∆2
4 ∆4

4 ∆3
4

=

∣∣∣∣∣∣
x12 x13 x14
x32 x33 x34
x42 x43 x44

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x12 x13 x14
x22 x23 x24
x32 x33 x34

∣∣∣∣∣∣ · x24 · x44 · x34

=

 1 1
3 2
4 3 2 4 3

∣∣∣∣∣∣
2 2
3 3
4 4 4 4 4


The last expression is in the letter-place notation of Rota et al [9].

A basis may be extracted from this spanning set by considering only the row-
decreasing fillings (a normalization of the semi-standard tableaux), and in fact the
Weyl module is the dual of the classical Schur module Sλ associated to the shape
D considered as the Young diagram λ = (0, 2, 2, 5).

The spanning elements of the flagged Weyl module MB
D,m correspond to the

“flagged” fillings of the diagram: those for which the number i does not appear
above the ith level. For the diagram above, all the column-strict fillings are flagged,
and MD,m ∼= MB

D,m.
However, for

(D′,m) =

1
2 � �
3 � � � � �
4 � �
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τ1 =

1
2 2 1
3 3 2 4 3 4
4 4 3

τ2 =

1
2 2 1
3 3 2 3 2 3
4 4 4

the filling τ1 is not flagged, since 4 appears on the 3rd level, but τ2 is flagged, and
corresponds to the spanning element

∆̃234
234 ∆̃124

234 ∆̃3
3 ∆̃2

3 ∆̃3
3 =

∣∣∣∣∣∣
x22 x23 x24
0 x33 x34
0 0 x44

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
x12 x13 x14
x22 x23 x24
0 0 x44

∣∣∣∣∣∣ · x33 · x23 · x33.

We have MD,m ∼= MD′,m ∼= MB
D,m

∼= S∗(0,2,2,5), the dual of a classical (irre-

ducible) Schur module for GL(4), and MB
D′,m

∼= S∗(0,2,5,2), the dual of the De-
mazure module with lowest weight (0, 2, 5, 2) and highest weight (5, 2, 2, 0). Cf.
[23].

Remarks. (a) In [13], [14] and §4.4 below, we make a general definition of “stan-
dard tableaux” giving bases of the Weyl modules for strongly separated families.
(b) We briefly indicate the equivalence between our definition of the Weyl modules
and the tensor product definition given in [1], [23], [21].

Let Y = YD,m ⊂ N ×N be the generalized Young diagram of squares in the
plane associated to (D,m) as in the above examples, and let U = (Cn)∗. One
defines M tensor

Y = U⊗Y γY , where γY is a generalized Young symmetrizer. The
spanning vectors ∆τ of MD,m correspond to the fillings τ : Y → [n]. Then the
map

MD,m → M tensor
Y

∆τ 7→
(⊗

(i,j)∈Y e
∗
τ(i,j)

)
γY

is a well-defined isomorphism of G-modules, and similarly for the flagged versions.
This is easily seen from the definitions, and also follows from the Borel-Weil the-
orems proved below and in [21].

3.2. Borel-Weil theory

A configuration variety FD ⊂ Gr(D) has a natural family of line bundles defined
by restricting the determinant or Plucker bundles on the factors of Gr(D). For
D = (C1, C2, . . . ), and multiplicities m = (m1,m2, . . . ), we define

Lm ⊂ O(m1,m2, . . . )
↓ ↓
FD ⊂ Gr(D) = Gr(|C1|)×Gr(|C2|)
× · · ·
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We denote by the same symbol Lm this line bundle restricted to FBD . Note that
in the case of a Bott-Samelson variety FD = Zi, this is the well-known line bundle

Lm ∼=
Pi1 × · · · × Pil ×C

Bl

(p1, . . . , pl, v) · (b1, . . . , bl)
def= (p1b1, . . . , b

−1
l−1plbl, $i1(b−1

1 )m1 · · ·$il(b
−1
l )ml v),

$i denoting the fundamental weight $i(diag(x1, . . . , xn)) = x1x2 · · ·xi.
Note that if mk ≥ 0 for all k (resp. mk > 0 for all k) then Lm is effective (resp.

very ample). However, Lm may be effective even if some mk < 0.

Proposition 8. Let (D,m) be a strongly separated subset family with multiplicity.
Then we have
(i) MD,m ∼= H0(FD,Lm) and Hi(FD,Lm) = 0 for i > 0.
(ii) MB

D,m
∼= H0(FBD ,Lm) and Hi(FBD ,Lm) = 0 for i > 0.

(iii) FD and FBD are normal varieties, projectively normal with respect to Lm, and
have rational singularities.

Proof. First, recall that we can identify the sections of a bundle over a single
Grassmannian, O(1) → Gr(i), with linear combinations of i× i minors ∆R(x) in
the homogeneous Stiefel coordinates

x =

 x11 · · · x1i
...

. . .
...

xn1 · · · xni

 ∈ Gr(i),

where R denotes any set of row indices R ⊂ [n], |R| = i. Thus, a typical spanning
element of H0(Gr(D),O(m)) is the section

∆R11(x(1)) · · ·∆R11(x(1)) ∆R21(x(2)) · · ·∆Rlml (x(l)),

where x(k) represents the homogeneous coordinates on each factor Gr(|Ck|) of
Gr(D), and Rkm are arbitrary subsets with |Rkm| = ik.

Now, restrict the above section to FD ⊂ Gr(D) and then further to the dense
G-orbit G · zD ⊂ FD. Parametrizing the orbit by g 7→ g · zD, we pull back the
resulting sections of H0(FD,Lm) to certain functions on G ⊂ Matn×n(C), which
are precisely the products of minors defining the spanning set of MD,m. This
shows that

MD,m ∼= Im
[
H0(Gr(D),O(m)) rest→ H0(FD,Lm)

]
.

Similarly for B-orbits, we have

MB
D,m

∼= Im
[
H0(Gr(D),O(m)) rest→ H0(FBD ,Lm)

]
.
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Given this description of MD,m, our Proposition becomes a restatement of
the vanishing results in [21], Props. 25 and 28 (due to W. van der Kallen and S.P.
Inamdar, applying the work of O. Mathieu [22], P. Polo, et.al.). The conditions (α)
and (β) of these propositions apply to FD because D is contained in a chamber
family D+

i (Prop. 5 above). Furthermore, the proof of [21], Props. 25 and 28
go through identically with FBD in place of FD, merely replacing Fw0;u1,... ,ur by
Fe;u1,... ,ur . �

We recall another result from [21]: For the unflagged case, the following propo-
sition is a restatement of [21], Prop. 28(a). Again, the proof given there goes
through almost identically for the flagged case.

Proposition 9. Suppose (D,m), (D̃, m̃) are strongly separated subset families
with D ⊂ D̃, m̃(C) = m(C) for C ∈ D, m(C) = 0 otherwise. Then the natural
projection π : Gr(D̃)→ Gr(D) restricts to a surjection π : F

D̃
→ FD, and induces

an isomorphism
π∗ : H0(FD,Lm) ∼→ H0(F

D̃
,Lm̃),

and similarly for the flagged case.

Remarks. (a) Note that the proposition holds even if dimF
D̃
> dimFD.

(b) We will use the proposition in the case where D is a strongly separated family
which is part of the chamber family D̃ = Di. The above propositions give:

MD,m ∼= H0(FD,Lm) ∼= H0(FD ,Lm̃) = H0(Zi,Lm̃).

In the next section, we apply the Demazure formula for Bott-Samelson varieties
to compute the character of MD,m.
(c) We may conjecture that all the results of this section hold not only in the
strongly separated case, but for all subset families and configuration varieties.

3.3. Demazure character formula

We now examine how the iterative structure of Bott-Samelson varieties helps to
understand the associated Weyl modules.

Define Demazure’s isobaric divided difference operator Λi : C[x1, . . . , xn] →
C[x1, . . . , xn],

Λif =
xif − xi+1sif

xi − xi+1
.

For example for f(x1, x2, x3) = x2
1x

2
2x3,

Λ2f(x1, x2, x3) =
x2(x2

1x
2
2x3)− x3(x2

1x
2
3x2)

x2 − x3

= x2
1x2x3(x2 + x3).
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For any permutation with a reduced decompostion w = si1 . . . sil , define

Λw
def= Λi1 · · ·Λil ,

which is known to be independent of the reduced decomposition chosen.
By the dual character of a G- or B-module M , we mean

char∗M = tr(diag(x1, . . . , xn)|M∗) ∈ C[x±1
1 , . . . , x±1

n ].

(The dual character of a Weyl module is the ordinary character of the correspond-
ing Schur module, a polynomial in x1, x2, . . . .) Let $i denote the ith fundamen-
tal weight, the multiplicative character of B defined by $i(diag(x1, . . . , xn)) =
x1x2 · · ·xi.

Proposition 10. Suppose (D,m) is strongly separated, and

D ⊂ D+
i = {[1], . . . , [n], C1, . . . , Cl},

for some reduced word i = (i1, . . . , il). Define m̃ = (k1, . . . , kn,m1, . . . ,ml) by
m̃(C) = m(C) for C ∈ D, m̃(C) = 0 otherwise. Then

char∗MB
D,m = $k1

1 · · ·$
kn
n Λi1($m1

i1
. . . (Λil$

ml
il

) . . . ).

Furthermore,
char∗MD,m = Λw0 char∗MB

D,m,

where w0 denotes the longest permutation.

Remark. We explain in §4.4 below (and in [13], [14]) how one can recursively
generate a set of standard tableaux for MB

D by “quantizing” this character formula.

We devote the rest of this section to proving the Proposition.
For a subset C = {j1, j2, . . . } ⊂ [n], and a permutation w, let wC = {w(j1),

w(j2), . . . }, and for a subset family D = {C1, C2, . . . }, let wD = {wC1, wC2, . . . }.
Now, for i ∈ [n− 1], let

ΛiD
def= {si[i]} ∪ siD,

where si[i] = {1, 2, . . . , i− 1, i+ 1}. We say that D is i-free for i ∈ [n] if for every
C ∈ D, we have C ∩ {i, i+ 1} 6= {i+ 1}.

Lemma 11. Suppose (D,m) is strongly separated and i-free. Then:
(i) FBΛiD ∼= Pi×B FBD .
(ii) FBsiD ∼= Pi · FBD ⊂ Gr(D) .
(iii) The projection FBΛiD → F

B
siD

is regular, surjective, and birational.
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(iv) Let m̃ be the multiplicity on ΛiD defined by m̃(siC) = m(C) for C ∈ D,
m̃(si[i]) = m0. The bundle Lm̃ → F

B
ΛiD is isomorphic to

Lm̃
∼= Pi

B
× (($m0

i )∗ ⊗Lm) ,

where ($m0
i )∗ ⊗ Lm indicates the bundle Lm → FBD with its B-action twisted by

the multiplicative character ($m0
i )∗ = $−m0

i .

Proof. (i) Since D is i-free, we have UizD = zD, where Ui is the one-dimensional
unipotent subgroup corresponding to the simple root αi. We may factor B into a
direct product of subgroups, B = UiB

′ = B′Ui. Then

FBD = B · zD = B′ · zD.

Hence the T -fixed point (si, zD) ∈ Pi
B
×FBD has a dense B-orbit:

B · (si, zD) = (UiB′si, zD)
= (Uisi, B′ · zD)

= Pi
B
×FBD .

Clearly, the injective map

ψ : Pi
B
×Gr(D) → Gr(i)×Gr(D)
(p, V ) 7→ (pCi, pV )

takes ψ(si, zD) = zΛiD, the B-generating point ofFBΛiD. Thus ψ : Pi
B
×FBD → FBΛiD

is an isomorphism.
(ii+iii) By the above, the projection is a bijection on the open B-orbit, and hence
is birational. The image of the projection is Pi · FBD , which must be closed since
Pi×B FBD is a proper (i.e. compact variety).
(iv) Clear from the definitions. �

Lemma 12. Let (D,m) be a strongly separated family and i ∈ [n− 1]. Let

F ′ = Pi
B
×FBD

L′ = Pi
B
×Lm.

so that L′ → F ′ is a line bundle. Then

char∗H0(F ′,L′) = Λi char∗H0(FBD ,Lm).
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Proof. By Demazure’s analysis of induction to Pi (see [7], “construction élémen-
taire”) we have

Λi char∗H0(FBD ,Lm) = char∗H0(F ′,L′)− char∗H1(Pi/B,H1(FBD ,Lm) ).

However, we know by [21], Prop. 28(a) that H0(FBD ,Lm) has a good filtration, so
that the H1 term above is zero. �

Corollary 13. If (D,m) is strongly separated and i-free, and (ΛiD, m̃) is a dia-
gram with multiplicities m̃(siC) = m(C) for C ∈ D, m̃(si[i]) = m0, then

char∗MB

ΛiD,m̃
= Λi$

m0
i char∗MB

D,m.

If m0 = 0, then

char∗MB
siD,m = char∗MB

ΛiD,m̃
= Λi char∗MB

D,m

This follows immediately from the above Lemmas and Proposition 9.

Proof of Proposition. The first formula of the Proposition now follows from the
above Lemmas and Prop. 9. The second statement follows similarly from De-
mazure’s character formula and the vanishing statements of [21], Prop. 28. �

4. Schubert polynomials

We now apply our theory to compute the Schubert polynomials S(w) of permuta-
tions w ∈ Sn, which generalize the Schur polynomials sλ(x1, . . . , xk). They were
originally considered as representatives of Schubert classes in the Borel picture of
the cohomology of the flag variety GL(n)/B, though we will give a completely
different geometric interpretation in §4.2. As a general reference, see Macdonald
[20] or Fulton [10].

Although our results follow from the geometric theory of previous sections, we
phrase them in a purely elementary and self-contained way (except in §4.2). Most
of our computations in §§4.3–4.5 are valid for the character of the generalized
Schur module of any strongly separated family.

We first state the combinatorial definition of Schubert polynomials, and then
prove the theorem of Kraskiewicz and Pragacz [12], that Schubert modules are the
characters of flagged Schur modules associated to a Rothe diagram. Finally, we
give three new, explicit formulas for Schubert polynomials.
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4.1. Definitions

The Schubert polynomials S(w) in variables x1 . . . , xn are constructed combina-
torially in terms of the following divided difference operators. First, the operator
∂i is defined by

∂if (x1, . . . , xn) =
f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

Then for a reduced decomposition of a permutation u = si1si2 · · · , the operator
∂u = ∂i1∂i2 · · · is independent of the reduced decomposition chosen. Also, take
∂e = id.

Now we may define the Schubert polynomials as follows. Let w0 be the longest
permutation (w0(i) = n+ 1− i), and take u = w−1w0, so that wu = w0. Then

S(w) def= ∂u(xn−1
1 xn−2

2 · · ·x2
n−2xn−1).

We have deg S(w) = `(w).

To compute any S(w), we write w0 = wsi1 · · · sir for some reduced word
si1 · · · sir (si = (i, i + 1) denoting a simple transposition in Sn). In particular,
we may take ik to be the first ascent of wk = wsi1 · · · sik−1 ; that is, ik = the
smallest i such that wk(i+ 1) > wk(i).

Examples. (a) For w ∈ S3, we have S(w0) = x2
1x2, S(s1s2) = x1x2, S(s2s1) =

x2
1, S(s2) = x1 + x2, S(s1) = x1, S(e) = 1.

(b) For the permutation w = 24153 ∈ S5, by inverting first ascents we get
ws1s3s2s1s4s3 = w0, so

S(w) = ∂1∂3∂2∂1∂4∂3(x4
1x

3
2x

2
3x4)

= x1x2 (x1x2 + x1x3 + x2x3 + x1x4 + x2x4).

(c) Given n > k, the partition λ = (0 ≤ λ1 ≤ λ2 ≤ · · ·λk ≤ n) is “strictified” to
the subset C = {λ1 + 1 < λ2 + 2 < · · ·λk + k} ⊂ [n], which is completed to a
Grassmannian permutation w by adjoining [n]\C. Then the Schubert polynomial
of w is equal to the Schur polynomial of λ: S(w) = sλ(x1, . . . , xk). For instance,
for n = 7,k = 5,C = 12457,λ = 00112,we have S(1245736) = s00112(x1, . . . , x5).

Now, a diagram (generalized Young diagram) is a subset D ⊂ N ×N. The
point (i, j) is in row i, column j, and we think of a diagram as a list of columns
C ⊂ N: D = (C1, C2, . . . ). Two diagrams are column equivalent, D ∼= D′, if
one is obtained from the other by switching the order of columns (and ignoring
empty columns). For a column C ⊂ N, the multiplicity multD(C) is the number of
columns of D with content equal to C. An equivalence class of diagrams is another
way to express our subset families with multiplicity in §3.1. Sum of diagrams

D ⊕D′
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means placing D horizontally next to D′ (concatenating lists of columns), and
D \ {C} means removing one column whose content is equal to C.

The Rothe diagram of a permutation w ∈ Sn is

D(w) = { (i, j) ∈ [n]×[n] | i < w−1(j), j < w(i) }.

It is easy to see that D(w) is a strongly separated subset family. (In fact, it is
northwest. See [23], [24], [21].)

Example. For the same w = 24153, we have

D = D(w) =

1 �
2 � �
3
4 �

∼=

�
� �

�
= ( {1, 2}, {2, 4} )

Recall that [i] denotes the interval {1, 2, 3, . . . , i}.

4.2. Theorem of Kraskiewicz and Pragacz

The geometric significance of the Schubert polynomials is as follows. There are
two classical computations of the singular cohomology ring H ·(G/B,C) of the flag
variety. That of Borel identifies the cohomology with a coinvariant algebra

c : H ·(G/B,C) ∼→ C[x1, . . . , xn]/I+,

where I+ is the the ideal generated by the non-constant symmetric polynomials.
The map c is an isomorphism of graded C-algebras, and the generator xi represents
the Chern class of the ith quotient of the tautological flag bundle, which is not the
dual of an effective divisor. The alternative computation of Schubert gives as a
linear basis for H ·(G/B,C) the Schubert classes σw = [Xw0w], the Poincare duals
of the Schubert varieties.

The isomorphism between these computations was defined by Bernstein-Gelfand-
Gelfand [4] and Demazure [7], and given a precise combinatorial form by Lascoux
and Schutzenberger [15]. It states that the Schubert polynomials S(w) defined
above are representatives of the Schubert classes in the cohomology ring.

We now give a completely different geometric interpretation of the polynomials
S(w) in terms of Weyl modules.

Theorem 14. (Kraskiewicz-Pragacz [12])

S(w) = char∗MB
D(w),

where MB
D(w) is the Weyl module of §3.1 associated to D(w) (thought of as a subset

family with multiplicity).
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Proof. (Magyar-Reiner-Shimozono)Let χ(w) = char∗MB
D(w). We must show

that χ(w) satisfies the defining relations of S(w).
First, D(w0) = ([1], . . . , [n− 1]), and

MB
D(w0) = C · ∆̃1

1∆̃12
12 . . . ∆̃

[n−1]
[n−1],

a one-dimensional B-module, so χ(w0) = xn−1
1 xn−2

2 · · ·xn−1.
Now, suppose wsi < w, and i is the first ascent of wsi. Then the w(i + 1)th

element of D(w) is Cw(i+1)(w) = [i]. Letting

D′(w) def= D(w) \ { [i] },

it is easily seen that:
(i) D′(w) is i-free,
(ii) D(w) ∼= D′(w) ⊕ { [i] }, and
(iii) D(wsi) ∼= siD

′(w) ⊕ { [i− 1] } (where [0] = ∅) .

Hence we obtain trivially:

χ(w) = x1· · ·xi char∗MB
D′(w)

χ(wsi) = x1· · ·xi−1 char∗MB
siD′(w).

Since D′(w) is strongly separated and i-free, Corollary 13 implies that

char∗MB
siD′(w) = Λi char∗MB

D′(w).

Thus we have

χ(wsi) = (x1 · · ·xi−1) Λi char∗MB
D′(w)

= Λix−1
i (x1 · · ·xi) char∗MB

D′(w)

= Λix−1
i χ(w)

= ∂i χ(w).

But now, using the the first-ascent sequence to write w0 = wsi1 · · · sir , we compute

χ(w) = ∂i1 · · ·∂ir (xn−1
1 xn−2

2 · · ·xn−1) = S(w). �
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4.3. Orthodontia and Demazure character formula

We will use the Demazure character formula (Prop. 10) to compute Schubert
polynomials. To make this formula explicit, however, we must embed our Rothe
diagram into a chamber family. The algorithm we give below will work for any
strongly separated family.

Let D = (C1, C2, . . . ) be a Rothe diagram. We require a reduced word i =
(i1, . . . , il) and a multiplicity list m = (k1, . . . , kn,m1, . . . ,ml), ki,mj ≥ 0, which
generate D in the following sense. Define a diagram by

Di,m =
n⊕
i=1

ki · [i] ⊕
l⊕

j=1

mj · (si1si2 · · · sij [ij]),

where m ·C = C⊕· · ·⊕C (m copies of C), and 0 ·C = ∅, an empty column. Then
we require that D ∼= Di,m..

As our first step in generating i and m, let ki = multD([i]), 1 ≤ i ≤ n, and
remove from D all columns of the form C = [i] to get a new diagram D−.

Given a column C ⊂ [n], a missing tooth of C is a positive integer i such that
i 6∈ C, but i+ 1 ∈ C. The only C without any missing teeth are the intervals [i],
so we can choose a missing tooth i1 of the first column of D−. Now switch rows
i1 and i1 + 1 of D− = {C1, C2, . . . } to get a new diagram D′ with closer teeth
(orthodontia). That is,

D′ = si1D− = {si1C1, si1C2, . . . }.

In the second step, repeat the above with D′ instead of D. That is, let m1 =
multD′([i1]), and remove all columns of the form C = [i1] from D′ to get a new
diagram D′−. Find a missing tooth i2 of the first column of D′−, and switch rows
to get a new diagram D′′ = si2D

′
−.

Iterate this procedure until all columns have been removed. It is easily seen
that the sequences i and m thus defined have the desired properties.

Example. For w = 24153,

D = D(w) =

1 �
2 � �
3
4 �

D− =

1 ◦
2 �
3
4 �

D′ = D′− =

1 �
2
3 ◦
4 �

D′′ = D′′− =
1 �
2 ◦
3 �

D′′′ = 1 �
2 � D′′′− = ∅

so that the sequence of missing teeth (as indicated by ◦) gives i = (1, 3, 2), and
m = (k1 = 0, k2 = 1, k3 = 0, k4 = 0,m1 = 0,m2 = 0,m3 = 1). Furthermore
D = {[2]1, (s1s3s2[2])1} = { {1, 2}, {2, 4} }.
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Note that si1 · · · sil = s1s3s2 is a reduced subword of the first-ascent sequence
s1s3s2s1s4s3 which raises w to the maximal permutation w0. This is always the
case, and we can give an algorithm for extracting this subword.

Note. To apply this algorithm to a general strongly separated family D (with
multiplicity), first choose an order D = {C1, C2, . . . } for the subsets in the family

(the columns) such that if i < j then (Ci \Cj)
elt
< (Cj \Ci), in the notation of §2.2.

For example, the obvious lexicographic order will do.

Now, the definition of S(w) involves descending induction (lowering the degree),
but we give the following ascending algorithm, which follows immediately from
Prop. 10.

Proposition 15. Given a permutation w, let (i, m) be a generating sequence such
as the orthodontic sequence above. Let Λi = ∂ixi and $i = x1x2 · · ·xi. Then

S(w) = $k1
1 · · ·$

kn
n Λi1($m1

i1
. . . (Λil$

ml
il

) . . . ).

Example. For our permutation w = 24153, we may verify that

S(w) = x1x2 Λ1Λ3Λ2(x1x2).

Note that this algorithm is more efficient than the usual one if the permutation
w ∈ Sn has small length compared to n.

Remark. The above proposition computes a Schubert polynomial S(w) in terms
of a word i. This word i is not a decomposition of w. We may view the formula of
the proposition as computing the character of a space of sections over the Bott-
Samelson variety Zi (cf. §3.3). This variety is not the Schubert variety Xw, nor
any desingularization of it, since in general dimXw 6= dimZi. There is no obvious
combinatorial relationship between w and i, nor any obvious geometric relationship
between Xw and Zi.

4.4. Young tableaux

The work of Lascoux-Schutzenberger [17] and Littlemann [19] allows us to “quan-
tize” our Demazure formula, realizing the terms of the polynomial by certain
tableaux endowed with a crystal graph structure. Reiner and Shimozono have
shown that our construction gives the same non-commutative Schubert polyno-
mials as those in [16]. Our tableaux are different, however, from the “balanced
tableaux” of Fomin, Greene, Reiner, and Shimozono [11]. For proofs see [14], and
see also [24], [25].
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Recall that a column-strict filling (with entries in {1, . . . , n}) of a diagram D is
a map t , mapping the points (i, j) of D to numbers from 1 to n, strictly increasing
down each column. The weight of a filling t is the monomial xt =

∏
(i,j)∈D xt(i,j),

so that the exponent of xi is the number of times i appears in the filling. We will
define a set of fillings T of the Rothe diagram D(w) which satisfy

S(w) =
∑
t∈T

xt.

We will need the root operators first defined in [17]. These are operators fi
which take a filling t of a diagram D either to another filling of D or are undefined.
To define them we first encode a filling t in terms of its reading word: that is, the
sequence of its entries starting at the upper left corner, and reading down the
columns one after another: t(1, 1), t(2, 1), t(3, 1), . . . , t(1, 2), t(2, 2), . . . .

If it is defined, the lowering operator fi changes one of the i entries to i + 1,
according to the following rule. First, we ignore all the entries in t except those
containing i or i+ 1; if an i is followed by an i+ 1 (ignoring non i or i+ 1 entries
in between), then henceforth we ignore that pair of entries; we look again for an i
followed (up to ignored entries) by an i + 1, and henceforth ignore this pair; and
iterate until we obtain a subword of the form i+ 1, i+ 1, . . . , i+ 1, i, i, . . . , i. If
there are no i entries in this word, then fi(t) is undefined. If there are some i
entries, then the leftmost is changed to i+ 1.

For example, we apply f2 to the word

t = 1 2 2 1 3 2 1 4 2 2 3 3

. 2 2 . 3 2 . . 2 2 3 3

. 2 . . . 2 . . 2 . . 3

. 2 . . . 2 . . . . . .

f2(t) = 1 3 2 1 3 2 1 4 2 2 3 3

f2
2 (t) = 1 3 2 1 3 3 1 4 2 2 3 3

f3
2 (t) = undefined

Decoding the image word back into a filling of the same diagram D, we have
defined our operators.

Moreover, define the quantized Demazure operator Λ̃i taking a tableau t to a
set of tableaux:

Λ̃i(t) = {t, fi(t), (fi)2(t), . . . }.

Also, for a set T of tableaux, Λ̃(T ) =
⋃
t∈T Λ̃(t). Note that this means ordinary

union of sets, without counting any multiplicities.
Now, consider the column φi = {1, 2, . . . , i} and its minimal column-strict fill-

ing $i (jth row maps to j). For a filling t of any diagram D = (C1, C2, . . . ),
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define in the obvious way the composite filling $i ⊕ t of the concatenated dia-
gram φi ⊕ D = (φi, C1, C2, . . . ). This corresponds to concatenating the words
(1, 2, . . . ,m) and t. Similarly, let [$i]m ⊕ t denote concatenating m copies of $m

before t.

Proposition 16. For a permutation w, let i, m be a generating sequence as in
the previous Proposition. Define the set of tableaux

T = $k1
1 ⊕ · · · ⊕$

kn
n ⊕ Λ̃i1($m1

i1
⊕ . . . (Λ̃il$ml

il
) . . . ).

Then the Schubert polynomial S(w) is the generating function of T :

S(w) =
∑
t∈T

xt.

Proof. Follows immediately from the Demazure formula above, and the com-
binatorial properties of root operators described in [19] Sec. 5.

Example. Continuing the example of the previous section, the set T of tableaux
(words) is built up as follows:

{$2 = 12} Λ̃2→ {12, 13} Λ̃3→ {12, 13, 14} Λ̃1→= {12, 13, 14, 23, 24}

$2⊕→ T = T2 = {1212, 1213, 1214, 1223, 1224}.

This clearly gives us the Schubert polynomial as generating function, and further-
more we see the crystal graph (with vertices the tableaux in T and edges all pairs
of the form (t, fit) ):

1223 1← 1213
3↓ ↓ 3

1224 1← 1214
1212

The highest-weight elements in each component are the Yamanouchi words Yam(T )
= {1213, 1212}, and by looking at the corresponding lowest elements, we may
deduce the expansion of the Schubert polynomial in terms of key polynomials
(characters of Demazure modules): S(w) = κx1x

2
2x4

+ κx2
1x

2
2

= κ1201 + κ2200.
Lascoux and Schutzenberger [17] have obtained another characterization of such
lowest-weight tableaux.
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4.5. Weyl character formula

Our final formula reduces to the the Weyl character formula (Jacobi bialternant)
in case S(w) is a Schur polynomial.

Geometrically, the idea is to apply the Atiyah-Bott Fixed Point Theorem to
the Bott-Samelson variety to compute the character of its space of sections (the
Schubert polynomial). This would be very inefficient, however, since the formula
would involve 2l terms (where l is the length of the i found by orthodontia).
We obtain a much smaller expression from considering a smaller configuration
variety F

D̃
which is smooth and birational to the Bott-Samelson variety, and

which desingularizes the configuration variety FD(w). (See [21] for details.) The
formula below applies also to the subset families of northwest type considered in
[21], but for a general strongly separated family one has only the inefficient formula
coming from the full Bott-Samelson resolution.

Combinatorially, we define a certain extension D̃ of the Rothe diagram D =
D(w). Define the staircase diagram to be the set of columns Φ = {[1], [2], . . . , [n]}.
Let the flagged diagram Φ⊕D be the sum (concatenation) of the two diagrams.
Now, given Φ ⊕ D = (C1, . . . , Cr), define the blowup of the flagged diagram̂Φ⊕D = (C1, . . . , Cr, C

′
1, C

′
2, . . . ), where the extra columns are the intersections

C̃ = Ci1 ∩ Ci2 ∩ · · · ⊂ N, for all lists Ci1 , Ci2 , . . . of columns of Φ ⊕ D; but if
an intersection C̃ is already a column of Φ ⊕ D, then we do not append it. Let
D̃ = ̂Φ⊕D.

Define a standard tabloid t of D̃ to be a column-strict filling such that if C,C′

are columns of D̃ with C horizontally contained in C′, then the numbers filling C
all appear in the filling of C′. In symbols, t : D̃→ {1, . . . , n} , t(i, j) < t(i+ 1, j)
for all i, j, and C ⊂ C′ ⇒ t(C) ⊂ t(C′).

For 1 ≤ i 6= j ≤ n and a tabloid t of D̃, we define certain integers: dij(t) is the
number of connected components of the following graph. The vertices are columns
C of D̃ such that i ∈ t(C), j 6∈ t(C); the edges are (C,C′) such that C ⊂ C′ or
C′ ⊂ C.

Finally, since there are inclusions of diagrams D, Φ ⊂ D̃, we have the restric-
tions of a tabloid t for D̃ to D and Φ, which we denote t|D and t|Φ. For t a filling
of D, let

xt =
∏

(i,j)∈D

xt(i,j),

the weight of the filling.

Proposition 17.

S(w) =
∑
t

x(t|D)∏
i<j (1− x−1

i xj)dij(t)−1 (1− x−1
j xi)dji(t)

,

where t runs over the standard tabloids for ̂Φ⊕D such that (t|Φ)(i, j) = i for all
(i, j) ∈ Φ.
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Example. For the same w = 24153,

D = D(w) =

1 �
2 � �
3
4 �

Φ⊕D =

� � � � �
� � � � �
� �
� �

̂Φ⊕D =

1 � � � � �
2 � � � � � �
3 � �
4 � �

.

There are six standard tabloids of the type occurring in the theorem. Their re-
strictions to the last three columns of ̂Φ⊕D are:

1
2 1 1

2

,

1
2 1 1

3

,

1
2 1 1

4

,

1
2 1 2

2

,

1
2 2 2

3

,

1
2 2 2

4

.

The integers dij(t) are 0, 1, or 2, and we obtain

S(w) =
x2

1x
2
2

(1− x−1
1 x2)(1 − x−1

2 x3)(1 − x−1
2 x4)

+
x2

1x2x3

(1− x−1
1 x2)(1 − x−1

3 x4)(1 − x−1
3 x2)

+
x2

1x2x4

(1 − x−1
1 x2)(1 − x−1

4 x2)(1 − x−1
4 x3)

+
x2

1x
2
2

(1 − x−1
1 x3)(1 − x−1

1 x4)(1 − x−1
2 x1)

+
x1x2

2x3

(1− x−1
2 x1)(1 − x−1

3 x4)(1 − x−1
3 x1)

+
x1x2

2x4

(1− x−1
2 x1)(1− x−1

4 x1)(1− x−1
4 x3)

.

Note that it is not clear a priori why this rational function should simplify to a
polynomial (with positive integer coefficients).
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