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Approximating `2-Betti numbers of an amenable covering
by ordinary Betti numbers
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Abstract. It is shown that the `2-Betti numbers of an amenable covering of a finite cell-complex
can be approximated by ordinary Betti numbers of the finite Følner subcomplexes. This is a new
proof, using simple homological arguments, of a recent result of Dodziuk and Mathai.
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0. Introduction

Let Y be an infinite amenable covering of a finite cell-complex X with covering
transformation group G. Then the `2-Betti numbers βp(Y ) can be approxi-
mated by the average ordinary Betti numbers of the finite subcomplexes
Yj of a Følner exhaustion of Y . This has been proved by Dodziuk and Mathai
[D-M]. The purpose of the present paper is to give a simple “homological” proof
of that result. It consists in examining the `2-homology map Hp(Yj)−→Hp(Y )
induced by the inclusion Yj−→Y.

1. Følner sequence

1.1. We consider a discrete infinite amenable group G and a free cocompact
G-space Y . By this we mean a cell complex Y on which G operates freely by
permutation of the cells, with finite orbit complex X = Y/G. Then Y is a cov-
ering of X with covering transformation group G. Since G is a factor group of
the fundamental group of X , and X is a finite complex, G is necessarily finitely
generated. In short Y is called an infinite amenable covering of X .

1.2. It is known (Cheeger-Gromov [C-G], see also [E] or [D-M]) that in such a situ-
ation there exists in Y a Følner sequence (or Følner exhaustion) Yj , j = 1, 2, 3, ....
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Here is its description in the form we will need later.
For each closed p-cell σp in X we choose an arbitrary lift σ̂p in the correspond-

ing G-orbit. The union of all σ̂p, p ≥ 0, together with its topological closure
( i.e. adding if necessary boundary cells of the σ̂p) is a closed fundamental do-
main D for the G-action in Y . The Yj form an increasing sequence of finite
subcomplexes of Y with union Y ; each Yj is a union of Nj distinct translates
xνD, ν = 1, 2, ..., Nj, xν ∈ G, of D. Let further Ẏj be the topological boundary of
Yj and Ṅj the number of translates of D which meet Ẏj . From the combinatorial
Følner criterion [F] for amenability it follows easily that the sequence Yj can be
chosen such that Ṅj/Nj−→0 for j−→∞.

2. `2-chains, restricted trace

2.1. The cellular p-chains of Y with R−coefficients constitute a free RG−module
Cp(Y ); as basis we can take the lifts (see 1.2) σ̂ip of the p-cells σip of X, i =
1, 2, ..., αp, where αp is the number of p-cells of X . Each p-cell of Y can be
uniquely written as xσ̂ip, x ∈ G, i = 1, ..., αp, and in each orbit the G-action is by
left translation.

2.2. As Y is an infinite complex, one considers besides the ordinary p-chains
also `2-chains, i.e. square-summable real linear combinations of the cells of Y .
They constitute a Hilbert space C(2)

p (Y ) where all the cells xσ̂ip as above form an

orthonormal basis. We sometimes omit Y and simply write C(2)
p . The induced

action of G on C(2)
p is isometric.

2.3. For any Hilbert subspace H of C(2)
p , not necessarily G-invariant, there is the

orthogonal projection

Φ : C(2)
p −→C(2)

p

with image H. We consider the following ”restricted trace” of Φ referring to a
finite subcomplex Yj of Y consisting of Nj translates of the fundamental domain
D. Here amenability is not required; it is in 3.4 only that Yj will refer to a Følner
sequence in Y .

Let Πj be the projection C(2)
p −→C(2)

p with image C(2)
p (Yj) . Since Yj is a finite

complex, we have C(2)
p (Yj) = Cp(Yj); thus Πj is projection on a finite dimensional

R-subspace of C(2)
p whose basis consists of all cells xν σ̂ip with ν ≤ Nj. One can

form the R-trace

dj(H) = traceRΠjΦ

It will be examined for some special subspaces H. Note that it can be expressed
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by scalar products in C
(2)
p as

dj(H) =
αp∑
i=1

Nj∑
ν=1

< Φ(xν σ̂ip), xν σ̂
i
p > +

∑
τp

< Φ(τp), τp > .

where the τp are cells in Ẏj not of the form xν σ̂
i
p.

2.4. Properties of dj :
1) Since Φ is idempotent and self-adjoint, the scalar products above are equal

to < Φ(xν σ̂ip),Φ(xν σ̂ip) > and < Φ(τp),Φ(τp) > respectively and thus ≥ 0: The
restricted trace dj(H) is non-negative.

2) Note that one always has

dj(H) ≤ dimRΠj(H)

since
trR(ΠjΦ) ≤ ||ΠjΦ||dimRim(ΠjΦ) ≤ dimRΠj(H).

If in particular H is a subspace of Cp(Yj) then dj is the same as the trace of the
projection of Cp(Yj) to H. Since these are finite-dimensional vector spaces, the
trace is = dimRH.

3) If H decomposes orthogonally into H1 +H2 then dj(H) = dj(H1) + dj(H2).
Just note that then Φ = φ1 + φ2 where φi is the projection onto Hi, i = 1, 2 and
replace Φ in the scalar products above.

4) In case H is G-invariant the projection Φ is G-equivariant and < Φ(xν σ̂ip),
xν σ̂

i
p > is equal to < Φ(σ̂ip), σ̂

i
p >. But Σαpi=1 < Φ(σ̂ip), σ̂

i
p > is just the von

Neumann dimension dimGH (see e.g. [L] or [E2]). Thus in that case

dj(H) = Nj dimGH

plus an ”error term” Tj coming from the boundary cells τp which is ≤ dimRCp(Ẏj).

3. Mapping Hp(Yj) into Hp(Y )

3.1. In the following, homology Hp is to be understood as ”reduced” `2-homology
(cycles modulo the closure of boundaries). It can be represented by the orthogonal
complement of the space of boundaries in the p-cycle space, i.e. by harmonic chains
(boundary ∂ = 0 and coboundary δ = 0). In this sense we will consider Hp(Y ) as

a Hilbert subspace of C(2)
p (Y ) and Hp(Yj) as a subspace of Cp(Yj).

3.2. Since the boundary operator ∂ in C
(2)
p commutes with the G-action, the

homology group Hp(Y ) considered as a subspace of C(2)
p is G-invariant. According

to 2.4, 4) we have

dj(Hp(Y )) = Nj dimGHp(Y ) + Tj = Nj βp(Y rel.G) + Tj,
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where βp denotes the `2-Betti number and Tj is the error term from 2.4,4).
As for Hp(Yj), we have by 2.4, 2)

dj(Hp(Yj)) = dimRHp(Yj) = βp(Yj),

the ordinary p-th Betti number of Yj .

3.3. The inclusion of Yj in Y induces a bounded linear map φ : Hp(Yj)−→Hp(Y ).
Let Kp be the kernel of φ, and K ′p its orthogonal complement in Hp(Yj); and Ip
the image of φ, and I ′p its orthogonal complement in Hp(Y ).

We will look closer at these harmonic subspaces of Cp(Yj) and C(2)
p (Y ) respec-

tively in order to get estimates for the values of dj . We recall that ∂ commutes
with the inclusion of Yj in Y but in general not with the the restriction of Y to Yj ,
and that for δ things are the other way around. In particular a harmonic chain in
Yj need not be harmonic in Y , but can be made harmonic by adding a well-defined
element of the closure of boundaries.

3.4. We decompose the p-chains c ∈ C
(2)
p as c = ċ + c′ where all p-cells of ċ

intersect the topological boundary Ẏj and c′ does not contain any such cell. This

yields an orthogonal decomposition of C(2)
p into Ċp and C′p. We now use the

amenability of the covering and assume that Yj is a term of the Følner sequence.
Then dimRĊp ≤ Ṅjαp.

1) If c ∈ Kp, with ∂c = δc = 0 in Yj , then c ∈ ∂C(2)
p+1(Y ). If we assume ċ = 0,

c = c′ ∈ C′p, then δ commutes with the inclusion, i.e. δc = 0 in Y . But since
cocycles are orthogonal to the closure of the space of boundaries, it follows that
c = 0. Thus Kp ∩ C′p = 0, and Kp is isomorphic to a subspace of Ċp. Therefore

dj(Kp) = dimRKp ≤ dimRĊp ≤ Ṅjαp .

2) As for dj(I ′p) it does not exceed dimRRp where Rp = resjI ′p and resj is
the restriction from Y to Yj . The chains c ∈ I ′p fulfill ∂c = δc = 0. Moreover

< c, z >= 0 for all p-cycles z in Yj since φ(z) = z+ b, with b ∈ ∂C(2)
p+1. For r ∈ Rp

the same holds except possibly for ∂r = 0. But if r = ċ + c′ as above, and if we
assume ċ = 0 then ∂r = 0. From < r, z >= 0 for all p-cycles z in Yj it follows that
r is a coboundary in Yj , r = δs. Thus < r, r >=< r, δs >=< ∂r, s >= 0, whence
r = 0 and Rp ∩ C′p = 0. As before this implies dimRRp ≤ Ṅjαp and we get

dj(I ′p) ≤ dimRRp ≤ Ṅjαp .

3.5. K ′p is isomorphic as a (finite-dimensional) vector space to Ip. Their dj need
not be equal, but we show that their difference fulfills an inequality similar to
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those above. The isomorphism is given by adding to each c ∈ K ′p a well defined

element b(c) ∈ ∂C(2)
p+1(Y ), in order to get a harmonic chain in Y . If, in particular,

c ∈ K ′p ∩ C′p then δc = 0 in Y , whence c ∈ Ip. Thus K ′p ∩ C′p is a subspace of Ip
which remains unchanged under Πj . This implies that dj(Ip) ≥ dj(K ′p ∩ C′p) =
dimRK ′p ∩ C′p and

dimRK ′p − dj(Ip) ≤ dimRK ′p/K
′
p ∩ C′p .

But K ′p/K ′p ∩ C′p is isomorphic to (K ′p + C′p)/C′p which is contained in C
(2)
p /C′p

isomorphic to Ċp. Thus its dimension is ≤ Ṅjαp whence

dj(K ′p)− dj(Ip) ≤ Ṅjαp .

3.6. Finally we have

βp(Yj)−Njβp(Y rel.G) = dj(Hp(Yj))− dj(Hp(Y )) + Tj

= dj(Kp)− dj(I ′p) + (dj(K ′p)− dj(Ip)) + Tj

where Tj is the error term in 2.4. By 3.4 and 3.5 and since Tj ≤ Ṅjαp this yields

| 1
Nj

βp(Yj)− βp(Y rel.G)| ≤ 4αp
Ṅj
Nj

which goes to 0 with j →∞. Thus

limj→∞
1
Nj

βp(Yj) = βp(Y rel.G).

This is the approximation statement mentioned in the introduction.
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