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Abstract. If SO is a Riemann surface with a complete metric of finite area and constant cur-
vature −1, let SC denote the conformal compactification of SO. We show that, under the
assumption that the cusps of SO are large, there is a close relationship between the hyperbolic
metrics on SO and SC . We use this relationship to show that lim infk→∞ λ1(Pk) ≥ 5/36, where
the Platonic surface Pk is the conformal compactification of the modular surface Sk.
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Let Γ = PSL(2,Z) be the group of linear fractional transformations

z → az + b

cz + d

with integer coefficients with determinant 1, and let Γ(k) denote the kth congru-
ence subgroup

Γ(k) =
{(

a b
c d

)
:
(
a b
c d

)
≡ ±

(
1 0
0 1

)
(mod k)

}
.

Γ(k) then acts on the upper half plane H2 with quotient a hyperbolic surface
Sk of finite area. According to a theorem of Selberg, we have:

Theorem 0.1. ([Se]) The first eigenvalue λ1(Sk) of the Laplacian acting on Sk
satisfies:

λ1(Sk) ≥ 3/16.

In this paper, we will consider a family of compact surfaces Pk, which we
call the Platonic surfaces. They may be described conformally as being obtained
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from Sk by “filling in” the punctures of Sk. For k = 3, 4, and 5, the surfaces Pk
correspond to the Riemann sphere with a tesselation by regular spherical k-gons.
For k > 6, the surfaces Pk carry a similar hyperbolic tesselation, and are thus
natural generalizations to hyperbolic geometry of the classical Platonic solids. See
[BFK] and [SGCC] for some alternate descriptions of these surfaces in terms of
graph theory.

In this paper, we will show:

Theorem 0.2. The first eigenvalue of the Laplacian λ1(Pk) satisfies:

lim
k→∞

inf λ1(Pk) ≥ 5/36.

The number 5/36 arises already in the work of Huxley [Hu] and Sarnak-Xue
[SX] in their geometric approach to the Selberg 3/16 Theorem, see also [TFSG].
Indeed, we will prove Theorem 0.2 by showing that the surfaces Pk are sufficiently
similar to the surfaces Sk for the Huxley-Sarnak-Xue argument to apply to them
as well.

More generally, we will consider the following situation: Let SO be a Riemann
surface with a complete finite-area metric of constant curvature −1. Then there
is a unique compact Riemann surface SC and finitely many points {p1, . . . , pk},
such that SO is conformally equivalent to SC − {p1, . . . , pk}.

A natural question is to relate the hyperbolic geometry of SO with the hyper-
bolic geometry of SC . This would seem at first glance to be problematic, since
SC need not in general carry a hyperbolic metric. Even if it does carry such a
metric, SO and SC will still have some striking differences — for instance, SO will
be non-compact while SC will be compact.

Nonetheless, our main technical result in §2 below will show that, in the case
where all the cusps of SO are large in a sense to be defined in §2 below, there
is a close relationship between the hyperbolic metrics on SO and SC (and, in
particular, SC carries such a metric). Namely, there are neighborhoods {Bli(Ci)}
of the cusps Ci of SO and {B(ri, pi)} of the points pi which depend only on the
size of the cusps, such that outside these neighborhoods the metrics are close.

The main idea in establishing that these metrics are close outside of these
neighborhoods is to use a variant of the Ahlfors-Schwarz Lemma [A] due to Wolpert
[W], which we will describe in §2 below.

We will give two applications of this result.
The first one, in §3 below, shows that, under the assumption of large cusps,

the lengths of short geodesics on SC are bounded by the lengths of short geodesics
on SO. This is the crucial step in applying the Huxley-Sarnak-Xue machinery to
the surfaces Pk.

The second application in §4 below shows that, under the assumption of large
cusps, the Cheeger constants h(SO) and h(SC) are bounded in terms of one another

1
C(l)

h(SO) ≤ h(SC) ≤ C(l)h(SO)
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by a constant C(l) which tends to 1 as the size of the cusps tends to infinity.
It follows from the inequalities of Cheeger [Ch] and Buser [Bu] that the first
eigenvalues of SO and SC are bounded in terms of one another.

In [BBD], a different method was employed to compactify the surfaces Sk to
obtain compact surfaces with λ1 bounded from below. The present method con-
trasts with the method of [BBD] in a number of ways. First of all, the surfaces
SC obtained here can in general have large injectivity radius, as we show to be the
case with the surfaces Pk, so the compact surfaces SC which can arise from this
construction can reach parts of the moduli space of surfaces not accessible by the
methods of [BBD]. This point of view is developed at length in the paper [TS].

Secondly, the method of [BBD] and the present paper can be used together
to construct families of surfaces of varying large genus whose Cheeger constants,
and hence first eigenvalues, are bounded uniformly from below, by applying the
present method to some of the cusps and the method of [BBD] to the remaining
cusps. We will pursue this line of thought in detail elsewhere.

1. Some curvature calculations

We begin by considering two metrics ds2
D and ds2

C on the punctured hyperbolic
plane H2 − pt. The metric ds2

D is the standard hyperbolic metric on H2. If we
write the punctured hyperbolic plane as the punctured unit disk

D∗ = {z ∈ C : 0 < |z| < 1},

then the metric ds2
D may be written as

ds2
D = [

2
1− r2 ]2[dx2 + dy2],

where we have set r = |z|.
The metric ds2

C may be described as the unique metric in the standard confor-
mal class which is complete on H2−pt and has constant curvature −1. It may be
realized by taking the quotient C of the standard hyperbolic metric on the upper
half-plane H2 given by

ds2 =
1
y2 [dx2 + dy2]

by the isometry A : z → z + 1, and by identifying the quotient H2/A with D∗ by
the map

z → e2πiz .

From this, it is easy to write out the explicit expression for ds2
C given by

ds2
C = [

1
r log(r)

]2[dx2 + dy2].
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The main goal of this section is the following:

Lemma 1.1. For every ε, there exists an R and a metric ds2
R on D∗ with the

following properties:
(i) ds2

R is conformally equivalent to ds2
D (and hence also ds2

C) on D∗.
(ii) Outside a ball of radius R about 0 in the metric ds2

D, ds2
R agrees with the

metric ds2
C .

(iii) The curvature of the metric ds2
R is everywhere between −( 1

1+ε) and −(1+ε).
(iv) ds2

R extends across z = 0 to give a smooth metric on D = {z : |z| < 1}.

We begin the proof by considering radially symmetric metrics on D∗ of the
form

ds2
f = f2(r)[dx2 + dy2] = f2(r)[dr2 + r2dθ2].

The curvature Kf of the metric ds2
f is given by the formula

Kf =
−[(f

′

f )′ + f ′

rf ]

f2 .

Setting Kf = −1, we have the solutions

f1(r) =
2

1− r2

corresponding to ds2
D and

f2(r) =
−1

r log(r)
=

1
r log(1/r)

corresponding to ds2
C .

We will need some simple facts about f1 and f2:

Lemma 1.2. f1 and f2 satisfy the following:
(a) limr→1

f2
f1

= 1.
(b) f2 > f1.

Proof. We first observe that as r → 1, both f1 and f2 blow up. Hence, by
L’Hospital’s rule,

lim
r→1

f2
f1

= lim
r→1

( 1
f1

)

( 1
f2

)

= lim
r→1

(1− r2)′

−2(r log(r))′

= lim
r→1

−2r
−2(log(r) + 1)

= 1.
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This establishes (a).
(b) amounts to the assertion that

1− r2 > −2r log(r).

At 1, both sides are equal to 0, so this inequality will follow from the inequality

−2r < −2(log(r) + 1),

or
r > 1 + log(r).

Again, we get equality at r = 1, so the assertion will follow from

1 < 1/r,

which holds when r < 1. �

We now transform the problem of constructing the metrics ds2
R from a confor-

mal problem on the unit disk to a problem of metrics of the form

ds2
g = g2(r)[dr2 + sinh2(r)dθ2].

The curvature of this metric is given by

κg =
−[(g

′

g )′ + 1 + g′

g coth(r)]

g2 .

When g ≡ 1, we obtain the standard hyperbolic metric ds2
D. It follows from

our calculations above that the metric ds2
C is given by the function

h(r) =
f2
f1

(R(r)),

where R(r) = tanh(r/2) is the Euclidean distance from 0 of a point whose hyper-
bolic distance from 0 is r. We thus have

h(r) =
1

sinh(r) log(coth(r/2))
.

It follows from Lemma 1.2 that h(r) → 1 as r → ∞, and that h(r) > 1. We
will need some more properties of h:

Lemma 1.3. h(r) has the following additional properties:
(a) h′(r) is negative and tends to 0 as r →∞.
(b) h′′(r) is positive and tends to 0 as r →∞.
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Proof. It is easily seen that h′ is negative if and only if the same is true of its
logarithmic derivative.

We may then compute

log(h(r))′ = −[
cosh(r)
sinh(r)

+
(coth(r/2))′

coth(r/2) log(coth(r/2)
]

= −[
cosh(r)
sinh(r)

− 1
sinh(r) log(coth(r/2))

]

= − 1
sinh(r) log(coth(r/2))

[cosh(r) log(coth(r/2))− 1].

From the fact that the curvature κh is equal to −1, or by a direct calculation,
we see that

(log(h))′′ = (h2 − 1)− (log(h))′ coth(r).

We now claim that assertions (a) and (b) both follow from the assertion that
cosh(r) log(coth(r/2))− 1 is positive, and tends to 0 as r →∞. This is evident in
part (a), while for part (b) we use the equation

(log(h))′′ =
h′′

h
− (h′)2

h2

to establish that if (log(h))′′ is positive and tends to 0 as r → ∞, then the same
is true of h.

The fact that cosh(r) log(coth(r/2)) − 1 is positive and tends to 0 as r → ∞
follows readily from L’Hospital’s Rule, as above.

This proves Lemma 1.3. �

We will now prove Lemma 1.1 according to the following scheme: it is evident
from the formula for curvature that, for any ε, there exists a δ with the following
property: let hε be any function which satisfies the following conditions:

1 ≤ hε ≤ 1 + δ

|h′ε coth(r)| ≤ δ
and

|h′′ε | ≤ δ,

then the metric
ds2
hε = h2

ε [dr
2 + sinh2(r)dθ2]

will have curvature between −( 1
1+ε) and −(1 + ε). We must demand as well that

hε → 1 as r → 0, in order to obtain a smooth metric at r = 0.
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Given ε, we will then construct hε as follows: let k(r) be a smooth function
which approximates the discontinuous function k0(r) defined by

k0(r) = 0 for 0 ≤ r < R0 − 3
= c1 for R0 − 3 ≤ r < R0 − 2
= −c1 for R0 − 2 ≤ r < R0 − 1
= c2 for R0 − 1 ≤ r < R0

= h′′(r) for r ≥ R0,

where we will choose R0, c1, and c2 later.
In order to have the anitderivative k1(r) of k0 with k1(0) = agree with h′(r)

for r ≥ R0, we must have
c2 = h′(R0).

We then let k2(r) be the antiderivative of k1(r) with k2(0) = 1. In order for this
to equal h(r) for r ≥ R0, we must have

c1 = (h(R0)− 1)− c2
2

= (h(R0)− 1)− h′(R0)
2

.

One may then choose k to be a smooth function approximating k0, agreeing with
k0 for R > R0, and satisfying the same conditions at R0 as k0. Our desired
function hε will then be the function which satisfies

h′′ε = k, h′ε(0) = 0, hε(0) = 1.

We may then choose R0 sufficiently large such that coth(R0) and h(R0) are
close to 1, and h′(R0), h′′(R0) are close to 0.

This then completes the proof of Lemma 1.1. �

2. A comparison theorem

Let SO be a Riemann surface with a complete metric ds2
SO

of finite area and
constant curvature −1. Then each cusp Ci has a neighborhood which is isometric
to a neighborhood of infinity in C = H2/(z ∼ z + 1).

For z in such a neighborhood, let l(z) denote the length of the shortest closed
horocycle through z. In terms of the coordinate C, we have that

l(z) =
1
=(z)

.

We may compactify SO to obtain a compact Riemann surface SC in the fol-
lowing way: for each cusp Ci, let

Bl(Ci) = {z ∈ Ci : l(z) ≤ l}.
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Then Bl(Ci) is conformally equivalent to a punctured disk, with the equivalence
given by the map z → e2πiz .

We may then replace each neighborhood Bl(Ci) with a solid disk to obtain SC .
This construction defines a unique conformal structure on SC , and exhibits SO
conformally as

SO = SC − {p1, . . . , pk}.
Under the map C → D given by z → e2πiz, the distance r from e2πiz to 0 in

the hyperbolic metric on D is related to l(z) by

l(z) =
2π

log( er+1
er−1 )

.

For each pi ∈ SC , let ds2
SC

denote the hyperbolic metric on SC , assuming that
SC carries such a metric, and let B(r, pi) denote the ball of radius r

Definition 2.1. The surface SO has cusps of length ≥ l if, for each i, there is a
simple closed horocycle hi about the cusp Ci, such that each hi has length ≥ l, and
such that all the hi’s are disjoint,

In this section, we will prove:

Theorem 2.1. For every ε, there is an l and r such that, if SO has cusps of
length ≥ l, then outside of ∪i Bl(Ci) and ∪i B(r, pi), we have

(
1

1 + ε
)ds2

SO ≤ ds
2
SC ≤ (1 + ε)ds2

SO .

Proof. Given ε, choose R0 as in Lemma 1.1, and assume that the cusps of SO have
length at least

l0 =
2π

log( e
R0 +1
eR0−1 )

.

We may then replace the hyperbolic metric on each cusp by the conformally equiv-
alent metric given by Lemma 1.1. The resulting metric then extends across the
cusps to give a new metric ds2

ε,RO
on SC with the following properties:

(i) ds2
ε,RO

agrees with the hyperbolic metric on SO outside of ∪iBl0(Ci).
(ii) ds2

ε,RO
is conformally equivalent to the hyperbolic metrics on SO and SC .

(iii) The curvatures of ds2
ε,RO

are everywhere between −( 1
1+ε) and −(1 + ε).

We now wish to compare the metric ds2
ε,RO

with the hyperbolic metric on SC .
This will be carried out using the following lemma of Wolpert [W], which is a
generalization of the Ahlfors-Schwarz Lemma [A]:
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Lemma 2.1. ([W]) Let S be a compact surfacce of genus at least 2. Let ds2

and dσ2 determine the same conformal structures. Provided the Gauss curvatures
satisfy

κ(ds2) ≤ κ(dσ2) < 0,

then ds2 ≤ dσ2.

To prove Theorem 2.1, we apply Lemma 2.1 to the metrics (1 + ε)ds2
ε,RO

(resp.
( 1

1+ε )ds2
ε,RO

) and ds2
SC

. Since (1 + ε)ds2
ε,RO

has curvature satisfying

κ((1 + ε)ds2
ε,RO) ≥ −1 = κ(ds2

SC )

and similarly

κ((
1

1 + ε
)ds2

ε,RO ) ≤ κ(ds2
SC ),

we conclude that

(
1

1 + ε
)ds2

ε,RO ≤ ds
2
SC ≤ (1 + ε)ds2

ε,RO .

Since ds2
ε,RO

agrees with ds2
SO

outside the cusp neighborhoods Bl0(Ci), we
have the same inequality with the metric ds2

ε,RO
replaced by ds2

SO
outside these

neighborhoods. Furthermore, the image of the neighborhood Bl0(Ci) is contained
in the ball B(R1, pi) computed in the metric ds2

ε,RO
, where R1 = (1 + ε)R0. But

this ball is contained in the ball of radius (1 + ε)1/2R1 computed in the metric
ds2
SC

, by the above inequality.
We may now take r = (1 + ε)1/2R1 to complete the proof of Theorem 2.1. �

We remark that this argument shows as well that the image of Bl0(Ci) contains
B( 1

(1+ε)3/2R0, pi)− pi.

3. Counting short geodesics

In this section, we will relate the lengths of short geodesics on SC with the lengths
of short geodesics on SO. We then use this to give a proof of Theorem 0.2.

We first observe that if γ is a closed geodesic on SO, then its image in SC is
shorter, by the standard Schwarz Lemma, and hence the geodesic representing it
will be still shorter. It may indeed be a great deal shorter, and even nullhomotopic.

We will, however, give a bound for lengths of geodesics on SC in terms of
lengths of geodesics on SO of the following form:

Lemma 3.1. For l sufficiently large, there is a constant δ(l) with the following
property: Let SO have cusps of length ≥ l. Then, for every geodesic γ in SC , there
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is a geodesic γ′ in SO, such that the image of γ′ in SC is homotopic to γ, and

length(γ) ≤ length(γ′) ≤ (1 + δ(l))length(γ).

Furthermore, δ(l)→ 0 as l→∞.

The idea of the proof may be paraphrased as follows: we will choose an r2 larger
than the r of Theorem 2.1, such that any geodesic which enters B(r2, pi) can be
“pushed out of the way” to avoid B(r, pi). The increase in length of the curve
will then be small compared to the legth involved in going from the boundary of
B(r2, pi) to the boundary of B(r, pi). The image of this “pushed away geodesic”
in SO will then give the homotopy class for γ′.

We will need the following elementary:

Lemma 3.2. Given δ1 and r1, there is an r2 with the following property: let γ
be any curve in the ball B(r2, x0) of radius r2 in the hyperbolic plane H2, whose
endpoints lie in the boundary of B(r2, x0) Then there is a curve γ̃ homotopic to γ
with a homotopy fixing the endpoints, such that γ̃ does not meet the ball B(r1, x0),
and

length(γ̃) < (1 + δ1)length(γ).

Proof. Indeed, we may choose γ̃ to agree with γ up to the first time γ enters
B(r1, x0) and after the last timeγ exits B(r1, x0), and to travel around the perime-
ter of B(r1, x0) from the entry point to the exit point. Choosing r1 such that the
length l(r1) of the perimeter of B(r1, x0) satisfies

l(r1)
2(r2 − r1)

< δ1

certainly gives r2 with the desired properties.
We now can complete the proof of Lemma 3.1 as follows: Given δ, let us write

1 + δ = (
√

1 + ε1)(1 + δ1)

for some ε and δ1. We then choose r1 as in Lemma 2.1 and r2 as in Lemma 3.1.
Then, if the cusps of SO have length ≥ l, where l is sufficiently large so that the
images of the Bl(Ci)’s all lie within the corresponding B(r2, pi)’s, then we may
modify the curve γ to a curve γ̃ which does not meet any B(r1, pi), increasing its
length by a factor of at most 1 + δ1. When we now measure the curve γ̃ in the
metric ds2

SO
, its length increases by a factor of at most

√
1 + ε1. If we denote by

γ′ the geodesic in the homotopy class of γ̃ in SO, then we clearly have that

length(γ′) ≤ (1 + δ)length(γ).

The inequality length(γ) ≤ length(γ′) then follows from the Ahlfors-Schwarz
Lemma, as mentioned above.
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This concludes the proof of Lemma 3.1. �

We will now prove Theorem 0.2. As indicated in the introduction, it will follow
from the Theorem of Huxley [Hu] and Sarnak-Xue [SX], see also [TFSG] for a
discussion.

Suppose that Rk is a family of Riemann surfaces, such that PSL(2,Z/k) acts
on Rk. We then have:

Theorem 3.1. ([Hu], [Sx]) Suppose that there are constants c1, c2, and c3, and
for all ε > 0 a constant c4(ε) such that:

(a) c1k
3 ≤ vol(Rk) ≤ c3k3.

(b) If fk is an eigenfunction of the Laplacian on Rk invariant under the action of
PSL(2,Z/k) with eigenvalue λ, then λ > 5/36.

(c) For all ε, the number of geodesics of length ≤ (6 − ε) log(k) on Rk is at most
c4(ε)k6+ε.
Then

lim inf
k→∞

λ1(Rk) ≥ 5/36.

It is argued in detail in [Hu] that the surfaces Sk = H2/Γ(k) satisfy these
conditions. The only non-trivial part is to verify (c). This is done with an explicit
calculation with traces of matrices satisfying the congruence condition.

We now turn our attention to showing that (a)-(c) obtain for the surfaces Pk
as well.

Observing that the quotient of Pk by PSL(2,Z/k) is the hyperbolic triangle
Tk with angles π/3, π/3, and 2π/k, while the quotient of Sk by PSL(2,Z/k) is the
hyperbolic triangle with angles π/3, π/3, and one ideal vertex, we see that

vol(Pk) = (1− 6/k)vol(Sk),

from which (a) follows immediately.
Furthermore, if fk is an eigenfunction with eigenvalue λ on Pk invariant under

PSL(2,Z/k), then fk descends to a function on Tk whose Rayleigh quotient is λ.
The lower bound λ ≥ 1/4 will then follow from Cheeger’s inequality and the fact
that the Cheeger constant hN (Tk) with Neumann boundary conditions is ≥ 1.

But the fact that hN (T ) ≥ 1 for any hyperbolic triangle is quite standard, see
[Bu2], establishing (b).

To establish (c), we observe that the surfaces Sk have cusps of length ≥ k.
Lemma 3.1 then allows us to deduce (c) for the surfaces Pk from the analogous
statement for the surfaces Sk.

This completes the proof of Theorem 0.2. �
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4. The Cheeger constant

We first recall the Cheeger constant h(S) of a surface. It is given by

h(S) = inf
C

length(C)
min(vol(A), vol(B))

,

where C runs over all curves dividing S into two pieces A and B.
According to the inequalities of Cheeger [Ch] and Buser [Bu], we have that

(1/4)h2 ≤ λ1(S) ≤ c1h+ c2h
2,

where c1 and c2 depend on a lower bound for the curvature of S. In particular, it
follows that, in the presence of a lower bound for the curvature, a bound for below
for λ1 is equivalent to a lower bound for h.

Of course, as is discussed in [SGCC], the loss of strength in passing from an
estimate for the Cheeger constant to an estimate for λ1 is significant, so that one
does not expect the constants that one obtains in Theorem 0.2 from this approach.
Indeed, it is shown in [SGCC] that the Cheeger constant h(Sk) is too small to give
Selberg’s 3/16 bound for λ1(Sk). On the other hand, passing through the Cheeger
constant allows us to obtain spectral estimates in more general situations than are
allowed for by the approach of §3.

We will show:

Theorem 4.1. For l sufficiently large, there is a constant C(l) with the following
property: if SO is a Riemann surface with cusps of length ≥ l, then the Cheeger
constants h(SO) and h(SC) satisfy

(
1

C(l)
)h(SO) ≤ h(SC) ≤ C(l)h(SO).

Furthermore, C(l)→ 0 as l →∞.

Proof. Let γ be a curve in SC dividing SC into two pieces A and B, such that the
ratio

length(γ)
min(vol(A), vol(B))

realizes the Cheeger constant. We may assume that vol(A) ≤ vol(B).
As in Lemma 3.1, if l is sufficiently large, we may choose r1 and r2 such that

γ may be pushed away from the neighborhoods B(r1, pi) to obtain a new curve γ̃
whose length is at most (1 + δ(l)length(γ).

In fact, we have a choice of how to push γ. For each i, we may consider the
neighborhoods B(r2, pi) and the sets

Ai = A ∩B(r2, pi), Bi = B ∩B(r2, pi).
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If γ does not meet B(r1, pi), then we do not change γ in B(r2, pi). Otherwise,
we may push γ so that, for each i, if vol(Ai) ≤ vol(Bi), then γ̃ divides B(r2, pi)
into two pieces A′i, B

′
i with

A′i = Ai ∪B(r1, pi), B′i = Bi −B(r1, pi).

Similarly, if vol(Bi) ≤ vol(Ai), then we choose γ̃ so that

B′i = Bi ∪B(r1, pi), A′i = Ai −B(r1, pi).

We now claim that γ̃ divides SC into two pieces A′ and B′ with

vol(A′) ≥ (1− ε′)vol(A), vol(B′) ≥ (1− ε′)vol(B),

with

ε′ = 2
vol(B(r1, pi))
vol(B(r2, pi))

.

This is clear, since the only times a piece is taken from Ai (resp. Bi ) is when
vol(Ai) is larger than (1/2)vol(B(r2, pi).

We now regard γ̃ as a curve in SO, and compute

length(γ̃)
min(vol(A′), vol(B′))

in the metric ds2
SO

.
But in passing from the metric ds2

SC
to the metric ds2

SO
, the length of γ̃ is

multiplied by a factor of at most
√

1 + ε, while the volumes of the parts of A′ and
B′ not meeting B(r1, pi) are divided by at most 1 + ε. Also, the balls B(r1, pi)
have larger volume in the metric ds2

SO
than in the metric ds2

SC
, as follows from

the Schwarz inequality, or can be seen directly.
We thus have that

length(γ̃)
min(vol(A′), vol(B′))

≤ (1 + ε)3/2(1 + δ)
1− ε′ h(SC).

h(SO) is less than the left-hand side, so we thus have

h(SO) ≤ (C1(l))h(SC),

with

C1(l) =
(1 + ε)3/2(1 + δ)

(1− ε′) .

To obtain an inequality in the opposite direction, we proceed in the identical
manner, switching the roles of SO and SC . We must make the following changes in
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the argument: first of all, we must reprove Lemma 3.2 in the case of a punctured
disk rather than a disk. The proof is identical, except we no longer demand that
the resulting curve γ̃ is homotopic to γ. This allows us to retain the option of
pushing γ in either direction around the puncture.

Secondly, we need an estimate of the form

vol(Bl1)ds2
SC

≥ (const(l1))(vol(Bl1)ds2
SO

).

But the volume of Bl1 in the metric ds2
SO

is precisely l1, while the metric of a
ball of radius r1 in the hyperbolic plane is 2π(cosh(r1)− 1). Choosing r1 so that

l1 =
2π

log( e
r1 +1
er1−1 )

and using L’Hospital’s rule, we see that

vol(Bl1)
vol(B(r1, pi))

→ 1 as l1 →∞.

Passing from the metric ds2
SO

to the metric ds2
ε,RO

and then to the metric ds2
SC

introduces some factors of 1+ε into this calculation to give us the desired estimate.
Putting these together, we find a constant C2(l) such that

h(SC) ≤ C2(l)h(SO),

with C2(l)→ 1 as l →∞.
This then concludes the proof of Theorem 4.1. �
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