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Abstract. The following question, which is directly related to the Whitehead problem of sub-
complexes of acyclic 2-complexes, is studied: If P is a class of groups, X is a 2-dimensional
CW-complex and X′ is an acyclic, infinite cyclic cover of X with π1(X′) in P, must X′ be
contractible? A positive answer is given if X is finite and P is the class of amenable groups.
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In [12], J.H.C. Whitehead posed the following problem.

Whitehead’s Aspherical Complex Question. If L is a connected subcomplex
of an aspherical 2-dimensional CW-complex K, must L also be aspherical?

Although some early work was done on this question by Cockcroft [4] this paper
is concerned with the approach originating with the following theorem of Adams
[1]. For a history of results concerning this problem see [2] or [9].

Theorem. Let L be a connected subcomplex of an aspherical 2-complex K. Then
there exists a characteristic subgroup N of π1(L) such that the Galois cover LN of
L corresponding to N is acyclic.

Remarks.
(1) It is obvious that if L is not aspherical then LN cannot be contractible and

hence N 6= 0.
(2) The N in the above theorem is constructed as the intersection of all normal

subgroups P of G = ker π1(L)→ π1(K) such that G/P is conservative.
(3) In [11] Strebel shows that the Galois covering of L corresponding to the

perfect radical of G (i.e. the maximal perfect subgroup) is also acyclic.
(4) Since the cellular chain complex of the cover LN of K is acyclic, the group

Q = π1(L)/N and also G/N have cohomological dimension at most 2.

In the following all complexes are connected. The following exact sequence was
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derived by Hopf. Let Y be a 2-dimensional CW-complex with fundamental group
G, then

0→ H3(G)→ π2(Y )G
h−→ H2(Y )→ H2(G)→ 0

is exact. This shows that the Galois cover Y ′ → Y is acyclic if and only if
P = π1(Y ′) is superperfect (i.e., H1(P ) = H2(P ) = 0) and the Hurewicz map
h : π2(Y )→ H2(Y ′) is zero. Hence the interest in the following result.

Theorem 1. The following are equivalent.
(1) Let P 6= 1 be a finite, superperfect normal subgroup of G and suppose Q =

G/P contains an element of infinite order. Then if X is any [G, 2]-complex,
the Hurewicz map h : π2(X)→ H2(XP ) is non-zero.

(2) Let P 6= 1 be a finite, superperfect normal subgroup of G and suppose Q =
G/P is free and non-trivial. Then if X is any [G, 2] complex the Hurewicz
map h : π2(X)→ H2(XP ) is non-zero.

(3) Suppose P is a perfect normal subgroup of G with Q = G/P free and non-
trivial. Further suppose there exists a [G, 2] complex X with H2(XP ) = 0,
then P = 1 or P is infinite.

(4) Let X ′
p−→ X be a connected Galois cover with group Z. Suppose X is 2-

dimensional and X ′ is acyclic. Then either X ′ is contractible or π1(X ′) is
infinite.

(5) Let X ′
p−→ X be a connected Galois cover whose group contains an element

of infinite order. Suppose the dimension of X is 2 and X ′ is acyclic, then
X ′ is contractible or π1(X ′) is infinite.

Proof. (1)⇒ (2). Obvious since any non-trivial free group is torsion free.
(2)⇒ (3). From the exact sequence of Hopf, we see H2(XP ) = 0 implies H2(P ) =
0 i.e. P is superperfect and h : π2(X)→ H2(XP ) is zero. If P 6= 1 and finite this
is impossible by (2).
(3) ⇒ (4). If P = p∗ (π1(X ′)) then P is perfect, normal in G = π1(X) and G/P
is free of rank one. If X ′ is not contractible then P 6= 1 and since H2(X ′) = 0, P
is infinite by (3).
(4) ⇒ (5). Let X be a 2-complex, X ′ → X a cover whose group π1(X)/π1(X ′)
contains an element z of infinite order. Let H ⊆ π1(X) be the inverse image of the
subgroup generated by {z} under the natural projection and let XH → X be the
Galois cover corresponding to H. Then X ′ → XH is a Galois cover with infinite
cyclic group and by (4) π1(X ′) = 1 or is infinite.
(5) ⇒ (1). Let X be a [G, 2]-complex and XP the Galois cover corresponding to
P . H1(XP ) = 0 since P is perfect. Now H2(P ) = 0 and if h : π2(X) → H2(XP )
is also zero then H2(XP ) = 0 by the Hopf sequence. Hence XP is acyclic and by
(5) either XP is contractible or P is infinite. But this contradicts the fact that P
is finite and non-trivial. Hence h must be non-zero. �

If one examines the above proof one sees that P being finite and non-trivial is
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not essential. In fact we have

Theorem 2. Let P be a class of groups, e.g. finite, torsion, trivial, etc. The
following are equivalent.

(A) Let H be a superperfect normal subgroup of G and suppose G/H contains
and element of infinite order. If H belongs to P and X is an arbitrary
[G, 2]-complex then the Hurewicz homomorphism h : π2(X) → H2(XH) is
non-zero.

(B) If Y ′ → Y is a Galois cover with group Z where Y is two dimensional and
Y ′ is acyclic then π1(Y ′) does not belong to P.

Proof. (A)⇒ (B) Let Y ′ → Y be a Galois cover with group Z, dim(Y ) = 2 and Y ′

acyclic. Then H = π1(Y ′) is perfect and by the Hopf sequence H2(H) = 0, hence
H is superperfect. If G = π1(Y ) then G/H ∼= Z contains an element of infinite
order and so if H is in P then the Hurewicz map h : π2(Y )→ H2(Y ′) is non-zero.
But this is ridiculous since H2(Y ′) = 0.

(B)⇒ (A) Let H be superperfect and normal in G and suppose G/H contains
an element of infinite order. LetX be a [G, 2]-complex. There exists a subgroup Ḡ,
H ⊆ Ḡ ⊆ G such that Ḡ/H ∼= Z. If XH , XḠ denote the covers of X corresponding
to H, Ḡ respectively, then XH → XḠ is a Galois cover with group Z. If the
Hurewicz map h : π2(X) → H2(XH) is zero then H2(XH) = 0 by Hopf. Hence
XH is acyclic and by (B) π1(XH) does not belong to P. Therefore the Hurewicz
map must be zero. �

Corollary. Let P be a class of groups. If there exists a subcomplex L of a 2-
dimensional aspherical complex K which is not aspherical and such that the max-
imal perfect subgroup of π1(L) belongs to P then there exists an acyclic, infinite
cyclic non-contractible Galois cover X ′ → X where X is 2-dimensional and π1(X ′)
belongs to P.

Proof. If there exists such a pair (K,L) then (A) is false for the class P by Strebel’s
result [11]. Hence (B) is false for this class, i.e. there exists a Galois cover X ′ → X
of 2-dimensional complexes, with group Z, X ′ acyclic and π1(X ′) in P. �

Hence we see a positive answer to the following question would limit the max-
imal perfect subgroups that could appear in any example of a non-aspherical sub-
complex of a two-dimensional apherical complex.

Acyclic Cover Question. Let P be a class of groups containing the trivial group.
If X is a 2-dimensional CW-complex and X ′ is an acyclic, infinite cyclic Galois
cover of X with π1(X ′) in P, is X ′ contractible?
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In [5], M.N. Dyer claimed to have proven part (2) of Theorem 1 (in fact,
whenever Q has cohomological dimension 1 or 2) and hence to have answered the
Acyclic Cover Question in the affirmative for the class of finite groups. However
his proof is incorrect and not at all rectifible as he uses in an essential way the
following lemma which is definitely false.

Lemma([5], 3.1). Let 0 → P → G
π−→ Q → 0 be an exact sequence of groups

with P finite, then Hi(G,ZG) ∼= Hi(G,ZQ) ∼= Hi(Q,Q) for all i > 0. The first
isomorphism is induced by Zπ : ZG→ ZQ and the second by π : G→ Q.

Remarks.
(1) The first error is minor and correctible. Dyer only needs these isomorphisms

for i = 1, 2 and when P is also superperfect. Actually in view of Theorem
1 these isomorphisms are only needed for i = 1 when P is perfect. In these
cases the isomorphisms do exist.

(2) The serious error lies in the second sentence. Although it is true the second
isomorphism is induced by π, the first is induced by α : ZQ → ZG where
α(q) =

∑
π(g)=q g is the isomorphism of ZQ and ZGP . Since π · α : ZQ →

ZQ is multiplication by |P | and by a theorem of Swan [10], H1(Q,ZQ) ∼=
H1(G,ZQ) is free abelian and non-zero for Q non-trivial and free, it follows
Zπ : ZG→ ZQ can never be an isomorphism in this case.

(3) Dyer uses that Zπ induces an isomorphism in step 3 of his proof to show a
certain map is a split epimorphism which in turn leads to his contradiction.

There is some evidence for a positive answer to the Acyclic Cover Question
for the class of finite groups. In fact if one one assumes that X is a finite, 2-
dimensional CW-complex then there exists no infinite cyclic acyclic covers of X
with finite fundamental group except for contractible ones. This is based on the
following theorem of Eckmann [6] which in turn is an extension of a result of
Cheegar and Gromov [3]. This result is a very sophisticated version of an theorem
by Gottlieb [7] concerning centers and Euler characteristics. We need a definition.

Definition. A group A is called amenable if every action of A on a compact
metric space has an A-invariant Borel measure.

Remarks.
(1) The class of amenable groups is closed under subgroups, quotient groups,

extensions and increasing unions. It also contains all finite groups and all
abelian groups and hence contains the class of elementary amenable groups,
that is the class generated from finte and abelian groups by the operations
of subgroups, quotient groups, extensions and increasing unions.

(2) R. Grigorchuck [8] has produced examples of finitely generated amenable
groups which are not elementary amenable. These are finitely generated



Vol. 74 (1999) Acyclic covers 177

subgroups of the group of based automorphisms of the based infinite triadic
tree (3 edges at each vertex).

(3) It is not difficult to show the free group on two generators, F2, is not
amenable and hence any group containing F2 is also non-amenable.

Theorem [6]. Let X be a finite, connected complex of dimension m. Suppose
πi(X) = 0 for 1 < i < m and π1(X) is an infinite amenable group. Then
(−1)mχ(X) ≥ 0 and χ(X) = 0 if and only if X is aspherical.

Using this result we obtain the following evidence for a positive answer to the
Acyclic Cover Question for the class of finite groups.

Theorem 3. Let X be 2-dimensional and finite. Suppose X ′ is a Galois acyclic
cover of X with group Z. If π1(X ′) is amenable then X ′ is a K(P, 1) and hence
if P is finite it must be trivial and X ′ contractible.

Proof. Since π1(X ′) and Z are amenable so is G = π1(X) and it is clearly infinite
since it maps onto Z. Since X ′ is acyclic the spectral sequence of the Galois cover
X ′ → X shows X has the (integral) homology of a circle and hence of Euler
chacteristic zero. By Eckmann’s result X is aspherical and hence so is X ′. If P
is non-trivial and finite it has infinite cohomological dimension, so if P is finite it
must be trivial. �
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