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The conjugacy problem for Dehn twist automorphisms of
free groups
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Abstract. A Dehn twist automorphism of a group G is an automorphism which can be given
(as specified below) in terms of a graph-of-groups decomposition of G with infinite cyclic edge
groups. The classic example is that of an automorphism of the fundamental group of a surface
which is induced by a Dehn twist homeomorphism of the surface. For G = Fn, a non-abelian
free group of finite rank n, a normal form for Dehn twist is developed, and it is shown that this
can be used to solve the conjugacy problem for Dehn twist automorphisms of Fn.
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1. Introduction

If φ1 and φ2 are automorphisms of groups G1 and G2 respectively, then we say
that φ1 and φ2 are conjugate if there is an isomorphism α : G1 −→ G2 such
that φ2 = αφ1α

−1. They are conjugate up to inner automorphism if there is an
isomorphism α : G1 −→ G2 and an element x ∈ G2 such that φ2 = adxαφ1α

−1.
(Here adx denotes the inner automorphism of G2 given by adx(g) = xgx−1 for all
g ∈ G2.) If G1 = G2 = G, then φ1 and φ2 are conjugate up to inner automorphism
precisely when they represent conjugate elements φ̂1, φ̂2 of the outer automorphism
group Out(G).

This paper is concerned with the determination of whether two given Dehn
twist automorphisms (defined below) of the free group Fn are conjugate or con-
jugate up to inner automorphism. The results here will be extended in the forth-
coming paper [KLV] to roots of Dehn twist automorphisms (and hence to all au-

1 The first author was supported by a travel grant from the Deutsche Forschungsgemeinschaft
(DFG). The second author was supported by a Heisenberg Stipendium from the DFG and did
part of this work as a member of the Institute for Advanced Study in Princeton, N. J. during
Spring 1995.
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tomorphisms of Fn of linear growth) and will be a key part of the second author’s
complete solution of the conjugacy problem for Out(Fn) as announced in [L1].

A Dehn twist D = D(G, (ze)e∈E(G)) consists of a graph of groups G and, for
every edge e of G, a specified twistor ze in the center of the edge group Ge. (See 5.)
Every Dehn twist determines a Dehn twist automorphism Dv of the fundamental
group π1(G, v) for each vertex v of G and hence an automorphism of the abstract
group π1(G) which is well defined up to inner automorphism. Thus D determines
an outer automorphism D̂ ∈ Out(π1(G)).

A Dehn twist automorphism of Fn is an automorphism which is conjugate
to such a Dehn twist automorphism Dv of π1(G, v) for some graph of groups G.
Dehn twists on Fn are the natural analogues of geometric Dehn twists (i.e. multiple
Dehn twists along sets of disjoint simple closed curves on surfaces); indeed, the
automorphisms induced by the geometric Dehn twists on surfaces with boundary
are special cases of Dehn twist automorphisms of Fn. On the other hand, an
example of a Dehn twist automorphism of F (a, b, c) which is not geometric is
given by the automorphism a → a, b → b, c → w cw−1, if w ∈ F (a, b) is not a
power of x, xyx−1y−1, or x2y2 for any basis x, y of F (a, b).

Dehn twists can be given in clearly inefficient ways. We define efficient Dehn
twists in 6. The main result of this paper is the following classification of automor-
phisms determined by efficient Dehn twists. (For background on graph of groups
isomorphisms and the induced isomorphisms of their fundamental groups, see 4.)

1.1. Theorem. Suppose that G1 and G2 are graphs of groups with π1(G1) ∼=
π1(G2) ∼= Fn and that v and w are vertices of G1 and G2 respectively. Let
D1 = D(G1, (ze)e∈E(G1)) and D2 = D(G2, (ze)e∈E(G2)) be efficient Dehn twists
inducing automorphisms Dv and Dw of π1(G1, v) and π1(G2, w) respectively. Let
h : π1(G1, v) −→ π1(G2, w) be an isomorphism.
(a) D̂2 = ̂hD1h−1 ∈ Out(π1(G2)) if and only if there is a graph of groups isomor-
phism H : G1 −→ G2 which induces the isomorphism h up to inner automorphism
(i.e., Ĥ = ĥ) and which takes twistors to twistors (i.e., He(ze) = zH(e) for all e ∈
E(G1)).
(b) Dw = hDvh

−1 ∈ Aut(π1(G2, w)) if and only if there is a graph of groups
isomorphism H : G1 −→ G2 which takes v to w, with induced isomorphism H∗v =
h : π1(G1, v) −→ π1(G2, w), and which takes twistors to twistors.

The material developed to prove Theorem 1.1 allows us to determine along the
way the centralizer, fixed subgroup, index and infinite attracting fixed words (there
aren’t any) of a Dehn twist automorphism of a free group. These results are given
in 7.

In 8. we give an algorithm for transforming an arbitrary Dehn twist D of a
graph of groups G to an efficient Dehn twist D′ of a graph of groups G′ in such a
way that the induced isomorphisms of π1(G) and π1(G′) are conjugate up to inner
automorphism. We further point out that one can use the Whitehead algorithm to
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decide whether two graphs of groups are isomorphic in such a way as to preserve
the data in part (a) or (b) of Theorem 1.1. This leads to our solution of the
conjugacy problem for Dehn twist outer automorphisms:

1.2. Theorem. There exists an algorithm which, given two Dehn twists D1 and
D2 based on graphs of groups G1 and G2 with π1(G1) ∼= π1(G2) ∼= Fn, decides
in finitely many steps whether the induced outer automorphisms D̂1 and D̂2 are
conjugate. If D1 and D2 are efficient and if v and w are vertices of the graph of G1
and the graph of G2 respectively, this algorithm also decides whether the induced
automorphisms Dv and Dw of π1(G1, v) and π1(G2, w) are conjugate.

Remarks: (1) This paper is written totally within the genre of graphs of groups
and their associated actions on R-trees. If an automorphism ϕ ∈ Aut(Fn) is given
in terms of the image of some basis of Fn, it is possible [L2] to decide whether ϕ
is a Dehn twist automorphism — whether it is conjugate to some automorphism
Dv of π1(G, v) given by a Dehn twist D of a graph of groups G — and, if so, to
derive from the data for ϕ the data for D and for G, namely D = D(G, (ze)e∈E(G)).
However, in this paper – and in particular in Theorem 1.2 – we always assume
that a Dehn twist automorphism is given in terms of the graph of groups data (see
8.1).
(2) The algorithm in Theorem 1.2 is purely combinatorial and operates entirely
in terms of the graph of groups data of D1 and D2. It is noteworthy (see 6.7)
that the underlying justification of this combinatorial algorithm comes from the
study of the dynamics of Dehn twist automorphisms acting on the closure of Culler-
Vogtmann’s “Outer Space”; we use a result of our previous paper [CL2] concerning
these dynamics to prove Theorem 1.1, which in turn implies Theorem 1.2.

2. Outer homomorphisms of groups

Much of this paper concerns outer automorphisms rather than ordinary automor-
phisms. In this context, the following notion turns out to be natural and useful:

2.1. Definition. Let f : G→ H be a group homomorphism. Then we denote by
f̂ : G→ H the outer homomorphism induced by f . This is the equivalence class

f̂ = {adhf : G→ H |h ∈ H}

of homomorphisms from G to H.

Notice that for any homomorphisms f1 : G1 → G2 and f2 : G2 → G3 one has
f̂2f1 = f̂2f̂1. Furthermore, for any automorphism f : G→ G the set f̂ = Inn(G)·f
is precisely the induced outer automorphism in the usual sense. The notion of outer
homomorphism, though it does not seem to be standard, is the natural morphism
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induced on the level of fundamental groups by continuous maps between path-
connected topological spaces without specified base point.

If α : G→ G′ and β : H → H ′ are fixed isomorphisms, then every f̂ : G→ H

induces f̂ ′ = ̂βfα−1 : G′ → H ′, and f̂ ′ does not depend on α and β but only on
their induced outer isomorphisms. This observation can be applied as follows to
malnormal subgroups. (Recall that U ⊂ G is a malnormal subgroup if g ∈ G and
g 6∈ U implies that gUg−1 ∩ U = {1}).

2.2. Lemma. Let Ui ⊂ G and Vi ⊂ H (i = 1, 2) be malnormal subgroups of G
and H with U1 conjugate to U2 and V1 conjugate to V2; say U2 = gU1g

−1 and
V2 = hV1h

−1 for some g ∈ G and h ∈ H.
(a) Every outer homomorphism f̂1 : U1 → V1 with representative f1 determines
an outer homomorphism F̂1 : U2 → V2 with representative F1 = adh ◦ f1 ◦ adg−1.
This outer homomorphism is independent of the choice of representative f1 and
of the conjugators g and h. In particular, if U1 and U2 are conjugate malnormal
subgroups of a group G then there is a canonical identification between Out(U1)
and Out(U2).
(b) Let f : G −→ H be a homomorphism with f(U1) ⊂ V1 and f(U2) ⊂ V2. Let
fi : Ui −→ Vi (i = 1, 2) be the maps induced by restricting f . Then f̂2 = F̂1 where
F1 = adh ◦ f1 ◦ adg−1, as in (a).

Proof. (a) We first note that, if x ∈ V1 then the outer homomorphism class of
adhf1ad−1

g equals that of adhadxf1ad−1
g . This is because hxh−1 ∈ V2 and

adh adx f1 ad−1
g = adhxh−1(adh f1 adg−1) .

Now suppose that g′ ∈ G, h′ ∈ H are elements such that U2 = g′U1g
′−1 and

V2 = h′V1h
′−1. Then the outer homomorphism class of adhf1ad−1

g equals that of
adh′f1ad−1

g′ because malnormality implies that g−1g′ ∈ U1 and h−1h′ ∈ V1 and
because

adh′ f1 · ad−1
g′ = adh ad(h−1h′) f1 adg′−1g adg−1 = adh ad(h−1h′)·f1(g−1g′) f1 adg−1

Since (h−1h′) · f1 (g−1g′) ∈ V1 the first paragraph of the proof applies.
The preceding two paragraphs prove (a).

(b) We have f = adf(g) f adg−1 and since U2 = gU1g
−1 we can write this as

f2 = adf(g) f1 adg−1 |U2. If f(U1) = {1} the result claimed is trivial. In case
f(U1) 6= {1}, the given element h with h−1V2h = V1 satisfies

f(g)h−1
(
h f(U1)h−1

)
h f(g)−1 = f(U2)

and hence
f(g)h−1V2 h f(g)−1 ∩ V2 6= {1}.
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Thus malnormality implies that x ≡ f(g)h−1 ∈ V2 so that f2 = adxadh f1 adg−1

= adx F1 with x ∈ V2 . Thus f̂2 = F̂1 as claimed. �

3. Graphs of groups

For the convenience of the reader we recall in this and the following section some
standard definitions and facts concerning graphs of groups. For general back-
ground see [S], [B], [C] or[D–D]. We mainly follow the notation of [CL2]. We
include some basic results which we will need which do not seem to have appeared
before. (See (3.9) for normal forms for representatives of conjugacy classes and
(3.10) for the fact that vertex groups are malnormal in path groups.)

3.1. A graph of groups is given by

G = (Γ(G), {Gv}v∈V (G), {Ge}e∈E(G), {fe : Ge → Gτ(e)}e∈E(G))

where we use the following notation:
– Γ(G) is a finite connected graph,
– V (G) is the set of vertices of Γ(G),
– E(G) is the set of oriented edges of Γ(G).

For any v ∈ V (G) and e ∈ E(G) we denote:
– ē is the edge oppositely oriented to e,
– τ(e) is the terminal vertex of e (so that τ(ē) is the initial vertex of e),
– Gv is the vertex group at v,
– Ge = Gē is the edge group at e,
– fe : Ge → Gτ(e) is an injective homomorphism.

3.2. We denote by Π(G) the path group of G (called the Bass group β(G) in
[CL2]), which is generated by the stable letters te (e ∈ E(G)) and the elements
r ∈ Gv (v ∈ V (G)), subject to the relations in the Gv , and to

(i) tē = t−1
e and

(ii) te fe(a) t−1
e = fē(a) ∈ Gτ(ē) for all a ∈ Ge, e ∈ E(G).

3.3. Every element of Π(G) is given by a word

W = r0t1r1 . . . tqrq

where ti = tei and each ri is an element of the free product ∗{Gv | v ∈ V (G)}.
We say that W is connected, with initial vertex τ(ē1) and terminal vertex τ(e1), if
r0 ∈ Gτ(ēq) rq ∈ Gτ(eq) and τ(ei) = τ(ēi+1) with ri ∈ Gτ(ei) for all i = 1, . . . , q−1.
Note that connected words are transformed to connected words when they are
shortened by the operations of 3.2, but that a trivial word fē(a)−1 te fe(a)tē can
be inserted into a connected word so as to make it non-connected. Finally, W is
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a closed, connected word based at v if it is connected and v = τ(ē1) = τ(eq). This
includes all W ∈ Gv.

3.4. We denote by π1(G, v) ⊂ Π(G) the fundamental group of G based at the vertex
v. It consists precisely of those elements of Π(G) which are represented by a closed
connected word based at v. For distinct vertices v1, v2 ∈ V (G) the subgroups
π1(G, v1) and π1(G, v2) are conjugate in Π(G). Notice that Π(G) is canonically
isomorphic to π1(G∗, v∗) = Π(G∗) where G∗ is the graph of groups obtained from
G by identifying all vertices v ∈ V (G) to a unique vertex v∗ and defining its vertex
group to be the free product of all Gv (and replacing each fe by [inclusion ◦ fe]).

3.5. A word W ∈ Π(G) as in 3.3 is reduced if q = 0 or if ti = t−1
i+1 implies

that ri 6∈ fei(Gei ) ( i = 1, . . . , q − 1). A non-trivial reduced word need not be
connected, but can be identified with a (necessarily connected) reduced word in
Π(G∗). So classical results of Bass and Serre on connected words in a path group
apply to arbitrary words in Π(G). By applying the relations 3.2 above sufficiently
often any word W ∈ Π(G) can be transformed into a reduced word. Also, reduced
words have the following uniqueness property:

3.6. Proposition. If V = r0t1r1 . . . tqrq and W = s0t
′
1s1 . . . t

′
q′sq′ are reduced

words representing the same element g ∈ Π(G) then:
(a) ti = t′i for all i = 1, . . . , q. In particular, q = q′ ( ≡ length(g)).
(b) For all i = 1, . . . , q there exist elements hi ∈ Gei such that

s0 = r0fē1(h−1
1 ),

si = fei(hi)rifēi+1(h−1
i+1) for i = 1, . . . , q − 1, and

sq = feq (hq)rq .

(c) V is connected if and only if W is connected.

Proof. (a) and (b) follow from [S, p. 50] or [B, 1.10], while (c) follows from (a)
and (b). �

3.7. (a) A product VW of two reduced words in Π(G) is called reduced if the
concatenation of the two words is reduced. This is equivalent to “ length (V W ) =
length(V ) + length(W )”, and in this case we write V ∗W for VW . For example,
if length (V ) = 0, then VW = V ∗W for any W . One must be careful concerning
connectivity. A reduced connected word V may be factored as the reduced product
of reduced non-connected words: V = A ∗ B = (A ∗ r) ∗ (r−1 ∗ B), where r ∈ Gv
for some vertex v far away from the path carrying V = A ∗ B. However, we do
have:
(b) If V = A ∗ B ∗ C with V and B connected, then A and C are also connected
and the terminal vertex of A equals the initial vertex of B and the terminal vertex
of B equals the intial vertex of C.
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3.8. A word W ∈ Π(G) is cyclically reduced if it is reduced and if, furthermore,
τ(eq) = τ(ē1) and t1 = t−1

q imply rqr0 6∈ feq(Geq ). Through cyclic permutations
(which can be effected by conjugation in Π(G)) and the relations of 3.2 one can
transform any word W into a cyclically reduced word.

3.9. Proposition. Closed, connected, cyclically reduced words V and W represent
conjugate elements of Π(G) if and only if there is a cyclic permutation W2 ∗ W1
of W = W1 ∗ W2 and an element r ∈ Gv (where V is based at v ∈ V (G)) such
that V = r ∗W2 ∗ W1 ∗ r−1.

Proof. If there exists such a cyclic permutation then clearly the elements are
conjugate. Now suppose that V and W represent conjugate elements.

Let U ∈ Π(G) be a reduced word with V = UWU−1. As W is cyclically
reduced, one has either UW = U ∗W or WU−1 = W ∗ U−1. We assume the first
case (the second works similarly) and obtain

length(V ) = length(UWU−1) ≥ length(UW )− length(U−1) =

length(U) + length(W )− length(U−1) = length(W ).

By symmetry between V and W we get length (V ) = length (W ). We can assume
w.l.g. that U is not a reduced product U = U ′ ∗W k for any k ≥ 1. Thus U−1 will
have all stable letters cancelled against W when reducing the product UWU−1.
It follows that W is a reduced product of connected subwords W = W1 ∗ W2 with
length (W2U

−1) = 0. Since W1 and V = U ∗W1 ∗ (W2U
−1) are connected, it

follows by 3.7(b) that W2U
−1 is connected. Then W2U

−1 ≡ r ∈ Gv where v is
the terminal vertex of W1 and the initial vertex of W2. Hence V = UWU−1 =
(UW−1

2 ) ∗ W2 ∗ W1 ∗ (UW−1
2 )−1 = r ∗W2 ∗ W1 ∗ r−1, as claimed. �

3.10. Lemma. The subgroup π1(G, v) is malnormal in Π(G).

Proof. Let V, W ∈ π1(G, v) and U ∈ Π(G) be reduced words with V = U W U−1.
Since malnormality of subgroups is invariant with respect to conjugation, we can
assume that W is cyclically reduced. Following the proof of 3.9 we may write
W = W1 ∗W2 and V = U ∗W1 ∗ (W2U

−1) where W1 is connected. It follows from
3.7(b) that U is a connected word which begins and ends at v. Thus U ∈ π1(G, v).
�

3.11. The malnormality given by 3.10, combined with Lemma 2.2, tells us that for
any graphs of groups G1, G2 and vertices v, v′ ∈ V (G1) and w, w′ ∈ V (G2) there
is a canonical identification between the outer homomorphisms from π1(G1, v) to
π1(G2, w) and those from π1(G1, v

′) to π1(G2, w
′). To be precise, π1(G1, v

′) =
adW (π1(G1, v)) if and only if W ∈ Π(G1) is a connected word with initial vertex
v′ and terminal vertex v, and a similar statement holds for V ∈ Π(G2). With such
W and V , the outer homomorphism with representative f : π1(G1, v)→ π1(G2, w)
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is identified with the outer homomorphism with representative adV ◦ f ◦ ad−1
W :

π1(G1, v
′)→ π1(G2, w

′).
For any representative homomorphism f : π1(G1, v) → π1(G2, w), we thus

suppress basepoints and denote the corresponding outer homomorphism simply
by f̂ : π1G1 → π1G2. If G = G1 = G2, v = w and v′ = w′ in the discussion above,
the groups Out(π1(G, v)) and Out(π1(G, v′)) are thus canonically identified, and
we denote this group by Out(π1G).

4. Isomorphisms of graphs of groups

4.1. Definition. A graph of groups isomorphism H : G1 → G2 is a quadruple of
the form

H = (HΓ, (Hv)v∈V (G1), (He)e∈E(G1), (δ(e))e∈E(G1))

where HΓ : Γ(G1) → Γ(G2) is a graph isomorphism, and each Hv : Gv → GHΓ(v)
and He = Hē : Ge → GHΓ(e) is a group isomorphism. (In order to avoid double
indices we will often write H(e) and H(v) instead of HΓ(e) or HΓ(v).) Moreover,
δ(e) ∈ Gτ(H(e)) and (with adx as defined in §1),

Hτ(e)fe = adδ(e) fH(e)He . (∗)

Note. This definition agrees with the restriction to 1-dimensional complexes of
the definition by Haefliger [H] for isomorphisms of complexes of groups. It is a
special case of the more general definition of morphism of graph of groups in Bass
[B].

4.2. A graph of groups isomorphism H : G1 → G2 induces isomorphisms H∗ :
Π(G1)→ Π(G2) and H∗v : π1(G1, v)→ π1(G2,HΓ(v)), defined on generators by

H∗(r) = Hw(r) for w ∈ V (G), r ∈ Gw, and

H∗(te) = δ(ē) tH(e)δ(e)
−1 .

We denote by Ĥ : π1G1 → π1G2 the outer isomorphism induced by H∗v, where Ĥ
does not depend on the choice of v ∈ V (G1), see 3.11 .

4.3. The composition of two graph of groups isomorphisms H ′ : G1 → G2 and
H ′′ : G2 → G3 is a graph of groups isomorphism H : G1 → G3 which satisfies
Ĥ = Ĥ ′′Ĥ ′ and H∗ = H ′′∗H

′
∗. To be precise, H is given by HΓ = H ′′Γ H

′
Γ,

Hv = H ′′
H′Γ(v)H

′
v, He = H ′′

H′Γ(e)H
′
e and δ(e) = H ′′

τ(H′(e))(δ
′(e))δ′′(H ′Γ(e)) if v ∈

V (G1), e ∈ E(G1).
In particular, for any H : G1 → G2 there is an inverse isomorphism H−1 : G2 →

G1 which satisfies Ĥ−1 = Ĥ−1 and H−1
∗ = (H−1)∗. Moreover (H−1)H(v) = H−1

v

and H−1
∗ (tH(e)) = H−1

τ(ē)(δ(ē)
−1) teH−1

τ(e)(δ(e)) for all v ∈ V (G1), e ∈ E(G1).
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4.4. Every graph of groups G gives rise to a tree TG on which π1(G, v) acts (see
[B,1.16], [CL2, §5]).

Bass-Serre theory is built so that the notions of “equivariantly isomorphic tree
actions” and “isomorphic graphs of groups” are essentially equivalent. This is
stated precisely in the following Lemmas 4.5, 4.6. (See Bass [B], Corollary 4.5 and
Proposition 2.4 for detailed proofs.)

4.5. Lemma. Let G1 and G2 be two graphs of groups with an isomorphism h :
π1(G1, v1)→ π1(G2, v2) and a simplicial homeomorphism H̃ : TG1 → TG2 which is
h-equivariant (i.e. H̃(g · x) = h(g) · H̃(x) for all g ∈ π1(G1, v1) and all x ∈ TG1).
Then there is a graph of groups isomorphism H : G1 → G2 with Ĥ = ĥ : π1G1 →
π1G2.

4.6. Lemma. If H : G1 → G2 is a graph of groups isomorphism, with induced iso-
morphism h = H∗v : π1(G1, v)→ π1(G2,HΓ(v)), then there exists an h-equivariant
simplicial homeomorphism H̃ : TG1 → TG2 .

5. Dehn twists

5.1. Definition. [CL2, §6] A Dehn twist D = D(G, (ze)e∈E(G)) consists of a
graph of groups G and a family of elements (ze)e∈E(G) with ze ∈ Center(Ge) and
zē = z−1

e . (“D is based on G with twistors ze”). This determines an automorphism
D∗ : Π(G)→ Π(G) given on the generators as follows:

D∗|Gv = id , D∗(te) = tefe(ze) (v ∈ V (G), e ∈ E(G)).

The automorphism D∗ restricts to an automorphism Dv : π1(G, v)→ π1(G, v) for
every v ∈ V (G) and hence defines (see 3.11) an outer automorphism D̂ ∈ Out(π1G).

5.2. For any Dehn twist D = D(G, (ze)e∈E(G)) and any connected word W ∈ Π(G)
with initial vertex v′ and terminal vertex v Definition 5.1 gives

Dv′ adW = adD∗(W ) Dv : π1(G, v)→ π1(G, v′) .

5.3. Lemma. Let D1 = D(G1, (ze)e∈E(G1)) and D2 = D(G2, (ze)e∈E(G2)) be
Dehn twists and H : G1 → G2 a graph of groups isomorphism which preserves
twistors in that

He(ze) = zH(e) for all e ∈ E(G1).
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Then: (a) H∗D1∗H
−1
∗ = D2∗ : Π(G2)→ Π(G2).

(b) D̂2 = ĤD̂1Ĥ
−1 ∈ Out(π1G2).

Proof. The claim (a) follows from straightforward calculation on the generators of
Π(G2) using the formulas of 4.2 and 4.3. Then (b) follows from (3.11). �

5.4. Proposition. Let G be a graph of groups with the property that
(*) for every edge e there is an element re ∈ Gτ(e) with

fe(Ge) ∩ refe(Ge)r−1
e = {1} .

Then two Dehn twists D′ = D(G, (z′e)e∈E(G)), D
′′ = D(G, (z′′e )e∈E(G)) based on

G determine the same outer automorphisms D̂′ = D̂′′ ∈ Out(π1G) if and only if
z′e = z′′e for all e ∈ E(G).

Proof. Suppose D̂′ = D̂′′. For every edge e ∈ E(G) we consider the element
we = teretērē ∈ π1(G, v), where v = τ(ē). We compute

D′∗(we) = tefe(z′e)refe(z
′
e)
−1tērē and

D′′∗ (we) = tefe(z′′e )refe(z′′e )−1tērē.

Since D̂′ = D̂′′, these words represent conjugate elements in π1(G, v). From 3.9 it
follows that there is an element s ∈ Gv such that D′∗(we) = sD′′∗ (we)s−1. Then
3.6 implies that there exist elements h1, h2 ∈ Ge with

(a) fē(h1)−1 = s ,
(b) fe(h1)fe(z′e)refe(z

′
e)
−1fe(h2)−1 = fe(z′′e )refe(z′′e )−1 , and

(c) fē(h2)rē = rēs
−1.

From (a) and (c), rēfē(h1)r−1
ē = fē(h2). So (*) implies that h1 = h2 = 1. Then

(b) and (*) imply that z−1
e′ z

′′
e = 1.

The converse implication is obvious. �

5.5. An alternative viewpoint, which we will not adopt in this paper, is to consider
a Dehn twist D = D(G, (ze)e∈E(G)) as a graph of groups automorphism D : G →
G , with identity map for the graph automorphism DΓ and identity maps for all
the group automorphisms Dv and De. Furthermore the elements δ(e) are chosen
to satisfy δ(ē)teδ(e)−1 = tefe(ze) for all e ∈ E(G). (This can be achieved, for
example, if one chooses a representative e+ from each set {e, ē} and defines δ(e+) =
fe+(ze+)−1 and δ(ē+) = 1 ). It follows directly from the definitions in 4.2 and 5.1
that this graph of groups automorphism induces the same automorphisms as D
on Π(G) and on π1(G, v), for any v ∈ V (G).
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6. Efficient Dehn twists

6.1. General assumption. For the rest of the paper we always assume that for
any graph of groups G the fundamental group π1G is a free group of finite rank
n ≥ 2. We remind the reader that the graph Γ(G) is always finite and connected.

6.2. Definition. A Dehn twist D = D(G, (ze)e∈E(G)) is called efficient (called
proper with all twistors non-trivial in [CL2, §13]) if the following conditions hold:

(i) G is minimal: There is no vertex v of valence 1 with v = τ(e) and surjective
edge map fe : Ge → Gv.

(ii) There is no invisible vertex: There is no vertex v of valence 2 with v =
τ(e1) = τ(e2) (e1 6= e2) such that both edge maps fei : Gei → Gv, i = 1, 2,
are surjective.

(iii) There are no unused edges: For every edge e the twistor is non-trivial:
1 6= ze ∈ center(Ge). In particular one has Ge ∼= Z for all edges e ∈ E(G).

(iv) There are no proper powers: If rp ∈ fe(Ge) and p 6= 0 then r ∈ fe(Ge).
(v) If v = τ(e1) = τ(e2) then the edges e1 and e2 are not positively bonded:

There are no positive powers m,n such that fe1(zme1) is conjugate to fe2(zne2)
in Gv.

6.3. Remark. Conditions (iii) and (v) imply that:
(vi) There are no conjugate triples: There is no vertex v = τ(e1) = τ(e2) =

τ(e3), where e1, e2, e3 are distinct edges, such that there exist non-trivial
yi ∈ Gei (i = 1, 2, 3) with fe1(y1), fe2(y2) and fe3(y3) all conjugate in Gv.

Conditions (iii), (iv) and (vi) assert that G is a very small graph of groups, as
defined in [CL2].

6.4. Lemma. Let D = D(G, (ze)e∈E(G)) be an efficient Dehn twist. Then every
vertex group Gv of G has rank at least 2. In particular G satisfies the condition
(*) in Proposition 5.4.

Proof. From 6.2 (iii) and the assumption in 3.1 that Γ(G) is connected it follows
that every vertex group has rank at least 1. If for some vertex v of Γ(G) one has
Gv ∼= Z, then it follows from 6.2 (iv) that fe is surjective for all edges e with
τ(e) = v. Hence, by 6.2 (i) and (ii), there are at least 3 distinct such edges. By
6.2 (iii) each has non-trivial twistor. But then at least 2 of them are positively
bonded, in contradiction to 6.2 (v). Hence every Gv has rank at least 2.

By 6.1 and 6.2 (iii), (iv) the group fe(Ge) is a maximal cyclic subgroup in
Gτ(e). But then we can pick any re ∈ Gτ(e) − fe(Ge) to satisfy the condition (*)
in Proposition 5.4., since maximal cyclic subgroups of free groups are malnormal.
This follows easily from considering the standard free action of the free group on
a simplicial tree and the minimal subtree (a line !) fixed by the maximal cyclic
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subgroup. �

6.5. Lemma. Let D = D(G, (ze)e∈E(G)) be an efficient Dehn twist. Let W =
r0t1r1 . . . tqrq ∈ Π(G) be a reduced word of length q. Then D∗(W ) = W if and
only if q = 0.

Proof. By definition, words of length 0 are fixed by D∗. To see that words
of greater length are not fixed, start by choosing as generator of the cyclic group
Ge, for each edge e, the element ae such that an(e)

e = ze with n(e) > 0. Since
zē = ze

−1 this choice dictates that n(e) = n(ē) and aē = ae
−1. In the word W let

each tj = tej , and set n(ej) = nj and aj = aej . Let xj = fej (zej ) = fej (a
nj
j )

We claim that: W = D∗(W ) with q > 0 would imply

1 = rq
−1 feq(a

n1+n2+···+nq
q ) rq

This is impossible since in an efficient graph of groups there are no unused
edges, so that aq 6= 1 and each nj > 0.

When q = 1, W−1D∗(W ) = (r0t1r1)−1(r0t1x1r1), and the claim is immediate.
When q > 1, note that D∗(W ) is reduced, since W is reduced. So in the following
equation with non-reduced right-hand side,

1 = W−1D∗(W ) = r−1
q t−1

q . . . r−1
2 (t−1

2 r−1
1 x1r1t2)x2r2 . . . tqxqrq ,

we must have r1−1x1r1 = r−1
1 fe1(an1

e1
)r1 ∈ fē2(Gē2) and τ(e1) = τ(ē2), r1 ∈

Gτ(e2). Since there are no proper powers by 6.2 (iv), r−1
1 fe1(ae1)r1 itself belongs

to fē2(Gē2). Thus it is a is a power of fē2(aē2). But since r−1
1 fe1(Ge1)r1 also

contains no proper powers, a symmetric argument gives

r−1
1 fe1(ae1)r1 =

(
fē2(aē2)

)±1

By 6.2 (v), the edges e1 and ē2 are not positively bonded, so the exponent sign
above is negative. Since aē2 = a−1

e2
we conclude (using 3.2) that

1 = W−1D∗(W ) = r−1
q t−1

q . . . r−1
2 fe2(an1

e2
)x2r2 . . . tqxqrq

= r−1
q t−1

q . . . r−1
2 fe2(an1+n2

e2
)r2 . . . tqxqrq

Continuing in this fashion, the claim is proved. �

6.6. Lemma. Let D = D(G, (ze)e∈E(G)) be an efficient Dehn twist, and consider
vertices v, v′ ∈ V (G). Suppose that W ∈ Π(G) is a connected word with initial
vertex v′ and terminal vertex v such that

Dv′ = adW Dv adW−1 : π1(G, v′)→ π1(G, v′) .
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Then v = v′ and W ∈ Gv.

Proof. Straightforward calculation using 5.2 gives for any U ∈ π1(G, v′):
Dv′(U) = adW (adW−1D∗(W )Dv) adW−1(U) .

Thus our hypothesis implies that adW−1D∗(W ) = 1 ∈ Aut(π1(G, v)). Since the
Dehn twist is efficient, π1(G, v) is a free group of rank at least 2, by 6.3. Since
W−1D∗(W ) lies in the center of this free group, and hence is trivial, this lemma
follows from 6.5. �

Key Observation

The key observation of this paper , stated in Theorem 6.9 below (roughly the con-
verse of Lemma 5.3), is that if two efficient Dehn twists determine conjugate outer
automorphisms, then their graph of groups data are necessarily equal. Thus in
an algorithm for conjugacy it is sufficient to check the graph of groups data. The
main ingredient in justifying this observation is the Parabolic Orbits Theorem
[CL2, 13.2]. For the convenience of the reader, we now describe its content, in a
weakened form and with the terminology adapted to the conventions in this paper.

6.7. Consider the Culler–Vogtmann space CVn (also called “outer space”) of free
actions of Fn on metric simplicialR-trees (i.e. on trees TG′ as in 4.4 with π1(G′, v) ∼=
Fn and all edge groups and vertex groups trivial, provided with a π1(G′, v)-
equivariant length on the edges). An efficient Dehn twist D = D(G, (ze)e∈E(G))
defines [CL2, §9] (after having chosen a “marking”, i.e. an identification π1(G, v) =
Fn) a simplex σ(G) on the boundary of CVn, given by all possible lengths on the
edges of Γ(G). The Parabolic Orbits Theorem then states that under both for-
ward or backward iteration of the induced action of D̂ every point [TG′ ] of CVn
converges to a point in σ(G) (which can be precisely determined in terms of the
translation lengths on TG′ of the twistors of D). As σ(G) determines TG (up to
π1(G, v)-equivariant isomorphisms), one derives as a consequence:

6.8. Corollary. ([CL2, 13.4], adapted version). Let D1 = D(G1, (ze)e∈E(G1)),
D2 = D(G2, (ze)e∈E(G2)) be efficient Dehn twists and let h : π1(G1, v)→ π1(G2, w)

be an isomorphism with D̂2 = ĥD̂1ĥ
−1 ∈ Out(π1G2). Then there exists an h-

equivariant simplicial homeomorphism H̃ : TG1 → TG2 .

We have now assembled all ingredients necessary to prove Theorem 1.1 of the
Introduction:

6.9. Theorem. Let D1 = D(G1, (ze)e∈E(G1)) and D2 = D(G2, (ze)e∈E(G2)) be ef-
ficient Dehn twists inducing automorphisms Dv and Dw of π1(G1, v) and π1(G2, w)
respectively. Let h : π1(G1, v)→ π1(G2, w) be an isomorphism.
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(a) If D̂2 = ĥD̂1ĥ
−1 ∈ Out(π1G2) then there exists a graph of groups isomorphism

H : G1 → G2 with Ĥ = ĥ and He(ze) = zH(e) for all e ∈ E(G1).
(b)If Dw = h Dvh

−1 ∈ Aut(π1(G2, w) then there exists a graph of groups iso-
morphism H : G1 → G2 with HΓ(v) = w, H∗v = h and He(ze) = zH(e) for all
e ∈ E(G1).

Proof. (a) From Corollary 6.8 and Lemma 4.5 it follows that there is a graph of
groups isomorphism H : G1 → G2 with Ĥ = ĥ. We consider the Dehn twist D′ =
D(G2, (He(ze))H(e)∈E(G2)). By Lemma 5.3 we have D̂′ = ĤD̂1Ĥ

−1 ∈ Out(π1G2).

Hence, since Ĥ = ĥ, the hypothesis D̂2 = ĥD̂1ĥ
−1 implies D̂′ = D̂2 ∈ Out(π1G2).

Thus Lemma 6.4 and Proposition 5.4 prove He(ze) = zH(e) for all e ∈ E(G1).

(b) Consider the outer automorphisms D̂1 ∈ Out(π1(G1)) and D̂2 ∈ Out(π1(G2))
which are determined by Dv and Dw. By Part (a) there exists a graph of groups
isomorphism H : G1 → G2 with Ĥ = ĥ and He(ze) = zH(e) for all e ∈ E(G1). By

definition 4.2, Ĥ = Ĥ∗v where H∗v : π1(G1, v) → π1(G2,HΓ(v)). Thus Ĥ∗v = ĥ,
and by 3.11 there is a connected word W ∈ Π(G2) with initial vertex HΓ(v) and
terminal vertex w such that

H∗v = adW h .

Again, let D′ = D
(
G2, (He(ze))H(e)∈E(G2)

)
. By 5.3 we then have

D′∗ = H∗D∗H
−1
∗ : Π(G2)→ Π(G2)

and hence

D′HΓ(v) = H∗vDvH
−1
∗v

=
(
H∗vh

−1)Dw

(
hH−1
∗v
)

= adW Dw adW−1 : π1
(
G2,HΓ(v)

)
→ π1

(
G2,HΓ(v)

)
Thus by Lemma 6.6, HΓ(v) = w and W ∈ Gw. Since H∗v = adW h : π1(G1, v)→
π1(G2, w) we may now define a new graph of groups isomorphism K : G1 → G2
with the desired properties by letting K be identical with H, except that, for edges
e ∈ E(G1) with τ(ē) = v, we have δK(e) = adW−1 δH(e). �

7. Centralizer, fixed subgroup and index of an efficient Dehn
twist

In this section we derive some properties of efficient Dehn twists which follow easily
from the material presented in the previous sections. Notice that the subsequent
§8 can be read independently from this section.
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7.1. Proposition. (a) Let D = D(G, (ze)e∈E(G)) be an efficient Dehn twist with

induced outer automorphism D̂ ∈ Out(π1(G)). Then the centralizer C(D̂) of D̂ in
Out(π1(G)) is given by

C(D̂) = {Ĥ | H : G
∼=−→G, He(ze) = zH(e) for all e ∈ E(G)}.

(b) If v ∈ V (G) the centralizer of the automorphism Dv in Aut(π1(G, v)) is given
by

C(Dv) = {H∗v | H : G
∼=−→G , He(ze) = zH(e) for all e ∈ E(G) , HΓ(v) = v}.

Proof. In both (a) and (b) it follows from the special case D1 = D2 in Lemma
5.3 that the right hand side is contained in the left hand side. The opposite
inclusions follow similarily from Theorem 6.9 (with v = w in case (b) ). �

7.2. Proposition. If D = D(G, (ze)e∈E(G)) is an efficient Dehn twist and v is a
vertex of G, then Fix(Dv) = Gv .

Proof. This is an immediate corollary of 6.5 . �

7.3. For any graph of groups G , with finitely generated fundamental group
isomorphic to a free group Fn and finitely generated vertex and edge groups, an
elementary Mayer-Vietoris argument in group homology (pointed out to us by M.
Bridson) gives the formula

rk(π1(G)) =
∑

v∈V (G)

rk(Gv) −
∑

e∈E+(G)

rk(Ge) + rk(π1(Γ(G)) ,

where E+(G) consists of one “positively oriented” edge from each pair of oppositely
oriented edges in E(G) — so that #E+(G) is the number of geometric edges in
the graph. But note that rk(π1(Γ(G)) = 1 − χ(Γ(G)) = 1 + #E+(G) − #V (G).
Thus, if every group Ge is isomorphic to Z, we obtain:

rk(π1(G))− 1 =
∑

v∈V (G)

rk(Gv) − #E+(G) + ( 1 + #E+(G)−#V (G) ) − 1

=
∑

v∈V (G)

(rk(Gv) − 1)

7.4. In [GJLL] the index of a free group automorphism Φ is defined by

ind(Φ) = rk(Fix(Φ)) + a(Φ) / 2 − 1
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where a(Φ) denotes the number of equivalence classes of attracting infinite
fixed words of Φ , see [GJLL] or [CL1]. The main theorem of [GJLL] asserts that
if Φ1,Φ2, · · ·Φq are automorphisms of a free group Fn of rank n which determine
the same outer automorphism class φ and are pairwise non-similar (i.e., Φi 6=
adu Φj adu−1 for any u ∈ Fn if i 6= j), then one has∑

i=1,...q

ind(Φi) ≤ n − 1 .

The index ind(φ) of the outer automorphism φ is defined to be the maximum of the
left hand side, taken over all possible sets of pairwise non-similar automorphisms
{Φ1,Φ2, . . . ,Φq}.

7.5. Consider vertices v, w ∈ V (G) and a connected word W ∈ Π(G) with initial
vertex w and terminal vertex v. Then 5.2 gives

adWDv adW−1 = adWD∗(W−1)Dw: π1(G, w)→ π1(G, w) ,

and, as WD∗(W−1) ∈ π1(G, w), this automorphism also represents the outer au-
tomorphism D̂. Furthermore, by 7.2, one has

Fix (adWDvadW−1) = adW (Fix (Dv)) = adW (Gv) ,

and hence, by Lemma 6.4 , rk(Fix (adWDvadW−1) ≥ 2 .

7.6. Lemma. Let W,W ′ ∈ Π(G) be connected words with initial vertex w and
terminal vertices v and v′ respectively. Then the automorphism adWDvadW−1

and adW ′Dv′adW ′−1 of π1(G, w) are similar if and only if v = v′.

Proof. If v = v′ then W ′W−1 ∈ π1(G, w) and adW ′W−1 (adWDv adW−1) adWW ′−1

= adW ′Dv′adW ′−1 . Hence the two automorphisms are similar.
On the other hand, for any W ′′ ∈ π1(G, w) the equation

adW ′′(adWDvadW−1)adW ′′−1 = adW ′Dv′adW ′−1

is equivalent to
adW ′−1W ′′WDvadW−1W ′′−1W ′ = Dv′ .

Thus Lemma 6.6 implies v = v′. �

As a direct consequence of 7.2 - 7.6 we obtain:

7.7. Corollary. Let D = D(G, (ze)e∈E(G)) be an efficient Dehn twist and let
w ∈ V (G) be any vertex. We have:
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(a) ind(D̂) = rk(π1(G)) − 1.
(b) Every representative Φ ∈ Aut(π1(G, w)) of D̂ with ind(Φ) > 0 is similar to

adWDvadW−1 for some vertex v ∈ V (G) and any connected word W with
initial vertex w and terminal vertex v.

(c) None of the Dv has attracting infinite fixed words: a(Dv) = 0 for all v ∈ V (G).
�

Notice also that a particular interesting case arises if Γ(G) has only one vertex v,
as then rank Fix(Dv) = n. Automorphisms Φ ∈ Aut(Fn) with rank(Fix(Φ)) = n
have been investigated in [CT]; it follows from [L2] or [CT] that they are in fact
all Dehn twists with a single vertex. Hence our solution to the conjugacy problem
applies also to this class of automorphisms.

We conclude this section by restating our structural result in Theorem 6.9 in
a language which comes close to a ”normal form” for Dehn twists:

7.8. Assume we are given a finite connected graph Γ and two finite families of
integers (r(v))v∈V (Γ) and (n(e))e∈E(Γ) , all of which elements satisfy r(v) ≥ 2 ,
n(e) ≥ 1 and n(e) = n(ē) . Furthermore let (αe)e∈E(Γ) be a family of elements
αe ∈ Fr(τ(e)), where Fn denotes the (standard copy of a) free group of rank n ∈ N.

We consider the graph of groups G given by Γ(G) = Γ , γv: Gv
∼=−→Fr(v) ,

γe: Ge
∼=−→Z and fe(ae) = γ−1

v (αe) , with ae defined through ae = γ−1
e (1) (for all

v ∈ V (Γ) , e ∈ E(Γ) ). We assume that γē = −γe .
Let D be the Dehn twist based on G with twistors an(e)

e . If D is efficient, then
we call the data set

∆ = (Γ, (r(v))v∈V (Γ), (n(e))e∈E(Γ), (αe)e∈E(Γ))

efficient and write D = D(∆) , G = G(∆). Obviously we can associate to every
efficient Dehn twist D an efficient data set ∆ with D(∆) = D .

7.9. Corollary. (a) Two Dehn twists D = D(∆) and D′ = D(∆′), defined
by efficient data sets ∆ = (Γ(r(v))v∈V (Γ), (n(e))e∈E(Γ), (αe)e∈E(Γ)) and ∆′ =
(Γ′, (r(v))v∈V (Γ′), (n(e))e∈E(Γ′), (αe)e∈E(Γ′) , determine conjugate outer automor-
phisms if and only if there is a graph isomorphism H: Γ→ Γ′ and automorphisms
Φv: Fr(v) → Fr(v) for each v ∈ V (Γ), which satisfy
(i) r(v) = r(H(v)) for all v ∈ V (Γ),
(ii) n(e) = n(H(e)) for all e ∈ E(Γ), and
(iii) [αH(e)] = Φr(e)[αe] for all e ∈ E(Γ) (where brackets denote the conjugacy

class).
(b) For vertices w ∈ V (Γ), w′ ∈ V (Γ′) the automorphisms Dw and D′w′ determined
by D and D′ as in (a) are conjugate if and only if there are H and Φv as above,
which satisfy the conditions (i) - (iii), and furthermore
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(iv)H(w) = w′.

Proof. This is a direct consequence of Theorem 6.9. �

8. The algorithm

In this section we describe a complete algorithm which decides whether or not
two given Dehn twists define conjugate outer automorphisms. The algorithm
consists of two parts: The first part (Algorithm I) is an algorithm which, given an
arbitrary Dehn twist D, constructs an efficient Dehn twist D′ with induced outer
automorphism D̂′ conjugate to D̂. The second part (Algorithm II) checks whether
two given efficient Dehn twists D1, D2 define conjugate outer automorphisms.

8.1. Throughout this section we assume that the data for D = D
(
G, (ze)e∈E(G)

)
are given combinatorially as follows: For every vertex group Gv and edge group
Ge one has specified some basis and has given the injections fe in terms of these
bases. If the twistor ze 6= 1 then Ge is infinite cyclic, since it has non-trivial center,
and we choose the generator ae so that ze = ae

n(e) with n(e) > 0 . We call the
exponent n(e) ∈ Z the twist exponent. If ze = 1 we set n(e) = 0. This convention
implies that n(e) = n(ē) and aē = a−1

e , since zē = z−1
e .

8.2. The Moves. We describe 5 operations by which a given Dehn twist D =
D(G, (an(e)

e )e∈E(G)) may be changed to a Dehn twist D′ = D(G′, (an(e)
e )e∈E(G′))

with induced automorphism D̂′ conjugate to D̂:
(1)Transition to a proper subgraph: If Γ(G) contains a vertex v of valence 1 and

if the adjacent edge e has fe : Ge → Gv an isomorphism, then G′ is obtained
from G by deleting both v and e, with all other data unchanged.

(2) Delete an invisible vertex with negatively bonded edges: If a vertex v of Γ(G) is
adjacent to precisely 2 edges e′ and e′′ (both oriented towards v), and if both
edge injections fe′ , fe′′ are isomorphisms such that fe′(ae′) = fe′′(a−1

e′′ ) , then
G′ is derived from G by replacing e′, e′′ and v by a single edge e which runs from
τ(ē′) to τ(ē′′) . Define Ge = Gv , fe = fē′′f

−1
e′′ , fē = fē′f

−1
e′ , ae = fe′(ae′) and

n(e) = n(e′) + n(ē′′) .
(3) Fold positively bonded edges: Consider two edges e, e′ with twist exponents

0 < n(e) ≤ n(e′) and common end point τ(e) = τ(e′) = v, such that fe(ae) =
r fe′(ae′) r−1 for some r ∈ Gv . Replace e′ by a new edge e′′ which joins τ(ē′)
to τ(ē) and define Ge′′ = Ge′ , ae′′ = ae′ , fē′′ = fē′ , fe′′(ae′′) = fē(ae) and
n(e′′) = n(e′)− n(e).

(4) Contract unused edges: If e is an edge with a
n(e)
e = 1, then replace e togeth-

er with its endpoints τ(e), τ(ē) by a single vertex v with vertex group an
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amalgamated product

Gv = Gτ(ē) ∗
Ge

Gτ(e), if τ(e) 6= τ(ē) ,

or an HNN–extension

Gv = 〈Gτ(e), θ | θ−1 fē(Ge) θ = fe(Ge)〉 , if τ(e) = τ(ē) .

For any edge e′ pointing towards τ(e) or τ(ē) replace fe′ by the composition
of fe′ with the canonical injection of Gτ(e) or Gτ(ē) into Gv.

(5) Get rid of proper powers: If the generator ae of an edge group Ge is mapped by
fe to a proper power gp ∈ Gτ(e), then we change G as follows: We replace e by
a new edge e′ with same endpoints as e and Ge′ = 〈g〉, ae′ = g, n(e′) = pn(e).
We replace the vertex group Gτ(ē) by a new group

Gτ(ē′) = Gτ(ē) ∗
Ge
〈g〉

and define fe′ as well as fē′ to be the canonical injections. For any edge e′′

pointing towards τ(ē) replace fe′′ by the composition of fe′′ with the canonical
injection of Gτ(ē) into Gτ(ē′).

8.3. Lemma. For any of the operations (1) – (5) in Definition 8.2 and prop-
er choices of vertices w ∈ V (G), w′ ∈ V (G′) there is an isomorphism between
fundamental groups ρ : π1(G, w)→ π1(G′, w′) which satisfies D̂′ρ̂ = ρ̂D̂.

Proof. For operation (1) we choose w 6= v and define w′ to be the corresponding
vertex of Γ(G′) . The isomorphism ρ is given through replacing every letter in a
reduced word of π1(G, w) by the corresponding letter of π1(G′, w′) . For the other
operations we proceed similarily: For (2) we choose w 6= v and define ρ through
deleting in every word any occurence of te′ or t−1

e′ , and through replacing any te′′
by t−1

e (and t−1
e′′ by te ) as well as any r ∈ Gv by fē(r), while leaving all other

symbols unchanged. For (3) choose w arbitrary and define ρ through replacing
any te′ by the product te′′ter (and any tē′ by r−1tētē′′). For (4) let w 6= τ(ē), τ(e)
(and thus w′ 6= v ), and in the amalgamated product case simply delete any te ,
whereas in the HNN case replace te by θ (and similarily with the inverses). For
operation (5) we chose w arbitrary and replace te by te′ (and tē by tē′ ) .
The equation D̂′ρ̂ = ρ̂D̂ can be verified directly from these definitions for ρ and
from the Definition 5.1. �

8.4. Proposition. For any Dehn twist one can iteratively apply the operations
(1) – (5) from 8.2 only a finite number of times.

Proof. Notice that the following facts are true for each of the operations (1) – (5):



198 M. M. Cohen and M. Lustig CMH

(a) The number of edges does not increase when passing from G to G′.
(b) In the free group π1(G′, v′) the set of conjugacy classes of edge group gener-

ators {[fe(ae)] | e ∈ E(G′)} differs from the set {ρ[fe(ae)] | e ∈ E(G)} (for
ρ as in 8.3) only in that some classes of the latter may have been deleted or
replaced by proper roots.

Hence (1), (2), (4) and (5) can be applied only a finite number of times: The
operations (1), (2) and (4) strictly decrease the number of edges in G, whereas (5)
replaces some of the ρ[fe(ae)] by a proper root. But every conjugacy class in a
free group has only finitely many proper roots.

Operation (3) strictly decreases the total number of twist exponents and hence
can be applied only finitely many times before, after or between the operations of
type (1), (2), (4) or (5). �

8.5. Proposition. If none of the operations (1) – (5) can be performed on a given
Dehn twist D, then D is efficient.

Proof. This follows directly from the definitions. �

8.6. Algorithm I. Given any Dehn twist D, check whether any of the operations
(1) – (5) in 8.2 can be performed. (As D is given as in 8.1 this can be done in
finitely many steps.) If so, do the operation; in case more than one is possible,
chose any one at random. Then rename the obtained Dehn twist D′ to D and
repeat the procedure. If none of the operations can be performed, stop.

Summarizing 8.3 – 8.6 we obtain:

8.7. Corollary. Algorithm I transforms any Dehn twist in finitely many steps
into an efficient Dehn twist without changing the conjugacy class of the induced
outer automorphism. �

Next we present the algorithm for deciding the conjugacy problem for efficient
Dehn twists:

8.8. Algorithm II. Given two efficient Dehn twists D1 = D(G1, (a
n(e)
e )e∈E(G1))

and D2 = D(G2, (a
n(e)
e )e∈E(G2)), proceed as follows:

(1) Check whether there is a graph isomorphism HΓ : Γ(G1) → Γ(G2) with
rank(Gv) = rank(GH(v)) and n(e) = n(HΓ(e)) for all v ∈ V (G1), e ∈ E(G1).
If so, list all (finitely many) such graph isomorphisms.

(2) For each HΓ listed in (1) and every v ∈ V (G1) check whether there is an iso-
morphism Hv : Gv → GH(v) such that Hv(fe(ae)) is conjugate to fH(e)(aH(e))
for all e ∈ E(G1) with τ(e) = v. This can be done by applying the Whitehead
algorithm to the two families of conjugacy classes,

([fe(ae)] | e ∈ E(G1), τ(e) = v)
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in Gv , and

([fH(e)(aH(e))] | e ∈ E(G1), τ(e) = v)

in GH(v) , see for example [H] .

8.9. Proposition. Algorithm II decides whether, given two efficient Dehn twists
D1 = D(G1, (a

n(e)
e )e∈E(G1)) and D2 = D(G2, (a

n(e)
e )e∈E(G2)) , there exists a graph

of groups isomorphism H : G1 → G2 with He(a
n(e)
e ) = a

n(H(e))
H(e) for all e ∈ E(G1).

Proof. If the algorithm finds in step (1) a graph isomorphism HΓ and in step
(2) isomorphisms Hv for all v ∈ V (G1) with the desired properties, then we can
complete these data to a graph of groups isomorphism H : G1 → G2 as follows: We
define He by He(ae) = aH(e) and define the elements δ(e) to be the elements in
Gτ(H(e)) which conjugate Hτ(e)(fe(ae)) to fH(e)(aH(e)), which exist by step (2) .
The equation (∗) in 4.1 follows then directly from these definitions. Thus H is a
graph of groups isomorphism and from n(e) = n(HΓ(e)) as given through step (1)
we obtain He(a

n(e)
e ) = a

n(H(e))
H(e) for all e ∈ E(G1).

Conversely, if a graph of groups isomorphism H : G1 → G2 with He(a
n(e)
e ) =

a
n(H(e))
H(e) for all e ∈ E(G1) exists, then it explicitly gives a graph isomorphism HΓ

as in (1) and vertex group isomorphisms Hv as in (2). �

8.10. Corollary. Algorithm I and Algorithm II together give a solution to the
conjugacy problem for outer automorphisms of free groups defined by Dehn twists.

Proof. Let D1 and D2 be two (not necessarily efficient) Dehn twists, and let D′1
and D′2 be the efficient Dehn twists based on, say, G′1 and G′2 , which are obtained
from D1 and D2 by Algorithm I . By Lemma 8.3 the automorphisms D̂1 and D̂2
are conjugate if and only D̂′1 and D̂′2 are. Algorithm II decides whether there
exists a graph of groups isomorphism H : G′1 → G′2 which preserves twistors. If so,
D̂1 and D̂2 and hence D̂′1 and D̂′2 are conjugate, and otherwise they are not: This
is precisely the content of Theorem 6.9 (a) . �

8.11. Notice that Algorithm II also solves the conjugacy problem for (non-outer)
automorphisms of free groups which are given by efficient Dehn twists: By Theo-
rem 6.9 (b) two such automorphisms Dv and D′v′ are conjugate if and only if there
exists a corresponding graph of groups isomorphism H which preserves twistors
and maps v to v′ . But the existence of such an H is detected precisely by Algo-
rithm II.
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