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Covering degrees are determined by graph manifolds
involved

Fengchun Yu and Shicheng Wang

Abstract. W.Thurston raised the following question in 1976: Suppose that a compact 3-
manifold M is not covered by (surface)×S1 or a torus bundle over S1. If M1 and M2 are
two homeomorphic finite covering spaces of M , do they have the same covering degree?

For so called geometric 3-manifolds (a famous conjecture is that all compact orientable
3-manifolds are geometric), it is known that the answer is affirmative if M is not a non-trivial
graph manifold.

In this paper, we prove that the answer for non-trivial graph manifolds is also affirmative.
Hence the answer for the Thurston’s question is complete for geometric 3-manifolds. Some
properties of 3-manifold groups are also derived.
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Introduction

Definition 1. A 3-manifold M is said to have Property C if, whenever M1, M2
are homeomorphic finite covering spaces of M , the degrees of the coverings are the
same. It has Property Cr if the above is true for all regular coverings. (Noted
that M has Property C if and only if it has Property Cr [WW, Lemma 2.1].)

We are mainly interested in the following problem of W.Thurston raised in
1976.

[K, problem 3.16 (a)] Which 3-manifolds have Property C? In particular sup-
pose that M is not covered by (surface)×S1 or a torus bundle over S1, does M
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has property C?

Definition 2. A compact, connected, orientable 3-manifold is said to be geometric
if it is a Seifert manifold, or a hyperbolic manifold, or a Haken manifold, or a con-
nected sum of such manifolds.

The fundamental conjecture in 3-manifold theory is that all compact, connect-
ed, orientable 3-manifolds are geometric. It is known that if M is covered by
either (surface)×S1 or a torus bundle over S1, then it does not have Property
C. Actually such manifolds admit non-trivial self-coverings [WW, Theorem 8.6].
Therefore we will concentrate on 3-manifolds in the class G defined below.

Notation. We use G to denote the set of all geometric 3-manifolds which are not
covered by either (surface)×S1 or a torus bundle over S1.

Conjecture 1. Every 3-manifold M in G has Property C.

By using Gromov norm and Kneser-Milnor sphere decomposition theorem, it
is proved that Conjecture 1 is true if M is not a non-trivial graph manifold [WW,
Theorem 2.5]. So the problem is reduced to the case of non-trivial graph manifolds.

Several partial results on property C of non-trivial graph manifolds had been
obtained recently. There are three different covering invariants of graph manifolds
introduced by S.C.Wang and Y.Q.Wu [WW], by J.Luecke and Y.Q.Wu [LW] and
by W.D. Neumann [N]. So a graph manifold has property C if one of those covering
invariants is non-zero. Unfortunately all those three covering invariants are zero
for some non-trivial graph manifolds. It is also proved that a non-trivial graph
manifold has property C if M has at most three vertex manifolds [WW] or if M
is a knot complement in S3 [LW].

In this paper we prove that non-trivial graph manifolds have property C. Hence
a geometric manifold has Property C if and only if it is not covered by either
(surface)×S1 or a torus bundle over S1.

There are four sections after the introduction. In §1, we review the B-matrix
B(M) for a non-trivial graph manifold M defined by S.C. Wang and Y.Q.Wu
[WW] and its properties, which will be the start point of our further approach. In
§2, we introduce a H-matrix H(M) for a non-trivial graph manifold M , and then
deduce a matrix equation which expresses the covering degree by B-matrix and H-
matrix (Theorem 3). In §3, we prove our main result: non-trivial graph manifolds
have Property C (Corollary 5). Some results about maximum eigenvalues of non-
negative matrices are used in the proof. In §4, we prove that for a closed geometric
3-manifold M , π1(M) have property I, that is any two isomorphic subgroups of
π1(M) have the same index (may be infinite), if and only if M have property C and
M is irreducible. This result generalizes the earlier results of F. Gonzales-Acuna
and W. Whitten [GW] and of [WW] on the cohopficity of 3-manifold groups.
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Remark 1. A non-orientable 3-manifold has Property C if and only if its ori-
entable double cover has property C.

1. Preliminaries

For readers’ convenience, we review a matrix invariant defined in [WW] in this
section. The notions which are not explained are standard, see [J] and [S].

For a surface S in a 3-manifold M , we use N(S) to denote the regular neigh-
borhood of S and η(S) to denote the interior of N(S).

Suppose M is a prime orientable 3-manifold with boundary (possibly empty)
a union of tori. Then the torus decomposition of Jaco-Shalen and Johannson
cut M open along a minimum collection of embedded incompressible tori T , the
JSJ-surface, into a collection of simple manifolds and Seifert manifolds.

Definition 3. A geometric 3-manifold M is called a graph manifold if the JSJ-
surface T is not empty and T cuts M into Seifert manifold pieces. A graph
manifold is non-trivial if it is not covered by a torus bundle over S1. (see [WW,§3].
Noted a graph manifold is non-trivial if and only if it belongs to G).

Now consider a non-trivial graph manifold M . In [WW] a new decomposing
surface ϕ of M is defined which consists of those tori in JSJ surface T which do
not bound twisted I-bundles, and those central Klein bottles of twisted I-bundles
bounded by tori in T . If M is a graph manifold in G, then the decomposing surface
exists and is unique up to ambient isotopy [WW, Lemma 3.1].

Comparing with T , the new decomposition surface ϕ has two advantages:

Lemma 1. (a) M −η(ϕ) consists of Seifert fiber spaces with negative Euler char-
acteristic orbifolds [WW, Lemma 3.2], therefore each Seifert manifold piece of M
admits a unique Seifert fibration up to isotopy [S, Theorem 3.9].

(b) Suppose φ: M̃ → M is a finite covering between graph manifolds. If ϕ is
a non-empty decomposing surface of M , then ϕ̃ = φ−1(ϕ) in M̃ is a decomposing
surface for M̃ [WW, Lemma 4.4].

Suppose M is a non-trivial graph manifold and has the decomposing surface
ϕ just defined. We define a graph Γ(M) as follows: to each component Ni of
M − η(ϕ) a vertex vi is assigned, and to each component Sj of ϕ an edge ej is
assigned, so that

(1) if Sj is a torus, and ∂N(Sj) has one component in each of Ni and Nk (i
may be equal to k), then ej has endpoints on vi and vk;

(2) if Sj is a Klein bottle and ∂N(Sj) is in Ni, then ej has both endpoints on
vi.

We define a ‘weight’ for each vertex or edge of Γ(M) as follows. If vi is a vertex
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of Γ(M) corresponding to a component Ni of M − η(ϕ), let the weight xi = x(vi)
be the Euler characteristic of the orbifold of Ni. If e is an edge corresponding to
a surface S in ϕ, let the weight ∆(e) be the fiber intersection number ∆(S). The
weights of vertices are negative rational numbers by Lemma 1 (a), and the weights
of edges are all positive integers ([WW, Lemma 4.3]). Since the decomposing
surface and the Seifert fibrations on the pieces are unique, this weighted graph is
well defined, and is an invariant of M .

For each edge e in the graph Γ(M), define

α(e) =
1

∆(e)xixj
. (1.1)

For all i, j, define

aij = aij(Γ(M)) =
{ ∑{α(e)|e has the endpoints on vi and vj}

0 if there is no such e.
(1.2)

To simplify the formulas, we define

bij =
{
aij if i 6= j,
2aij if i = j.

(1.3)

Define b̃pq in the same way.
Let B = B(M) = (bij). The matrix B depends only on Γ(M) and the indexing

of its vertices, so up to simultaneous permutations of rows and columns it is well
defined. Clearly B is a non-negative symmetric matrix.

Definition 4. Γ = Γ(M) is called the weighted graph of M , and B = B(M) is
called the B-matrix of M , for a non-trivial graph manifold M .

Consider a regular covering map φ: M̃ →M . By Lemma 1 (b), φ can induce a
map on the graphs φ#: Γ(M̃) → Γ(M) defined in the following way. A vertex ṽp
is mapped to vi if the corresponding component Ñp in M̃ − η(ϕ̃) is mapped to Ni,
and an edge ẽg is mapped to eh if the corresponding surface S̃g covers Sh.

For each vertex vi in Γ(M), define

Ii = {p|φ(ṽp) = vi} (1.4)

and use |Ii| to denote the number of elements in Ii.
The result below is the start point for our approach.

Theorem 1. ([WW, Theorem 6.1]) Suppose φ: M̃ → M is a regular covering
over a non-trivial graph manifold. Then the degree d of φ satisfies the equation

d
∑
p∈Ii

∑
q∈Ij

b̃pq = bij |Ii||Ij |.

where (bij) ((b̃pq)) is the B-matrix of M (M̃).



242 F. Yu and S. Wang CMH

2. B-matrix, H-matrix and covering degrees

Let M be a non-trivial graph manifold. The symmetry of the B-matrix B(M) will
provide some useful information in determining the covering degrees. To clarify
the idea, a reduced weighted graph L(M) is defined in [WW, §9] as follows. The
graph L(M) has the same vertices as Γ(M), and it has one edge eij for each pair
of vertices vi, vj (i may be equal to j). Assign bij as the weight of eij .

An isometry g of L(M) is an automorphism of the graph which preserves the
weights. That is, the weight of eij equals that of g(eij) for all i, j. Denote the
isometry group of L(M) by G(M). It induces an action on the set V (M) of vertices
of L(M).

Suppose φ: M̃ → M is a regular covering map. A covering transformation
f : M̃ → M̃ induces a map f#:L(M̃) → L(M̃) which is clearly an isometry. Let
F (M̃) be the set of isometries induced by covering transformations. Then F (M̃)
is a subgroup of G(M̃). Since φ is a regular covering, it induces an one-to-one
correspondence V(M̃)/F(M̃) → V (M). Since F (M̃) is a subgroup of G(M̃), for
each vertex v ∈ V (M), φ−1(v) is contained in a G-orbit of V (M̃).

Suppose V (M̃) has m disjoint G-orbits Ũ1, Ũ2, · · · , Ũm, and V (M) has n ver-
tices v1, v2, · · · , vn. For each G-orbit Ũα of V (M̃), define its indexing set

Oα = {r|ṽr ∈ Ũα}. (2.0)

Each G-orbit of V (M̃) is the union of some φ−1(v), v ∈ V (M). Define

Aα = {i|Ii ⊂ Oα}.

Then we have
Oα =

⋃
i∈Aα

Ii. (2.1)

We use |Oα| to denote the number of elements in Oα, then we have |Oα| =∑
i∈Aα |Ii|.
Define

h̃αβ =
1

(|Oα||Oβ |)
∑
r∈Oα

∑
s∈Oβ

b̃rs, α, β = 1 · · ·m. (2.2)

Then H̃ = H(M̃) = (h̃αβ)m×m is a non-negative symmetric matrix determined
by L(M̃) the indexing of G-orbit of Ṽ (M).

Definition 5. H̃ = H(M̃) is called the H-matrix of M̃ , for a non-trivial graph
manifold M̃ .

Lemma 2. Suppose M̃ is a connected non-trivial graph manifold. Then each
column (row) of H(M̃) has at least one non-zero element.
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Proof. Since M̃ is connected, each column (row) of B(M̃) has at least one non-zero
element. Then Lemma 2 follows from the definition of H(M̃). �

Theorem 2. Suppose φ: M̃ → M is a d-fold regular covering over a non-trivial
graph manifold. Then d satisfies the equation

dh̃αβ |Oβ | =
∑
j∈Aβ

bij |Ij | for any α, β = 1 · · ·m, i ∈ Aα. (2.3)

Proof. For any ṽp, ṽq ∈ Ũα, there is an isometry g ∈ G(M̃ ) sending ṽp to ṽq.
Suppose g maps ṽs to ṽg(s) for ṽs ∈ Ũβ . Since g is an isometry, we have b̃ps = b̃qg(s).
Since Ũβ is a G-orbit, when ṽs ranges over all vertices of Ũβ , ṽg(s) also ranges over
all vertices of Ũβ. Therefore, we have∑

s∈Oβ

b̃ps =
∑
s∈Oβ

b̃qg(s) =
∑
s∈Oβ

b̃qs = Cαβ . (2.4)

Cαβ is a constant determined by α and β, and

Cαβ =
1
|Oα|

∑
r∈Oα

∑
s∈Oβ

b̃rs = h̃αβ|Oβ | (2.5)

By Theorem 1, we have

bij |Ii||Ij | = d
∑
r∈Ii

∑
s∈Ij

b̃rs. (2.6)

Assume i ∈ Aα. When j ranges over Aβ , (2.6) becomes∑
j∈Aβ

bij |Ii||Ij | = d
∑
j∈Aβ

∑
r∈Ii

∑
s∈Ij

b̃rs

= d
∑
r∈Ii

∑
s∈Oβ

b̃rs

= d|Ii|.Cαβ
= d|Ii|h̃αβ |Oβ |. (2.7)

The last three equations follow from (2.1) (2.4) and (2.5). Then (2.3) follows. �

To express Theorem 2 in terms of matrix equation, we have the following
theorem.
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Theorem 3. Suppose φ: M̃ → M is a d-fold regular covering over a non-trivial
graph manifold. Then d satisfies the equation:

Xm×nBn×n = dH̃m×mWm×n. (2.8)

where B is the B-matrix of M , and H̃ is the H-matrix of M̃ , X and W satisfy:
(a) both X and W are m× n non-negative matrices;
(b) each column of X has only one non-zero element and the row sums of X

are constant 1;
(c) W is obtained from X by substituting the only non-zero element in each

column of X for 1. Then the column sums of W are constant 1.

Proof. Define

xαi =

{ |Ii|
|Oα| if i ∈ Aα ,

0 if i /∈ Aα .
(2.9)

wαi =
{

1 if i ∈ Aα ,
0 if i /∈ Aα .

(2.10)

We denote X = (xαi), W = (wαi). Clearly in the α-th row of X , xαi 6= 0 if and
only if i ∈ Aα. Since |Oα| =

∑
i∈Aα |Ii|, we have the row sums of X are constant

1 and each column of X has only one non-zero element. So (b) is true and W is
determined by X just like (c).

Assume that i ∈ Aα, by (2.9), (2.3) and the symmetry of B, we have

(XB)βi =
∑
j∈Aβ

xβjbji =
∑
j∈Aβ

|Ij |
|Oβ |

bji = dh̃αβ . (2.11)

By (2.10) and the symmetry of H̃ we have

(dH̃W )βi = d
m∑
k=1

h̃βkwki = dh̃βα = dh̃αβ (2.12)

So we got the equation (2.8) of Theorem 3. �

3. Nontrivial graph manifolds have Property C

The following Lemma will be used in proving our main result.

Lemma 3. ([HJ, Lemma 8.1.21 and Theorem 8.3.1.]) If A = (aij) is a m ×m
non-negative matrix, satisfies the column (row) sums are constant 1, then the
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maximum eigenvalue of A is 1, and there is an non-negative eigenvector x =
(x1, · · · , xm)T , x 6= 0, xi ≥ 0, i = 1 · · ·m such that Ax = x.

Theorem 4. Suppose φ, φ′: M̃ →M are regular coverings over a non-trivial graph
manifold with covering degrees d, d′. Then d = d′. That is, a non-trivial graph
manifold has Property Cr.

Proof. By Theorem 3 we have the following matrix equations.{
(X1)m×nBn×n = dH̃m×m(W1)m×n
(X2)m×nBn×n = d′H̃m×m(W2)m×n

. (3.0)

Then we have {
X1BX

T
2 = dH̃W1X

T
2

X2BX
T
1 = d′H̃W2X

T
1
. (3.1)

Since both B and H̃ are symmetric matrices, we have

dH̃W1X
T
2 = (d′H̃W2X

T
1 )T = d′X1W

T
2 H̃. (3.2)

Denote
L = X1W

T
2 , R = W1X

T
2 , λ =

d

d′
, (3.3)

then we have

LH̃ = λH̃R. (3.4)

Recall both Xi and Wi are m × n non-negative matrices, which satisfy the
conditions (b) and (c) in Theorem 3 : the row sums of Xi and the column sums
of Wi are both constant 1. Then it is easy to see both L and R are non-negative
matrices, the row sums of L and column sums of R are both constant 1. (If we
denote Jm = (1 · · · 1)T︸ ︷︷ ︸

m times

, Jn = (1 · · · 1)T︸ ︷︷ ︸
n times

, then we have LJm = X1W
T
2 Jm = X1Jn =

Jm, R
TJm = X2W

T
1 Jm = X2Jn = Jm).

By Lemma 3, the maximum eigenvalues of L and R are both 1, and there is
non-negative vector y = (y1, · · · , ym)T satisfies

Ry = y, y 6= 0, yi ≥ 0 (i = 1, · · · ,m). (3.5)

By (3.4) and (3.5) , we have

L(H̃y) = λ(H̃y). (3.6)

By Lemma 2, each column (row) of H̃ has at least one non-zero element. Since
H̃ is a non-negative matrix, y is a non-negative vector and y 6= 0, it follows that
H̃y 6= 0. So λ is the eigenvalue of L by (3.6). The maximum eigenvalue of L is
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1, so we must have λ ≤ 1. That is, d ≤ d′. By the symmetry of φ and φ′, we
conclude d′ ≤ d also. Hence d = d′ �

By Theorem 4 and [WW, Lemma 2.1], we have

Corollary 5. Every non-trivial graph manifold has Property C.

By Corollary 5, [WW, Theorem 2.5] and [WW, Theorem 8.6], we have

Corollary 6. A geometric 3-manifold has Property C if and only if it is not
covered by either (surface)×S1 or a torus bundle over S1. In particular, Conjecture
1 is true.

4. Property I of 3-manifold groups

A group G is called cohopfian if each self-monomorphism of G is an isomorphism.
Recently when 3-manifolds groups are cohopfian have been studied (see [GW],
[WW]).

Definition 6. A group G has property I if, whenever G1 and G2 are isomorphic
subgroups of G, then their embedding indices either are the same or are both
infinite.

Remark 2. Both Property C and cohopficity are related indices of embeddings
one group to another, the first one restricted on finite index embeddings and
the second one restricted on self-embeddings. The notion Property I unifies two
notions Property C and cohopficity.

Theorem 7. Suppose M is a closed geometric 3-manifold. Then the fundamental
group π1(M) has Property I if and only if M is irreducible and M is not covered
by either (surface)×S1 or a torus bundle over S1.

Proof. One direction follows directly from [WW, Theorem 8.7] and Remark 2.
Now we prove another direction. Denote G = π1(M), where M is irreducible

and it is not covered by either (surface)×S1 or a torus bundle over S1. Then M
has property C by Corollary 7. M is aspherical [J], and therefore for any covering
M̃ of M , H3(π1(M̃)) = H3(M̃).

Let G1 and G2 be the isomorphic subgroup of G. Let M̃1 and M̃2 be the
corresponding coverings. Then we have

H3(M̃1) = H3(π1(M̃1)) = H3(G1) = H3(G2) = H3(π1(M̃2)) = H3(M̃2).

Now H3(M̃i) = Z if and only if M̃i is closed, and this is true if and only if
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[G,Gi] is finite. So either both [G,G1] and [G,G2] are infinite, or both [G,G1]
and [G,G2] are finite. In the later case, if G is finite, clearly [G,G1] = [G,G2].
If G is infinite, then and M̃i is either a closed hyperbolic manifold, or a closed
Haken manifold, or a closed Seifert manifold of infinite π1. Since M̃1 and M̃2
have isomorphic fundamental groups, they are homeomorphic [T]. Since M has
property C, the two covering degrees are the same. Hence [G,G1] = [G,G2]. �
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