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Abstract. Let K be an algebraically closed field of finite characteristic p, and let n ≥ 1 be
an integer. In the paper, we give a character formula for all simple rational representations of
GLn(K) with highest weight any multiple of any fundamental weight. Our formula is slightly
more general: say that a dominant weight λ is special if there are integers i ≤ j such that
λ =

∑
i≤k≤j ak ωk and

∑
i≤k≤j ak ≤ inf(p− (j − i), p− 1). Indeed, we compute the character

of any simple module whose highest weight λ can be written as λ = λ0 + pλ1 + ...+ prλr with
all λi are special. By stabilization, we get a character formula for a family of irreducible rational
GL∞(K)-modules.
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Introduction

In the paper, we will prove a character formula for a stable family of simple poly-
nomial representations of GLn(K). Unfortunately, the main result of the paper
requires some preparatory explanations. Therefore, the introduction is organized
as follows. We first define the basic notions about polynomial weights and we
describe some combinatorics involving Young diagrams. Next, we recall the usual
correspondence between dominant polynomial weights and Young diagrams and
we compare the corresponding definitions. After the statement of the main re-
sult, we explain the meaning of a stable family in terms of polynomial functors.
Then, we briefly compare our result with the main result of [AJS] about Lusztig’s
Conjecture. At the end of the introduction, we describe the main ingredients of
the proof which uses tilting modules [D2][R] and the modular Verlinde formula
[GM1][GM2].

The research of the two authors was supported by UMR 7501 du CNRS. The second author
was also supported by UA 748 du CNRS.
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Let us start with definitions involving weights. From now on, fix a positive
integer n and an algebraically closed field K of characteristic p > 0. Let H be
the Cartan subgroup of GLn(K) consisting of diagonal matrices and let P be the
group of characters of H. An element of P will be called a weight and the group
structure of P will be denoted additively. Denote by ε1, ε2, . . . the natural basis
P , i.e. εi(h) is the ith diagonal entry of the matrix h ∈ H. Therefore any weight
µ can be written as µ =

∑
1≤i≤n ri εi, where ri ∈ Z. Its degree is |µ| =

∑
1≤i≤n ri.

The weight µ is called polynomial if ri ≥ 0 for all i. It is called dominant if
r1 ≥ r2 ≥ . . . . By definition, the kth-fundamental weight is ωk =

∑
1≤i≤k εk,

for any k with 1 ≤ k ≤ n. Therefore a weight λ is polynomial and dominant if
and only if λ =

∑
1≤k≤n ak ωk where ak ≥ 0 for any k. The main definition of

the paper is the definition of special weights. A dominant polynomial weight λ is
special if and only if there exist integers i ≤ j such that:

(i) λ =
∑
i≤k≤j ak ωk,

(ii) m(λ) ≤ p− (j − i) and m(λ) < p, where m(λ) =
∑
i≤k≤j ak.

Note that the last inequality m(λ) < p is automatically satisfied whenever i 6= j.
We will also use the notion of the p-adic expansion of a polynomial weight. Recall
that any integer l ≥ 0 admits a unique p-adic expansion l =

∑
j≥0 l(j)p

j, where
0 ≤ l(j) < p for all j ≥ 0 (this expansion is finite since l(j) = 0 for j >> 0).
Similarly, any polynomial weight µ admits a unique finite p-adic expansion µ =∑
j≥0 p

jµ(j), which is defined by µ(j) =
∑

1≤i≤n ri(j) εi. Also set Cn the set of all
dominant polynomial weights λ of the form λ =

∑
k≥0 p

kλk, where all weights λk
are special and λk = 0 for k >> 0. Indeed, it is easy to see that

∑
k≥0 p

kλk is the
p-adic expansion of λ, i.e. we have λk = λ(k) for all k ≥ 0 (see Lemma 5.1 (i)).

Now, we will define a few notions involving Young diagrams. The degree of a
Young diagram Y , denoted by |Y |, is the total number of boxes and its height is
the number of rows. A tableau of shape Y is a labeling of the boxes of Y by the
integers 1, 2, . . . , n. It is convenient to draw Young diagrams and tableaux and the
convention used in the paper is better explained by giving one example of a Young
diagram Y of degree 8 and height 3 and one example of a tableau T of shape Y :

Y : T :
1 3 3 3
2 4 5
3

As usual, a tableau is called semi-standard if the filling is non decreasing from
left to right and increasing from top to bottom, e.g. the tableau in the previous
example is semi-standard. For a tableau T , denote by T [i] the subset of boxes with
labels ≤ i. Therefore, when T is semi-standard, T [i] is again a Young diagram.
The weight of T is w(T ) =

∑
1≤i≤n ηi(T )εi, where ηi(T ) equals the number of

times the label i occurs in T (i.e. ηi(T ) is the cardinality of T [i] \ T [i− 1]). For
a Young diagram Y , we denote by ci(Y ) the number of boxes on the ith column
and by rj(Y ) the number of boxes on the jth row. In the previous example,
c1(Y ) = 3, r1(Y ) = 4, c2(Y ) = 2, r2(Y ) = 3 and so on . . . . Let m < p be a
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positive integer. We say that Y is m-special if the number of columns is ≤ m and
if c1(Y ) − cm(Y ) ≤ p −m. By definition, a semi-standard tableau T is m-semi-
standard if all Young diagrams T [i] are m-special.

There is a one-to-one correspondence λ 7→ Y (λ) between dominant polynomial
weights λ and Young diagrams of height ≤ n. Indeed, Y (λ) is defined by the
requirement: λ =

∑
1≤i≤n ri(Y )εi. This correspondence preserves the degree.

Moreover a polynomial dominant weight λ is special if and only if Y (λ) is m(λ)-
special, see Lemma 4.1 (i). Let λ be a special weight, let µ be a polynomial weight.
Set N(λ, µ) the number of m(λ)-semi-standard tableaux of shape Y (λ) and weight
µ. By definition, we have N(0, 0) = 1 and N(λ, µ) = 0 if the degrees of λ and µ
are distinct.

For any dominant weight λ, set V = Kn and let LV (λ) be the simple GL(V )-
module with highest weight λ (this simple GLn(K)-module is usually denoted by
L(λ)). For µ ∈ P , its weight space corresponding to the weight µ is denoted by
LV (λ)µ. The main result of the paper is the following:

Theorem 5.3. Let λ ∈ Cn. Any weight of LV (λ) is polynomial, and for any
polynomial weight µ, we have:

dim LV (λ)µ =
∏
k≥0 N(λ(k), µ(k)).

In the theorem, we stated the obvious fact that any weight µ of LV (λ) is
polynomial because this property is necessary to define its p-adic expansion. Also,
the infinite product is well defined because N(λ(k), µ(k)) = N(0, 0) = 1 for k >>
0.

It remains to explain what means a stable family of simple modules. The
definition of special weights is indeed independent of n, i.e. if λ is a special weight
for GLn(K) its natural extension to GLN (K) is again special for any N ≥ n.
Otherwise stated, the family (Cn)n≥1 is stable, i.e. Cn ⊂ Cn+1. Thus the previous
theorem gives rise to a character formula for any simple GL∞(K)-module with
highest weight λ ∈ C∞, where GL∞(K) = ∪n≥1GLn(K), C∞ = ∪n≥1 Cn. The
stability notion can be better explained in terms of polynomial functors. Let Y
be a Young diagram and let λ be the corresponding polynomial dominant weight.
It will be convenient to extend the notation LV (λ) by requiring LV (λ) = 0 if λ is
not a dominant weight for GLn(K), i.e. if the height of Y is > n. Then there is a
polynomial functor SY such that SY : V 7→ LV (λ) for all n ≥ 0 (our definition of
the functor SY is not complete, because we only describe the values of the functor
on objects). Therefore, the previous theorem is indeed a character formula for any
simple polynomial functor SY , where Y = Y (λ) for some λ ∈ C∞.

Example. For any s with 0 ≤ s ≤ p − 1, the weight s ωi is special. Therefore,
N ωi ∈ Cn for any N ≥ 0, and the theorem gives a character formula for any simple
module whose highest weight is a multiple of a fundamental weight.
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There is a general conjecture, due to Lusztig [Lu1,Lu2], about the character of
a simple rational GLn(K)-module. The experts believe that this conjecture holds
for p ≥ n (see e.g. the introduction of [So]) and it has been proved for p >> n by
Andersen, Jantzen and Soergel [AJS]. In contrast, our character formulas apply
only to some peculiar highest weights, but they hold for any n and are therefore
outside the validity domain of Lusztig’s Conjecture. Indeed Lusztig’s Conjecture
does not seem adapted to the investigation of simple polynomial functors. Using
Weyl’s polarizations, the simple polynomial functor SY is entirely determined by
the GLn(K)-module SY (Kn), where n = |Y |. Therefore, Lusztig’s Conjecture
only applies to polynomial functors of degree ≤ p and simple polynomial functors
of degree ≤ p can be easily determined by elementary computations or by Theorem
5.3.

The proof is based on the following three ingredients:
(i) First, one uses Steinberg’s tensor product formula [St] to reduce the state-

ment to the case where λ is special. It turns out that Steinberg’s formula is espe-
cially simple in our setting, because any weight of LV (λ) is a unique combination
of weights of the modules LV (pk λ(k)) (Lemma 5.2).

(ii) We strongly use an idea of Donkin [D2]: Donkin proved thatM =
∧

(V ⊗W )
is a dual pair under GL(V ) × GL(W ) (here W is another vector space). This
dual pair is called Howe’s skew dual pair, because it has been found by Howe in
the context of fields of characteristic zero [H]. Donkin showed that the character
of all simple modules can be deduced from the character of all tilting modules,
and conversely. However, we do not have such an information. This is why we
need to modify a bit Donkin’s approach. Using the same dual pair, we show
that the character of simple GL(V )-modules can be also deduced from the tensor
product mutiplicity of a given tilting GL(W )-module (Corollary 2.3) in some direct
summands of the GL(W )-module M.

(iii) Similarly, the general tensor product multiplicities of tilting modules are
unknown. However the main result of [GM1,GM2] (Verlinde’s formula for algebraic
groups) describes some of them. More precisely, we use Verlinde’s formula for
GL(W ) with W of dimension 1, 2, . . . , p − 1, and then the computable tilting
multiplicities in M correspond exactly to the special weights (see e.g. Lemma 3.4).

Remark. It follows from the character formula that the restriction to GL(n− 1)
of representations considered here are semi-simple (Theorem 6.2). This result has
been obtained independently and simultaneously by J. Brundan, A. Kleshchev
and I. Suprunenko [BKS] by very different methods. Indeed, the result of [BKS] is
more precise, because it characterizes all simple representations of GL(n) whose
restrictions to GL(n − 1) are semi-simple. Later, these three authors have been
able to recover the main result of our paper (Theorem 5.3) by using their semi-
simplicity theorem (thus providing a very different proof).
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1. General results about tilting modules

Let K be an algebraically closed field of characteristic p, let G be a reductive
group over K, let B be a Borel subgroup, and let H ⊂ B be a Cartan subgroup.
We will set by U the unipotent radical of B and by U− the unipotent radical of
the opposed Borel subgroup. Denote by P+ the set of dominant weights relative
to B. For λ ∈ P+, denote by L(λ) (respectively ∆(λ), ∇(λ)) the simple module
(respectively the Weyl module, the dual of the Weyl module) with highest weight
λ.

ByG-module, we mean rationalG-module of finite dimension. A good filtration
of a G-module M is a filtration whose subquotients are dual of Weyl modules. A
G-module M is tilting if M and M∗ have a good filtration. Recall the following
known result:

Theorem 1.1.
(i) For each λ ∈ P+, there exists a unique indecomposable tilting module T (λ)

which admits λ as highest weight. Moreover, dimT (λ)λ = 1.
(ii) Any tilting module is the direct sum of indecomposable tilting modules of

type T (λ). The tilting modules T (λ) and T (µ) are isomorphic if and only if λ = µ.
(iii) The tensor product of two tilting modules is a tilting module.

References for the Theorem are as follows: the general notion of tilting modules
for any quasi-hereditary algebra is due to Ringel [R]. In the context of algebraic
groups, the assertions (i), (ii) are due to Donkin [D2] (Theorem 1.1). Assertion
(iii) follows from the fact that the tensor product of two G-modules with a good
filtration has a good filtration: for groups of type A (which are indeed the only
groups used here), it has been established in [W], for the general case see [D1],
[M1].

Let M be a G-module. Denote by TG(M) the image of the composite map
MU → M → MU− where MU is the space of U -invariants of M and MU− =
H0(U−,M) is the space of U−-coinvariants of M . Since TG(M) is an H-module,
there is a weight decomposition TG(M) = ⊕λ∈P+TGλ (M).

Lemma 1.2. Let M be an indecomposable tilting module.
(i) TG(M) has dimension one.
(ii) Let λ be the unique weight of TG(M). Then we have M ' T (λ).

Proof. It is clear that TG(N) 6= 0 for any non-zero G-module N , because any
maximal weight of N is a weight of TG(N). Let λ be any weight of TG(M)
and choose v ∈ MU

λ such that its image in TG(M) is not zero. Denote by the
same notation vλ a highest weight vector in ∆(λ), in ∇(λ) and in T (λ). By the
universal property of Weyl modules, there is a map ψ1 : ∆(λ)→M sending vλ to
v. Similarly, there is a map ψ2 : M →∇(λ) sending v to vλ.
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Now, there is a canonical injection ∆(λ) ↪→ T (λ) (sending vλ to vλ) whose
quotient has a filtration by Weyl modules. We have Ext1G(∆(µ),∇(µ′)) = 0,
for any µ, µ′ ∈ P+ ([CPSV], corollary 3.3). Since M has a good filtration, we
have Ext1G(T (λ)/∆(λ),M) = 0. Thus, the map ψ1 can be extended to a map
φ1 : T (λ) → M . In the same way, there is a canonical surjection T (λ) � ∇(λ)
(sending vλ to vλ), and the map ψ2 can be lifted to a map φ2 : M → T (λ). So we
get the following commutative diagram:

T (λ)

φ2 ↗ ↓

∆(λ)
ψ1−→M

ψ2−→ ∇(λ)

↓ ↗ φ1

T (λ)

By definition, we have ψ2 ◦ ψ1(vλ) = vλ. Therefore, φ2 ◦ φ1 is a non nilpotent
endomorphism of the indecomposable module M . By Fitting’s Lemma, φ2 ◦ φ1 is
an invertible map. Thus, T (λ) is a direct factor of M and so we have M ' T (λ).

If ν is another weight of TG(M), we get T (ν) ' M ' T (λ). Therefore by
Theorem 1.1 (ii), λ is the unique weight of TG(M). As T (λ)λ has dimension 1
(Theorem 1.1 (i)), it follows that TG(M) has dimension one. �

Corollary 1.3. Let M be a tilting G-module and let C be its commutant.
(i) We have M ' ⊕λ∈P+TGλ (M)⊗ T (λ) as a G-module.
(ii) For any λ ∈ P+, the C-module TGλ (M) is zero or simple.

Proof. By Theorem 1.1, there exists an isomorphism of G-modules
M ' ⊕λ∈P+T (λ)⊗Nλ . By Lemma 1.2 we have Nλ = dimTGλ (M) and Assertion
(i) follows. For N ≥ 0, denote by MatN(K) be the K-algebra of N ×N matrices.
Clearly, C contains a subalgebra C0 ' ⊕λ∈P+MatNλ(K) and we have M '⊕
TGλ (M)⊗ T (λ) as C0 ×G-modules. Hence Assertion (ii) follows from the fact

that for any λ, TGλ (M) is zero or is a simple C0-module. �

Lemma 1.4. Let M,N be two G-modules. If M is indecomposable of dimension
divisible by p, then the dimension of any direct summand of M ⊗N is divisible by
p.

Proof. This follows easily from Theorem 2.1 of [BC], see also [GM1] (Lemma 2.7.).
�



286 O. Mathieu and G. Papadopoulo CMH

2. Howe’s skew duality for the pair (GL(V ), GL(W ))

From now on, fix an integer n ≥ 1 and set V = Kn. We need to modify some
notations of the introduction. The Cartan subgroup of GL(V ) will be denoted by
HV (instead of H), the group of characters of HV by PV (instead of P ), the basis
elements of PV by εVi (instead of εi) and the fundamental weights by ωVk (instead
of ωk). We will also modify some notations of Section 1. The set of dominant
weights will be denoted by P+

V and for a λ ∈ P+
V , we will denote by LV (λ),

∇V (λ) and TV (λ) the simple module, the dual of the Weyl module and the tilting
module with highest weight λ. We will use the following additional notations.
Let (vi)1≤i≤n be the natural basis of V = Kn. Let UV (respectively U−V ) be
the subgroup of unipotent upper diagonal (respectively lower diagonal) matrices.
Indeed P+

V = ⊕1≤i<nNωVi ⊕ ZωVn , and the dominant weights are relative to the
Borel subgroup HV .UV .

In what follows, we will use another vector space W of dimension m, with basis
(wi)1≤i≤m. Notations relative to GL(W ) will be similar to those for GL(V ).

For any Young diagram Y contained in the n × m rectangle (i.e. such that
c1(Y ) ≤ n and r1(Y ) ≤ m), we set λ(Y ) =

∑
1≤i≤n ri(Y ) εVi and λT (Y ) =∑

1≤i≤m ci(Y ) εWi . By definition, λ(Y ) belongs to P+
V and λT (Y ) belongs to P+

W .
The map Y 7→ λ(Y ) is the inverse of the map λ 7→ Y (λ) defined in the introduction.
Set M =

∧
(V ⊗W ), let K[GL(V )] be the group algebra of GL(V ) and let ρV :

K[GL(V )]→ EndK(M) the map induced by the action of GL(V ) on M.

Theorem 2.1. (Donkin)
(i) We have ρV (K[GL(V )]) = EndGL(W )(M).
(ii) As a GL(W )-module, M is tilting.

Proof. Theorem 2.1 (i) is proved in [D2], proposition (3.11) (see also [AR] for a
generalization to other classical groups). As aGL(W )-modules,

∧
W is titling (see

[D2] or Lemma 3.2) and M is isomorphic to (
∧
W )⊗n. Therefore, by Theorem 1.1

(iii) the GL(W )-module M is tilting (see also [D2]). �

Indeed, we obtain dual statements by exchanging V and W . However, it should
be noted that usually M is not tilting as a GL(V ) × GL(W )-module. In Howe’s
terminology, (GL(V ), GL(W )) is a dual pair in GL(M). Indeed, for fields of char-
acteristic zero, this duality is due to Howe [H]. In this setting, Howe showed that
the GL(V ) × GL(W )-module M is isomorphic to ⊕Y LV (λ(Y )) ⊗ LW (λT (Y )),
where Y runs over all Young diagrams contained in the n×m rectangle. A certain
generalization of this property in finite characteristics is stated in the next lemma:

Lemma 2.2. Let Y be a Young diagram of degree d contained in the n × m
rectangle.

(i) As GL(V )-module, TGL(W )
λT (Y ) (M) is isomorphic to LV (λ(Y )).
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(ii) Let µ =
∑

1≤k≤n kiε
V
i be a polynomial weight of degree d. We have

LV (λ(Y ))µ ' TGL(W )
λT (Y ) (

∧k1 W ⊗
∧k2 W ⊗ . . . ).

Proof. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, let bi,j the box of the n×m rectangle located
at the intersection of the ith row and the jth column and set xi,j = vi ⊗ wj . In
the case d > 0, we place the Young diagram Y inside the rectangle in a such way
that it contains the upper left box b1,1. For example:

Let X (respectively X−) be the subspace of V ⊗ W generated by all xi,j with
bi,j ∈ Y (respectively with bi,j /∈ Y ). Note that X is a d-dimensional UV × UW -
submodule of V ⊗W and X− is a (nm− d)-dimensional U−V × U−W -submodule of
V ⊗W . Choose non zero vectors x ∈

∧d
X and x− ∈

∧nm−d
X−.

We claim that TGL(W )
λT (Y ) (M) contains a non-zero UV -invariant vector of

weight λ(Y ). The vector x is UV × UW -invariant of weight (λ(Y ), λT (Y )). Hence
it defines a UV -invariant element x ∈ TGL(W )

λT (Y ) (M). For y ∈ M, set τ(y) =
∫
y ∧

x−, where
∫

: M →
∧mn(V ⊗W ) is the projection over the top component of∧

(V ⊗W ). Since x− is U−W -invariant and
∧nm(V ⊗W ) is a trivial U−W -module,

the map τ : M →
∧mn(V ⊗W ) is U−W -equivariant and therefore factors trough

MU−
W

. By definition, x ∧ x− 6= 0 therefore τ(x) 6= 0. As the image of x in MU−
W

is not zero, we have x 6= 0. Hence TGL(W )
λT (Y ) (M) contains a non-zero UV -invariant

vector of weight λ(Y ), namely x.
However, by Corollary 1.3 and Theorem 2.1 (ii), the non-zero GL(V )-module

T
GL(W )
λT (Y ) (M) is simple. The previous claim and the classification of the simple
GL(V )-modules by the weight of their UV -invariant vectors [St] implies that
T
GL(W )
λT (Y ) (M) ' LV (λ(Y )). Thus Assertion (i) is proved.

Identify V ⊗W 'W ⊕W⊕ . . . , where the ith-factor W is vi⊗W . Accordingly,
we get M '

∧
W ⊗

∧
W . . . (n times). Thus the eigenspace of weight µ of the

GL(V )-module TGL(W )(M) is TGL(W )(
∧k1 W ⊗

∧k2 W ⊗ . . . ), and Assertion (ii)
follows. �

Corollary 2.3. Let Y be a Young diagram of degree d contained in the n × m
rectangle, and let µ =

∑
1≤k≤n ki ε

V
i be a polynomial weight of degree d. The

dimension of LV (λ(Y ))µ is the multiplicity (as a direct summand) of the indecom-
posable GL(W )-module TW (λT (Y )) in

∧k1 W ⊗
∧k2 W ⊗ . . . .

Proof. The assertion follows from Corollary 1.3 and Lemma 2.2. �
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Remark. By Corollary 2.3, the knowledge of tensor product multiplicities of
tilting modules determines the character formula of simple modules. This formula
can be compared with Donkin’s formula for decomposition numbers. The formula
is (see [D2], Lemma 3.1):

[TV (λ(Y )) : ∇V (λ(Y ′))] = [∇W (λT (Y ′)) : LW (λT (Y ))].

Therefore, each of the following computations (for all GL(n))
(i) all decomposition numbers [∇V (µ) : LV (λ)],
(ii) the character formula of all the simple modules LV (λ),
(iii) the character formula of all the tilting modules TV (λ),
(iv) the tensor product multiplicities of all the tensor products of two tilting

modules,
are equivalent with each other (see [D2] for further details). It should be noted
that the determination of the character of all tilting modules is a very difficult
problem: e.g. there is no conjecture for them, even for the small group GL3(K)
(in contrast, the character formulas for simple GL3(K)-modules can be obtained
very easily). The main observation of the paper is based on the fact that a partial
information about tensor product multiplicities (namely, the modular Verlinde
formula [GM1], [GM2]) is enough to determine the character formula of a certain
class of simple modules.

3. Some multiplicities of tilting GL(W )-modules in
∧

(V ⊗W )

Let W be a vector space of dimension m < p. We will use the notations of
Section 2 together with the following notations. Set hW0 = (εW1 )∗ − (εWm )∗, where
((εWi )∗)1≤i≤m is the dual basis of Hom(PW ,Z) (i.e. hW0 is the highest coroot of
GL(W )). Denote by ΩW

j the set of all weights of the form εWk1
+ εWk2

+ · · · + εWkj
with k1 < k2 < · · · < kj . Thus ΩWj is the set of weights of

∧jW and ωWj is its
highest weight. Set CW = {λ ∈ P+

W |λ(hW0 ) ≤ p −m}. Usually, CW is called the
interior of the fundamental alcove.

Lemma 3.1. Let λ ∈ P+
W . Then p divides dimTW (λ) if and only if λ /∈ CW .

Lemma 3.2. Let j be an integer with 0 ≤ j ≤ m. We have TW (ωWj ) '
∧j

W .
In particular, the set of weights of TW (ωWj ) is ΩWj and each weight appears with
multiplicity one.

Lemma 3.3. Let λ ∈ CW and let j with 0 ≤ j ≤ m. We have TW (λ)⊗TW (ωWi ) =
⊕νTW (λ+ ν), where the sum runs over all ν ∈ ΩWj such that (λ+ ν) ∈ P+

W .

References for the previous three lemmas are as follows: Lemma 3.2 follows
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from the fact that
∧j

W is simple (see [D2] for details). Lemma 3.1 and Lemma
3.3 follow from the main result of [GM1], [GM2] (the modular Verlinde formula).
For the peculiar case considered here, there is a quick proof of both lemmas , see
Proposition 10 of [M2] and Lemma 12 of [M2] (m− 1 is the value of ρ(hW0 ) of loc.
cit.). This quick proof is based on Andersen’s linkage principle [A] and on Lemma
1.4..

Lemma 3.4. Let k1, . . . , kn be integers with 0 ≤ ki ≤ m. We have:∧k1 W ⊗ ...⊗
∧knW = T ⊕ [⊕(ν1,...,νn)TW (ν1 + ...+ νn)],

where T is a sum of indecomposable tilting modules of dimension divisible by p
and where the sum runs over all n-tuples (ν1, ..., νn) ∈ ΩWk1

× · · · × ΩWkn such that
ν1 + ν2 + ...+ νi belongs to CW , for any i with 1 ≤ i ≤ n.

Proof. Let λ ∈ P+
W and let k be an integer with 0 ≤ k ≤ m. Assume first that

λ ∈ CW . It follows from lemmas 3.1, 3.2 and 3.3 that we have:

TW (λ) ⊗
k∧
W ' T ⊕ [⊕νTW (λ+ ν)], (3.4.1)

where T is a sum of indecomposable tilting modules of dimension divisible by p
and where the sum runs over all ν ∈ ΩWk such that λ + ν belongs to CW . Next,
assume that λ /∈ CW . From lemmas 1.4 and 3.1, we get:

TW (λ)⊗
k∧
W ' T, (3.4.2)

where T is a sum of indecomposable tilting modules of dimension divisible by p.
Note that for n = 1, the assertion of Lemma 3.4 is obvious: indeed the conditions
ν1 ∈ CW and ν1 ∈ ΩWk1

simply mean ν1 = ωWk1
. Thus, Lemma 3.4 follows, by

induction over n, from the assertions (3.4.1) and (3.4.2). �
Example 3.5. For this example, we will consider the case m = p − 1. For any
k ∈ Z, set θWk = ωWa + b.ωWm , where k = a +mb and 0 ≤ a < m. It is clear that
CW = {θWk |k ∈ Z} and Lemma 3.4 can be stated as follows:

k1∧
W ⊗ ...⊗

kn∧
W = T ⊕ TW (θWk1+···+kn),

where T is a sum of indecomposable tilting modules of dimension divisible by p.
Using Corollary 2.3, we get that for any special weight λ with m(λ) = p− 1, the
module LV (λ) is multiplicity free. Indeed, we recover a well-known fact: for such
a weight, we have λ = aωVi + b ωVi+1, for some integers a, b, i with a+ b = p− 1.
Set N = a i+ b (i+ 1). As LV (λ) is the degree N restricted symmetric power of
V (see [Do]), it is multiplicity free.
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4. Character of LV (λ), λ being a special weight

We will use the notations of the previous two sections. In particular, the dimen-
sions of V and W are n and m. We will always assume that m < p. Also denote
by CpolW the set of all polynomial weights in CW . A polynomial weight λ ∈ P+

V is
called m-special if there are integers i, j with λ =

∑
i≤k≤j ak ω

V
k ,
∑
i≤k≤j ak ≤ m

and j− i ≤ p−m. To compare the notion of m-special weights with the notion of
special weights given in the introduction, we need the following two observations:

(i) λ is special if and only if m(λ) < p and λ is m(λ)-special,
(ii) if λ is m-special for some m < p, then m(λ) ≤ m and λ is special,

for any dominant polynomial weight λ. In particular, any m-special weight is
m(λ)-special and special. Let Y oung(n,m) be the set of all m-special Young
diagrams of height ≤ n.

Lemma 4.1. (i) The map Y 7→ λ(Y ) is a bijection from the set Y oung(n,m) to
the set of all m-special weights of P+

V .
(ii) The map Y 7→ λT (Y ) is a bijection from the set Y oung(n,m) to CpolW .

Proof of Assertion (i). The map Y 7→ λ(Y ) is a bijection between the set of all
Young diagrams of height ≤ n and the set of all dominant polynomial weights
of GL(V ). More explicitly, this map is given by: Y 7→

∑
k≥1 ω

V
ck(Y ). We have

m(λ(Y )) = r1(Y ), hence Young diagrams with at mostm columns correspond with
weights λ with m(λ) ≤ m. Moreover if r1(Y ) ≤ m, we have λ(Y ) =

∑
i≤k≤j akω

V
k ,

where i = cm(Y ), j = c1(Y ). Thus λ(Y ) is m-special if and only if Y is m-special.

Proof of Assertion (ii). The map Y 7→ λT (Y ) is a bijection between the set of
all Young diagrams of height ≤ m and the set of all dominant polynomial weights
of GL(W ). We have λT (Y ) =

∑
k≥1 ck(Y ) εWk , therefore we have λT (Y )(hW0 )

= c1(Y )− cm(Y ). Hence Y is m-special, if and only if λT (Y ) belongs to CpolW . �

Lemma 4.2. Let Y ∈ Y oung(n,m) and let µ =
∑

1≤i≤n ki ε
V
i be a polynomial

weight such that |Y | = |µ|. There is a natural bijection Ψm from
(i) the set of all m-semi-standard tableaux of shape Y and weight µ, to
(ii) the set of all n-tuples (ν1, ..., νn) ∈ ΩWk1

× · · · × ΩWkn such that
∑

1≤i≤n νi
= λT (Y ) and such that ν1 + ν2 + ...+ νi belongs to CW , for any i with 1 ≤ i ≤ n.

Proof. Let T be a tableau of shape Y and weight µ. Define n weights ν1, . . . , νn ∈
PW by the requirement:

ν1 + · · ·+ νi = λT (T [i]), for all i with 1 ≤ i ≤ n.

Note that T [i]\T [i−1] contains exactly ki boxes. Assume that T is semi-standard.
Then any two boxes of T [i] \ T [i − 1] are located on different columns. Denote
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by j1 < · · · < jki the numbering of the non empty columns of T [i] \ T [i− 1]. We
have νi = εWj1 + εWj2 + . . . , hence νi belongs to ΩWki . Thus it is clear that the map
Ψ : T 7→ (ν1, ..., νn) is a bijection from

(i) the set of all semi-standard tableaux of shape Y and weight µ, to
(ii) the set of all n-tuples (ν1, ..., νn) ∈ ΩWk1

× · · · × ΩWkn such that
∑

1≤i≤n νi

= λT (Y ) and such that ν1 + ν2 + ...+ νi belongs to P+
W , for any i with 1 ≤ i ≤ n.

Indeed, this bijection Ψ is equivalent to the rule of Richardson and Littlewood
([LR], see also [Li]). Denote by Ψm the restriction of Ψ to the set of all m-semi-
standard tableaux of shape Y and weight µ. As the weights ν1 + ν2 + ...+ νi are
polynomial, it follows from Lemma 4.1 (ii) that Ψm is the bijection required by
Lemma 4.2. �

Theorem 4.3. Let λ be a special weight. Any weight of LV (λ) is polynomial and
for any polynomial weight µ, the dimension of LV (λ)µ is the number of m(λ)-
semi-standard tableaux of shape Y (λ) and of weight µ.

Proof. It is well known that the weights of LV (λ) are polynomial ([G]). Set
Y = Y (λ) and m = m(λ) and let µ =

∑
1≤i≤n ki ε

V
i be a polynomial weight.

By Corollary 2.3, the dimension of LV (λ(Y ))µ is the multiplicity of the indecom-
posable GL(W )-module TW (λT (Y )) in

∧k1 W ⊗
∧k2 W ⊗ . . . . By Lemma 4.1

(i), Y belongs to Y oung(n,m) and by Lemma 4.1 (ii), λT (Y ) belongs to CW .
By Lemma 3.1, the dimension of the tilting GL(W )-module TW (λT (Y )) is not
divisible by p. Hence by Lemma 3.4, dim LV (λ(Y ))µ is the number of all n-
tuples (ν1, ..., νn) ∈ ΩWk1

× · · · × ΩWkn such that
∑

1≤i≤n νi = λT (Y ) and such that
ν1 + ν2 + ...+ νi belongs to CW , for any i with 1 ≤ i ≤ n. Hence by Lemma 4.2,
dim LV (λ(Y ))µ is also the number of m-semi-standard tableaux of shape Y (λ)
and of weight µ. �

Example 4.4. Consider the polynomial dominant weight λ = 2ωV1 + ωV3 and set
Y = Y (λ). The Young diagram Y is the hook:

The notion of m-special Young diagrams depends on the characteristic p of the
ground field K. In our example, Y is 3-special if and only if p ≥ 5. Therefore,
Theorem 4.3 determines the character formula of the simple GL(V )-module LV (λ)
for any p ≥ 5. As the height of Y is 3, we need to require n ≥ 3, but to find an
interesting weight multiplicity, we will assume n ≥ 4.

Set µ = εV1 + εV2 + εV3 + 2εV4 . There are three semi-standard tableaux T , T ′ and
T” of shape Y and weight µ, namely:
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T :
1 2 4
3
4

T ′ :
1 3 4
2
4

T” :
1 4 4
2
3

It is clear that for any p ≥ 7, these three tableaux are 3-semi-standard. Therefore
dimLV (λ)µ = 3 if p ≥ 7 (or if the characteristic is zero). If K is a field of char-
acteristic 5, the semi-standard Young tableau T” is not 3-semi-standard, because
T”[3] is not 3-special. Since the other two tabeaux are 3-semi-standard, we have
dimLV (λ)µ = 2.

Using only Theorem 4.3, one can get the full character formula of LV (λ) for
all p ≥ 5, but not for p = 2 or p = 3. However, it is also possible to compute
the character formula for LV (λ) in characteric 2 using Theorem 5.3: in such case
we get dimLV (λ)µ = 1. Of course, the Young diagram Y is so small that it is
also possible to determine the character formula of LV (λ) in all characteristics
by an explicit computations, but this is not the goal of the example. Using only
theorems 4.3 and 5.3, it is not possible to compute the character formula of LV (λ)
in characteristic 3.

5. Proof of the Main Theorem

Say that a polynomial weight µ =
∑

1≤i≤n ki ε
V
i is reduced if all ki are ≤ p−1. For

any polynomial weight µ, the weights µ(k) occurring in its p-adic decomposition
are reduced.

Lemma 5.1. (i) Any special weight is reduced.
(ii) Let µ =

∑
k≥0 p

k µk be a polynomial weight where all µk are reduced and
µk = 0 for k >> 0. Then µk = µ(k) for all k ≥ 0.

(iii) Let λ be a reduced dominant polynomial weight. Then any weight of LV (λ)
is reduced.

Proof. Let λ be a special weight. We have λ =
∑

1≤i≤n ki ε
V
i , with k1 = m(λ) < p.

As λ is dominant, we have ki ≤ k1, and λ is reduced. Thus Assertion (i) holds.
Assertion (ii) is obvious. Let λ be a reduced dominant polynomial weight. Let X
be the set of all linear combinations

∑
1≤i≤n xi ε

V
i , where the xi are real numbers

with 0 ≤ xi ≤ p − 1. Then λ ∈ X and X is a convex set which is stable by Sn
(the Weyl group of GLn(K)). Hence any weight µ of LV (λ) belongs to X , and µ
is reduced. Thus Assertion (iii) holds. �

Lemma 5.2. Let λ be a polynomial dominant weight of the form λ =
∑
k≥0 p

k λk,
where are all λk are reduced and dominant. Let µ be a polynomial weight. Then
all weights λ(k) are dominant and we have:
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LV (λ)µ ' LV (λ(0))µ(0) ⊗ LV (λ(1))µ(1) ⊗ . . . .

Proof. The weights λ(k) are dominant, because λ(k) = λk (Lemma 5.1 (ii)). We
only stated this obvious fact to explain the notation LV (λ(k)). Moreover the infi-
nite tensor product is indeed finite, because λ(k) = µ(k) = 0 and LV (λ(k))µ(k) =
K for k >> 0.

For g = (gi,j)1≤i,j≤n ∈ GLn(K), set Fr(g) = (gpi,j)1≤i,j≤n. The map Fr :
GLn(K) → GLn(K), called the Frobenius map, is a morphism of groups. Note
that any reduced dominant polynomial weight is restricted (as it is defined by
Steinberg [St]). Therefore, by Steinberg’s product formula (see [St], Theorem
41), there is an isomorphism L(λ) ' L(λ(0)) ⊗ L(λ(1)) ⊗ . . . , where the ac-
tion of GLn(K) on the kth-factor is shifted by Frk. Thus we have L(λ)µ =
⊕(µ0,µ1,... )L(λ(0))µ0⊗L(λ(1))µ1⊗ . . . , where the sum runs over all tuples (µk)k≥0

such that µ =
∑
k≥0 p

kµk and each µk is a weight of L(λ(k)). By Assertion (iii)
of Lemma 5.1, the weights µk are reduced. Then, by Assertion (ii) of Lemma 5.1,
we have µk = µ(k). Thus Lemma 5.2 holds. �

In the introduction, we have already noticed that Cn and the GLn(K)-module
LV (λ) (λ being a polynomial and dominant weight) are well defined also for n =∞.

Theorem 5.3. Let λ ∈ Cn where n is finite or infinite. Any weight of the
GLn(K)-module LV (λ) is polynomial, and for any polynomial weight µ, we have
dim LV (λ)µ =

∏
k≥0 N(λ(k), µ(k)).

Proof. First assume that n is finite. By Assertion (i) of Lemma 5.1, any special
weight is reduced. Hence Theorem 5.3 follows from Lemma 5.2 and Theorem 4.3.
The case n infinite follows by inductive limit. �

6. Semi-simplicity of restrictions to Young subgroups

Let us considerGLn−1(K) as the subgroup ofGLn(K) as usual. For anyGLn−1(K)-
module L, denotes by ch(L) its character. Set V ′ = Kn−1. Therefore the simple
GLn−1(K)-modules will be denoted by LV ′(λ′), with λ′ ∈ P+

V ′ .

Lemma 6.1. Let λ ∈ P+
V and let A be a finite subset of P+

V ′. Assume that
ch(LV (λ)|GLn−1(K)) =

∑
λ′∈A ch(LV ′(λ′)). Then we have LV (λ)|GLn−1(K) =

⊕λ′∈ALV ′(λ′). In particular LV (λ)|GLn−1(K) is semi-simple.

Proof. As the characters of simple GLn−1(K)-modules are linearly independent,
the module LV (λ)|GLn−1(K) has a composition series in which each LV ′(λ′), for
all λ′ ∈ A, occurs exactly once. Note that LV (λ) carries a non degenerate con-
travariant form. Let S be a simple GLn−1(K)-submodule of LV (λ)|GLn−1(K).
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Thus LV (λ)|GLn−1(K)/S
⊥ is isomorphic to S. As S does not occur as a quotient

of LV (λ)|GLn−1(K)/S, we have S ∩ S⊥ = 0. Hence S is a direct summand and
LV (λ)|GLn−1(K) is semi-simple. Thus, we have LV (λ)|GLn−1(K) = ⊕λ′∈ALV ′(λ′).
�

Let m < p. For any Young diagram Y ∈ Y oung(n,m), let V (Y ) be the set of
all Young diagrams Y ′ such that:

(i) ck(Y ′) ≤ ck(Y ) ≤ ck(Y ′) + 1, for all k ≥ 1,
(ii) Y ′ ∈ Y oung(n− 1,m).

These conditions are indeed equivalent to the fact that there is a m-semi-standard
tableau T of shape Y such that T [n− 1] = Y ′, T [n] = Y . Also the definition of
V (Y ) is independent of m. Namely if Y is m-special and also m′-special for some
m′ 6= m, then condition (ii) is automatically satisfied.

Theorem 6.2. For λ ∈ Cn, set Yk = Y (λ(k)) for all k ≥ 0. Then we have:

LV (λ)|GLn−1(K) = ⊕(Y ′0 ,Y
′
1,... )

LV ′(
∑
k≥0 p

k λ(Y ′k)),

where the direct sum runs over all tuples (Y ′0, Y
′
1, . . . ) ∈ V (Y0) × V (Y1)× . . . . In

particular, LV (λ)|GLn−1(K) is semi-simple. Moreover each simple direct summand
occurs with multiplicity one, and its highest weight is in Cn−1.

Proof. Let Y ∈ Y oung(n,m). There is a natural bijection from
(i) the set of all m-semi-standard tableaux T of shape Y with labels ≤ n, to
(ii) the set of all pairs (Y ′, T ′), where Y ′ ∈ V (Y ) and T ′ is a m-semi-standard
tableaux of shape Y ′ with labels ≤ n− 1.
Explicitly, Y ′ = T [n − 1] and T ′ is the tableau induced by T . It follows from
Theorem 5.3 that we have:

ch(LV (λ)|GLn−1(K)) =
∑

(Y ′0 ,Y
′
1,... )

ch(LV ′(
∑
k≥0 p

k λ(Y ′k))),

where the sum runs over all tuples (Y ′0, Y
′
1, . . . ) ∈ V (Y0) × V (Y1) × . . . . Let

(Y ′0, Y
′
1, . . . ) be such a tuple and set λ′ =

∑
k≥0 p

k λ(Y ′k). It follows from the as-
sertions (i) and (ii) of Lemma 5.1 that (λ(Y ′k))k≥0 are the terms of the p-adic expan-
sion of the polynomial weight λ′. Hence the decomposition λ′ =

∑
k≥0(pkλ(Y ′k))

with (Y ′0, Y
′
1, . . . ) ∈ V (Y0) × V (Y1) × . . . is unique. Thus LV ′(λ′) occurs exact-

ly once in the composition series of L(λ)|GLn−1(K) and the theorem follows from
Lemma 6.1. �

Lemma 6.3. Let G1 . . . , Gk be k groups and let L be a finite dimensional G1 ×
· · · × Gk-module. Assume that L is semi-simple as Gi-module for all 1 ≤ i ≤ k.
Then L is semi-simple as G1 × · · · ×Gk-module.
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A proof of this lemma can be found in [K] (lemma 1.6). �

For any k-tuple (a1, . . . ak) of non-negative integers with n = a1 + a2 + . . . ,
there is a natural embedding of GLa1(K)× · · · ×GLak(K) inside GLn(K).

Corollary 6.4. Let λ ∈ Cn. As a GLa1(K) × · · · × GLak(K)-module, LV (λ) is
semi-simple.

Proof. Using Theorem 6.2, we prove by induction over b that LV (λ)|GLn−b(K) is
semi-simple for all b ≤ n. Thus the corollary follows from Lemma 6.3. �

Remark. Let λ be a special weight of degree n. The weight space
LV (λ)εV1 +···+εVn is the simple representation of the symmetric group Sn associat-
ed with the Young diagram transposed of Y (λ) (see [J]). Its dimension is com-
puted by Theorem 4.3, and its restriction to the subgroup Sa1 × · · · × Sak is
semi-simple by Corollary 6.4. These two results for the symmetric groups were
already established: we recover respectively the main results of [M2] (dimension
formula) and of [K] (semi-simplicity). Indeed the proof of the semi-simplicity of
LV (λ)|GLa1 (K)×···×GLak (K) is similar to the proof of [K].
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7 rue René Descartes
F-67000 Strasbourg
France

Georges Papadopoulo
Mathematisches Institut
Universität Basel
Rheinsprung 21
CH-4051 Basel
Switzerland

(Received: June 30, 1997)


