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Abstract. Let k be a field with characteristic different from 2 and 3. Let B be a central simple
algebra of degree 3 over a quadratic extension K/k, which admits involutions of second kind.
In this paper, we prove that if the Albert algebras J(B, σ, u, µ) and J(B, τ, v, ν) have same f3
and g3 invariants, then they are isotopic. We prove that for a given Albert algebra J , there
exists an Albert algebra J ′ with f3(J ′) = 0, f5(J ′) = 0 and g3(J ′) = g3(J). We conclude with
a construction of Albert division algebras, which are pure second Tits’ constructions.
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Introduction

Let k be a field with characteristic different from 2 and 3. The exceptional central
simple Jordan algebras over k are now called Albert algebras. There are rational
constructions of Albert algebras due to Tits. These are referred to as the first
Tits’ construction and the second Tits’ construction. In the first construction, one
associates to a pair (A,µ), where A is a degree 3 central simple algebra over k
and µ ∈ k∗, an Albert algebra J(A,µ) over k. For the second construction, one
starts with a quadratic extension K/k and a degree 3 central simple algebra B
over K with an involution σ of second kind. To any unit u ∈ B with σ(u) = u and
N(u) = µµ for some µ ∈ K, one associates an Albert algebra J(B, σ, u, µ) over k
(cf. [P-R 1]). There are cohomological invariants attached to these algebras. Let
J be an Albert algebra over k. One assigns two mod 2 invariants to J , f3(J) ∈
H3(k,Z/2), f5(J) ∈ H5(k,Z/2) and a mod 3 invariant g3(J) ∈ H3(k,Z/3) (cf.
[P-R 1]). Serre asked whether these invariants determine the isomorphism class
of J . The question is known to have affirmative answer for the reduced Albert
algebras (cf. [P-R 1]). It was proved in ([P-S-T]) that if the Albert algebras
J(B, σ, u, µ) and J(B, σ, u′, µ′) have the same invariants f3 and g3, then they are
isomorphic. In this direction, Petersson and Racine had asked a weaker question
([P-R 1] ), namely, if two Albert algebras have same f3 and g3, are they isotopic?
In this paper, we answer this question for the Albert algebras J(B, σ, u, µ) and
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J(B, τ, v, ν), in the affirmative (§2). The same authors had asked in another paper
([P-R 2]), whether for a given Albert algebra J , there exists an Albert algebra J ′

with f3(J ′) = 0, f5(J ′) = 0 and g3(J ′) = g3(J). We answer this question in the
affirmative in (§3). We end with a construction of pure second Tits’ construction
Albert division algebras over a field k (§4).

1. Preliminaries

1.1. Isotopes of Jordan algebras

Let J be a Jordan algebra over k with 1. Let a ∈ J be an invertible element. One
defines a new multiplication on J by

xay = {xay},

where {xyz} is the Jordan triple product in J , given by

{xyz} = Ux,z(y),

Ux,z = RxRz +RzRx −Rxz,
Rx denoting the homothety on J given by x. The algebra J , with this new
multiplication, is a Jordan algebra (cf. [J]), called the a−isotope of J . It is
denoted by J(a). Two Jordan algebras J1 and J2 are isotopic if J(a)

1 is isomorphic
to J2 for some invertible a ∈ J1. Isotopy is an equivalence relation on the class of
Jordan algebras (cf. [J]).

1.2. Constructions of Albert algebras

In the following, we give a brief review of the Tits’ constructions and the Freuden-
thal’s construction of Albert algebras.

Tits’ first construction: Let A be a central simple k-algebra of degree 3. Let
µ ∈ k∗. On the k-vector space

J(A,µ) = A0 ⊕A1 ⊕A2, where Ai = A for i = 0, 1, 2,

we define a multiplication by

(a0, a1, a2)(a′0, a
′
1, a
′
2)

= (a0.a
′
0 + ã1a

′
2 + ã′1a2, ã0a

′
1 + ã′0a1 + µ−1a2 × a′2, a2ã

′
0 + a′2ã0 + µa1 × a′1).

Here, for a, b ∈ A,

a.b =
1
2

(ab+ ba), a× b = a.b− 1
2
t(a)b− 1

2
t(b)a+

1
2

(t(a)t(b) − t(a.b))
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and ã = 1
2(t(a) − a), t being the reduced trace on A. It is known that J(A,µ) is

an Albert algebra. Further, it is a division algebra if and only if A is a division
algebra and µ is not a reduced norm from A.

Tits’ second construction: Let K be a quadratic extension of k and let (B, σ)
be a central simple K-algebra of degree 3 with an involution σ of the second kind
over k. Let u ∈ B∗ be such that σ(u) = u and N(u) = µµ for some µ ∈ K∗, bar
denoting the nontrivial k-automorphism of K. Let (B, σ)+ denote the k-vector
space of σ-symmetric elements in B. Let J(B, σ, u, µ) = (B, σ)+ ⊕ B. We define
a multiplication on J(B, σ, u, µ) by

(b0, b)(b′0, b
′) = (b0.b′0 + ˜buσ(b′) + ˜b′uσ(b), b̃0b′ + b̃′0b+ µ(σ(b)× σ(b′))u−1).

Then J(B, σ, u, µ) is known to be an Albert algebra and

J(B, σ, u, µ)⊗k K ' J(B,µ)

over K (cf. [MC]). Further, J(B, σ, u, µ) is a division algebra if and only if B is a
division algebra and µ is not a reduced norm from B.

Freudenthal’s construction: Let C be a Cayley algebra over k and let Γ =<
γ1, γ2, γ3 > be a diagonal invertible matrix with γi ∈ k. Let M3(C) denote the
algebra of 3 × 3 matrices with entries in C. The map X 7→ Γ−1X

t
Γ stabilizes

M3(C), where X is the matrix obtained by applying the involution bar on C to
the entries of X . Let

H3(C,Γ) = {X ∈M3(C)|Γ−1X
t
Γ = X}.

This is closed under the multiplication X.Y = 1
2 (XY + Y X) and is known to be

an Albert algebra (cf. [J]). These are the so called reduced Albert algebras.

1.3. Cohomological invariants of Albert algebras

Let k be as before. Let J be an Albert algebra over k. It is a fact that J carries
a linear trace form T defined on it (cf. [J]) and this gives rise to a quadratic form
QJ on J given by

QJ(x) =
1
2
T (x2).

There exists a 3-fold Pfister form φ3 and a 5-fold Pfister form φ5 over k such that

QJ ⊥ φ3 '< 2, 2, 2 >⊥ φ5

over k (cf. [S]). Further, this property characterizes φ3 and φ5 upto isometry.
For an n-fold Pfister form φn =<< a1, a2, · · · , an >>=< 1,−a1 > ⊗ · · ·⊗ <
1,−an >, one has the Arason invariant A(φn) ∈ Hn(k,Z/2) given by

A(φn) = (−a1) ∪ (−a2) · · · ∪ (−an),
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where, for a ∈ k∗, (a) denotes the class of a in H1(k,Z/2). The mod 2 invariants
for J are defined as

f3(J) = A(φ3), f5(J) = A(φ5).

If J = H3(C,Γ) then f3(J) = A(nC) and f5(J) = A(< 1, γ−1
1 γ2 > ⊗ < 1, γ−1

2 γ3 >
⊗nC), where nC is the norm on the Cayley algebra C, which is known to be a
3-fold Pfister form. Rost ([R]) attached an invariant mod 3 to J , denoted by g3(J),
which is defined as follows. If J = J(B, σ, u, µ) for some central simple algebra B
of degree 3 over a quadratic filed extension K of k, with an involution of second
kind, then define

g3(J) = −CorK/k([B] ∪ [µ]) ∈ H3(k,Z/3),

and if J = J(A, ν) for a central simple algebra A of degree 3 over k, then define

g3(J) = ([A] ∪ [ν]) ∈ H3(k,Z/3).

These are independent of the expression of J as a first or a second Tits’ construc-
tion (cf. [R], [P-R 3]). Rost showed ([R]) that J is a division algebra if and only
if g3(J) 6= 0. Further, g3 is compatible with base change.

2. Classification of Albert algebras upto isotopy

The question, whether the invariants f3 and g3 classify a given Albert algebra upto
isotopy, itself is an important question. We answer this question in a particular
case of second Tits’ construction. Namely,

Theorem 2.1. Let K be a quadratic extension of k and let B denote a central
simple algebra of degree 3 over K, which admits involutions of second kind over k.
Let J = J(B, σ, u, µ) and J ′ = J(B, σ′, u′, µ′) be second Tits’ construction Albert
algebras. Assume that f3(J) = f3(J ′) and g3(J) = g3(J ′). Then J and J ′ are
isotopic.

We need the following result. We supply a proof for the sake of completeness.

Theorem 2.2. ([P-R 1]). Let J1 and J2 be two Albert algebras over k which are
isotopic. Then f3(J1) = f3(J2) and g3(J1) = g3(J2).

Proof. Since isotopic first Tits’ constructions Albert algebras are isomorphic ([P-R
4], 4.9), we may assume that J1 and J2 are both second Tits’ constructions. Let
J1 = J(B, σ, u, µ) and let K be the centre of B. There is a cubic extension L of k
such that J1⊗k L is reduced. Since J1 is isotopic to J2, for some invertible v ∈ J1
we have,

J
(v)
1 ' J2.
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Thus
(J1 ⊗k K)(v) ' J2 ⊗k K.

But J1 ⊗k K ' J(B,µ) over K (cf. [MC]), and using the fact that isotopic first
Tits’ Albert algebras are isomorphic ([P-R 4], 4.9), we get

J1 ⊗k K ' J2 ⊗k K

over K. This proves g3(J1) = g3(J2).

To compare the f3 invariant, we appeal to the following

Theorem 2.3. (cf. [F], 1.9) Let J be an Albert algebra isotopic to H3(C,Γ), C
a Cayley algebra over k and Γ ∈ GL3(k) a diagonal matrix. Then there is an
isomorphism of J onto H3(C,Γ′) for some Γ′ ∈ GL3(k), a diagonal matrix.

Now we base change to L to reduce J1, so that over L we have,

(J1 ⊗k L)(v) ' J2 ⊗k L.

Let J1 ⊗k L ' H3(C,Γ) for some Cayley algebra C over L and Γ defined over
L. By the above theorem, J2 ⊗k L ' H3(C,Γ′) for some Γ′. By a theorem of
Serre and Rost (cf. [P-R 5], 1.8), there exits a Cayley algebra O over k such that
O ⊗k L ' C. Now, by the definition of f3, it follows that f3(J1) = f3(J2).

For the proof of Theorem 2.1, we need the following

Theorem 2.4. ([P-R 5], 1.5). Let (B, σ) be as above. Let v ∈ B∗ be such that
σ(v) = v. Let σ′ = Int(v)σ. Then the map

(ao, a) 7→ (v−1a0, a)

is an isomprphism from J(B, σ′, uv#, N(v)µ) onto J(B, σ, u, µ)(v).

Theorem 2.5. ([P-S-T], 2.8) Let J = J(B, σ, u, µ) and J ′ = J(B, σ, u′, µ′) be
Albert algebras arising from Tits’ second construction. Assume f3(J) = f3(J ′)
and g3(J) = g3(J ′). Then J is isomorphic to J ′.

Proof of Theorem 2.1. We have J = J(B, σ, u, µ) and J ′ = J(B, σ′, u′, µ′). Let
v ∈ (B, σ)+ be such that Int(v)σ = σ′. Then, by Theorem 2.2,

f3(J) = f3(J(v)), g3(J) = g3(J(v)).

Now, invoking Theorem 2.4, we have,

J(v) ' J(B, σ′, uv#, N(v)µ).
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Thus

f3(J) = f3(J(B, σ′, uv#, N(v)µ)), g3(J) = g3(J(B, σ′, uv#, N(v)µ)).

Therefore, by Theorem 2.5, we get

J(B, σ′, u′, µ′) ' J(B, σ′, uv#, N(v)µ) ' J(B, σ, u, µ)(v).

Hence J and J ′ are isotopic.

3. Albert algebras with trivial mod 2 invariants

In this section, we construct, for a given Albert algebra J , an Albert algebra J ′

with f3(J ′) = 0, f5(J ′) = 0 and g3(J ′) = g3(J). We begin with reviewing some
results on involutions of second kind. LetK/k be a quadratic extension. Let (B, σ)
be a central simple algebra of degree 3 over K with an involution σ of second kind
over k. The restriction Qσ of the trace quadratic form x 7→ T (x2) to (B, σ)+, the
k-space of σ-symmetric elements in B, is a quadratic form with values in k. It is
shown in ([H-K-R-T]) that Qσ is an invariant of σ. The decomposition of Qσ is
given by the following

Theorem 3.1. ([H-K-R-T], 4) Let K = k(
√
α). Then there exist b, c ∈ k∗ such

that
Qσ '< 1, 1, 1 >⊥< 2 ><< α >>< −b,−c, bc > .

In the same paper, it is shown that the Arason invariant of the 3-fold Pfister
form << α, b, c >> determines the isomorphism class of σ. More precisely,

Proposition 3.2. ([H-K-R-T], 15) The following statements are equivalent for
(B, σ), with B as above.

(1) σ ' σ′.
(2) A(<< α, b, c >>) = A(<< α, b′, c′ >>). Where b′, c′ are the elements of k∗,

corresponding to the decomposition of Qσ′ .

The invariant A(<< α, b, c >>) ∈ H3(k,Z/2) is also denoted by f3(B, σ). An
involution σ on B is called distinguished if f3(B, σ) = 0. The following result from
([H-K-R-T]) will be needed.

Proposition 3.3. ([H-K-R-T], 17) On any central simple algebra B of degree 3
over K, with an involution of second kind, there exists a distinguished involution.

We now come to the promised construction. We note first that we need only
consider the case of second Tits’ construction Albert algebras.
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Theorem 3.4. Let J = J(B, σ, u, µ) be an Albert algebra, B a degree 3 central
simple algebra over a quadratic extension K/k and with an involution of second
kind. There exists an Albert algebra J ′ with f3(J ′) = 0, f5(J ′) = 0 and g3(J ′) =
g3(J).

Proof. By ([K-M-R-T], 39.2), we may assume that N(u) = 1 = µµ, bar denoting
the nontrivial k-automorphism of K. Let σ′ be a distinguished involution on B
(3.3). Set J ′ = J(B, σ′, 1, µ). Then by ([K-M-R-T], 40.2), we have f3(J ′) =
f3(B, σ′) = 0 and f5(J ′), being a multiple of f3(J ′), is zero as well. Further,
g3(J) = −CorK/k([B] ∪ [µ]) = g3(J ′). This completes the proof.

4. Pure second Tits’ construction Albert algebras.

In this brief section, we exihibit how one can construct pure second Tits’ construc-
tion Albert division algebras. We recall (cf. [P-R 6]) that an Albert algebra J
over k is called a pure second Tits’ construction if it does not arise from Tits’ first
construction.

Let B be a central division algebra of degree 3 over a quadratic extension K/k.
Assume that B admits involutions of second kind. Assume further that σ is an
involution on B which is not distinguished. In the terms of the invariant mod 3
associated to (B, σ), this means that f3(B, σ) 6= 0. Let µ ∈ K∗ be such that µµ = 1
and µ is not a reduced norm from B. Set J = J(B, σ, 1, µ). Then J is an Albert
division algebra over k. Further, by ([K-M-R-T], 40.2), f3(J) = f3(B, σ) 6= 0.
Thus by ([K-M-R-T], 40.5), J is a pure second Tits’ construction. We record this
as

Theorem 4.1. Let (B, σ) be a central division algebra of degree 3 over K, with an
involution σ of second kind. Assume that f3(B, σ) 6= 0. Let µ ∈ K∗ be such that
µ is not a reduced norm from B and µµ = 1. Then the Albert algebra J(B, σ, 1, µ)
is a pure second Tits’ construction division algebra.

Remarks.
(1) The construction of J ′ in the proof of Theorem 3.4 yields a division algebra if

J is division.
(2) The Albert algebra J ′ as above, must be a first Tits’ construction due to the

fact that Albert algebras of first Tits’ type are precisely those with the f3
invariant zero ([K-M-R-T], 40.5).

(3) As a consequence of Remark 2 and Theorem 3.4, we see that g3(J) is always
decomposable, i.e., is a product of H1-classes, since this is the case when J is
a first Tits’ construction (cf. also [K-M-R-T, 40.9]).

(4) In light of the fact that the Albert algebra J(B, σ, u, µ) has the f5 invariant zero
if and only if σ is distinguished ([K-M-R-T], 40.7), we note that the invariant
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f5 is sensitive to isotopy, in contrast with f3 and g3 (2.2). For example, if
σ′ = Int(v)σ is distinguished, then f5(J(B, σ, u, µ)(v)) = 0. Whereas by (2.2
), the f3 and g3 for this isotope are the same as for J(B, σ, u, µ).

(5) The Albert algebra J(B, σ, u, µ) can be pure even when σ is distinguished, as
the above remark shows.
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