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The  Lojasiewicz exponent of an analytic function at an
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Abstract. Let f be a real analytic function defined in a neighborhood of 0 ∈ Rn such that
f−1(0) = {0}. We describe the smallest possible exponents α, β, θ for which we have the
following estimates: |f(x)| ≥ c|x|α, |grad f(x)| ≥ c|x|β, |grad f(x)| ≥ c|f(x)|θ for x near zero
with c > 0. We prove that α = β+ 1, θ = β/α. Moreover β = N +a/b where 0 ≤ a < b ≤ Nn−1.
If f is a polynomial then |f(x)| ≥ c|x|(deg f−1)n+1 in a small neighborhood of zero.
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1. Results

Let f : U → R be an analytic function defined in a neighborhood U of 0 ∈
Rn. Assume that f has an isolated zero at the origin i.e. f−1(0) ∩W = {0} for
some neighborhood W of zero. Then also grad f(x) is nonzero for x close to the
origin. One of the consequences of the classical  Lojasiewicz inequality (see [BM,
Theorem 6.4]) is that there exist constants c,R > 0 and exponents α, β, θ such
that |f(x)| ≥ c|x|α, |gradf(x)| ≥ c|x|β , |grad f(x)| ≥ c|f(x)|θ for all |x| ≤ R. The
aim of this article is a description of the smallest possible exponents for which the
above estimates hold true.

Definition 1.1. By the  Lojasiewicz exponent `0(f, g) for the inequality |f(x)| ≥
c|g(x)|α we mean the number

inf{α ∈ R+ : ∃c,R > 0 |f(x)| ≥ c|g(x)|α ∀|x| ≤ R }.

Definition 1.2. Let f : U → R be an analytic function defined in an open set
U ⊂ Rn. By the polar curve Γv in the direction v ∈ Rn \ {0} we mean the
set Γv = (grad f)−1(Rv).
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If h : (−δ, δ)→ Rn is a nonzero analytic mapping then by definition, the order
(at zero) of h, denoted by ν(h), is the largest integer k such that t−kh(t) is bounded
near zero. This definition agrees with the classical one for analytic functions and
as we show later can be naturally extended to continuous subanalytic maps.

Our main result is

Theorem 1.3. Let f : U → R be an analytic function defined in some neigh-
borhood U of 0 ∈ Rn. Assume that f−1(0) = {0}. Then there exists a proper
linear subspace L ⊂ Rn such that for every v ∈ Rn \ L there is an analytic curve
γ : (−1, 1)→ Γv, γ(0) = 0 for which:

(i) the  Lojasiewicz exponent α0 for inequality |f(x)| ≥ C|x|α is equal
α0 = ν(f ◦ γ)/ν(γ),

(ii) the  Lojasiewicz exponent β0 for inequality |grad f(x)| ≥ C|x|β is equal β0 =
ν(grad f ◦ γ)/ν(γ),

(iii) the  Lojasiewicz exponent θ0 for inequality |grad f(x)| ≥ C|f(x)|θ is equal
θ0 = ν(grad f ◦ γ)/ν(f ◦ γ).

Moreover β0 = α0 − 1, θ0 = β0/α0.

The above theorem says that  Lojasiewicz exponents α0, β0, θ0 can be computed
using parametrizations of “generic” polar curves. Every polar curve Γv such that
v ∈ Rn \ L is good from this point of view. In particular at least one of curves
Γe1 , . . . , Γen (where e1, . . . , en is a standard basis of Rn) is good. However the
theorem does not say which one of them.

Example. f(x) = x4
1 +x2

2 +x2
3 for x = (x1, x2, x3) ∈ R3. Set L = {0}×R2 ⊂ R3.

For every v ∈ L, v 6= 0 the polar curve Γv = { x ∈ R3 : ∃λ ∈ R (4x3
1, 2x2, 2x3) =

λ(0, v2, v3) } is the straight line in the direction v. Taking the parametrization
γ : (−1, 1) → Γv, γ(t) = tv we get f(γ(t)) = |tv|2, |γ(t)| = |tv|. Hence ν(f ◦
γ)/ν(γ) = 2.

One can show directly that the  Lojasiewicz exponent for the inequality |f(x)| ≥
c|x|α equals 4. Therefore all polar curves Γv where v ∈ L are bad from the point of
view of Theorem 1.3. This example shows that this theorem cannot be improved
by replacing the linear subspace L by a smaller set L′ ⊂ L.

The idea of using polar curves to compute  Lojasiewicz exponents comes from
Teissier [Te]. He has shown a counterpart of Theorem 1.3 in the complex case. If
f : (Cn, 0)→ (C, 0) is a holomorphic function with an isolated singularity at zero
then a “generic complex polar curve” has a parametrization such that the analogue
of parts (ii) and (iii) of Theorem 1.3 hold. There is also a formula θ0 = β0/(β0 +1)
for  Lojasiewicz exponents in complex case.

One may ask — can a version of Theorem 1.3 be formulated for real analytic
functions with an isolated singularity at 0? The following example due to Kuo
shows that we should not expect it.
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Example. Let f(x, y) = x3 + 3xy4. The function f has an isolated singularity
at 0. However for all polar curves but one the origin is not an accumulation point
of Γv. Moreover the  Lojasiewicz exponents for inequalities |gradf(x)| ≥ c|x|β ,
|grad f(x)| ≥ c|f(x)|θ are β0 = 4 and θ0 = 2/3 respectively so θ0 6= β0/(β0 + 1).

The second result of this paper is

Theorem 1.4. Under assumptions and notations of Theorem 1.3, β0 = N + a/b
where a, b,N are integers such that 0 ≤ a < b ≤ Nn−1.

Let us denote Ln the set of the  Lojasiewicz exponents for inequalities |f(x)| ≥
c|x|α where f : (Rn, 0)→ (R, 0) are analytic functions with an isolated zero. It is
easily seen that L1 is the set of positive integers {1, 2, 3, . . .}. The author showed
in [Gw] using Puiseux expansions that L2 = 2L1∪2{N +a/b : 0 < a < b < N } =
{ 2, 4, 6, 7, 8, 82

3, . . . }. The question, how large are sets Ln for n ≥ 3 remains open.
The last result measeures the growth of polynomial functions.

Theorem 1.5. Let F : Rn → R be a polynomial function with an isolated zero at
the origin. Then

|F (x)| ≥ const |x|(deg F−1)n+1

in a small neighborhood of zero.

2. Proofs

First we extend the definition of order to continuous subanalytic functions. Let
g : [0, ε) → R be a continuous subanalytic function. Here and subsequently we
assume that g 6= 0 in every neighborhood of zero. Then there exist (see [BoR,
Lemma 3]) a nonnegative rational number ν and a continuous function g1 : [0, δ]→
R (0 < δ < ε) such that for all t ∈ [0, δ] g1(t) 6= 0 and g(t) = tνg1(t).

It is obvious that the exponent ν is uniquely determined by the function g
(even by a germ of g at zero). We call this number the order (at zero) of g and
will denote it by ν(g). We extend the notion of order to subanalytic continuous
maps putting ν(φ) = ν(|φ|) for φ : [0, ε)→ Rn.

Property 2.1. Let g, h : [0, ε) → R be continuous subanalytic functions non-
vanishing in every neighborhood of zero and let r be a positive rational number.
Then:

(i) ν(gr) = rν(g), ν(gh) = ν(g) + ν(h),
(ii) ν(g) ≤ ν(h) if and only if there exist c, δ > 0 such that |g(t)| ≥ c|h(t)| for

all t ∈ [0, δ].

Proof. The proof of (i) is straightforward. Therefore we only prove (ii). According
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to definition of order there exist δ > 0 and continuous functions g1, h1 such that for
all t ∈ [0, δ] h(t) = tν(h)h1(t), g(t) = tν(g)g1(t), h1(t) 6= 0, g1(t) 6= 0. If ν(g) ≤
ν(h) then |g(t)| ≥ c|h(t)| for t ∈ [0,min{1, δ}], where c = inf0≤t≤δ |g1(t)/h1(t)|.
Conversely, if |g(t)| ≥ c|h(t)| for t ∈ [0, δ] then tν(g)−ν(h) ≥ c|h1(t)/g1(t)| in
the interval (0, δ). From this inequality it follows that ν(g) − ν(h) ≤ 0. Hence
ν(g) ≤ ν(h). �

Let us recall the classical curve–selection lemma (see [Hi, page 482]).

Lemma 2.2. Let A ⊂ Rn be a subanalytic set. If 0 ∈ cl(A) then there exists an
analytic curve γ : (−1, 1)→ Rn such that γ(0) = 0 and γ((0, 1)) ⊂ A.

In the following lemma we reformulate the main result of [BoR] in the case of
functions with isolated zeros. Let K denote a closed ball {x ∈ Rn : |x| ≤ r}.

Lemma 2.3. Let f, g : K → [0,∞) be continuous subanalytic functions such that
f−1(0) = g−1(0) = {0} and let

K∗ = { x ∈ K : ∀y ∈ K g(y) = g(x)⇒ f(y) ≥ f(x) }.
Then

(i) K∗ is a subanalytic set, 0 ∈ cl(K∗ \ {0})
(ii) if γ : (−1, 1) → Rn is an analytic curve such that γ(0) = 0, γ((0, 1)) ⊂

K∗ \ {0}, then `0(f, g) = ν(f ◦ γ)/ν(g ◦ γ).

Proof. Part (i) of the lemma is proved with all details in [BoR]. Here we present
only the sketch of the proof. All properties of subanalytic sets which we use, can
be found in [BM].

Let A = {(x, y) ∈ K ×K : g(x) = g(y)}, B = {(x, y) ∈ K ×K : f(x) > f(y)}.
These are subanalytic sets. The set K∗ equals K \ π(A ∩ B) where π(x, y) = x
is a projection. The intersection and the complement of subanalytic sets are
subanalytic. Furthermore a projection maps relatively compact subanalytic sets
onto subanalytic sets. Therefore K∗ is subanalytic.

To show that 0 is an accumulation point of K∗ it is enough to check that
every ball Kε = {x ∈ Rn : |x| < ε} (0 < ε < r) has a non–empty intersection with
K∗\{0}. Set m = inf{g(y) : y ∈ K \Kε} and consider the level set L = g−1(m/2).
Since L is compact, there exists x ∈ L such that f(x) ≤ f(y) for all y ∈ L. Clearly
x ∈ K∗ ∩Kε and x 6= 0.

Proof of (ii). Let γ be an analytic curve from the statement of the lemma. Set
α = ν(f ◦ γ)/ν(g ◦ γ). By Property 2.1 (i) we have ν(f ◦ γ) = ν((g ◦ γ)α). Thus
by 2.1 (ii) there are positive constants c, δ such that

f(γ(t)) ≥ cg(γ(t))α for t ∈ [0, δ]. (1)

Since g is continuous, there exists R > 0 such that for all |x| ≤ R g(x) ≤ g(γ(δ)).
Fix x ∈ K with |x| ≤ R. By continuity of g ◦ γ, there exists t ∈ [0, δ] such that
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g(γ(t)) = g(x). By the definition of K∗ and by (1) we get f(x) ≥ f(γ(t)) ≥
cg(γ(t))α = cg(x)α. Therefore

f(x) ≥ cg(x)α for |x| ≤ R. (2)

To end the proof it is enough to show that α = ν(f ◦ γ)/ν(g ◦ γ) is the smallest
possible exponent in the  Lojasiewicz inequality. It follows from the following claim
applied to the curve γ.

Claim 1. Let φ : (−1, 1)→ K be an analytic curve such that φ(0) = 0, φ 6= 0. If
f(x) ≥ cg(x)β in some neighborhood of zero then β ≥ ν(f ◦ φ)/ν(g ◦ φ).

Proof of the claim. Under assumptions of Claim 1 there exists τ > 0 such that
f(φ(t))≥cg(φ(t))β for t∈ [0, τ ]. By Property 2.1(ii) we have ν(f ◦ φ)≤ν((g ◦ φ)β).
Hence by 2.1 (i) β ≥ ν(f ◦ φ)/ν(g ◦ φ). �

Under assumptions of Lemma 2.3 we have

Corollary 2.4. The  Lojasiewicz exponent `0(f, g) is a positive rational number.
There exists a positive constant C such that |f(x)| ≥ C|g(x)|`0(f,g) in a neighbor-
hood of zero. Furthermore:

(i) for every analytic curve φ : (−1, 1) → Rn such that φ(0) = 0, φ 6= 0 we
have `0(f, g) ≥ ν(f ◦ φ)/ν(g ◦ φ),

(ii) there exists an analytic curve γ : (−1, 1) → Rn, γ(0) = 0, γ 6= 0 such that
`0(f, g) = ν(f ◦ γ)/ν(g ◦ γ).

By the curve–selection lemma and part (i) of Lemma 2.3 there exists an analytic
curve γ satisfying assumptions of part (ii) of Lemma 2.3. This proves (ii). The
rest of Corollary 2.4 follows from inequality (2) and from Claim 1.

Proof of Theorem 1.3. The one–dimensional case, being simple, is left to the
reader. Further we will assume that the function f is defined in a neighborhood U
of 0 ∈ Rn where n ≥ 2. Consider a ball K = { x ∈ Rn : |x| ≤ ε } contained in U .
Since f(x) 6= 0 for x ∈ K \ {0} and K \ {0} is connected, f restricted to K \ {0}
has a constant sign. Without loss of generality we may assume that f(x) > 0 for
all x ∈ K \ {0} (otherwise we replace f by −f).

Let
A = { x ∈ K : ∀y ∈ K |y| = |x| ⇒ f(y) ≥ f(x) }.

Consider the tangent cone C(A) defined by the following condition:
a ∈ C(A) if and only if there exist sequences xi ∈ A and λi ∈ R such that
limi→∞ xi = 0 and limi→∞ λixi = a.

We will check that there exists a ∈ C(A) such that a 6= 0. Take any sequence
xi ∈ A \ {0} converging to zero. Then from the sequence of points (1/|xi|)xi lying
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on the unit sphere one can choose a subsequence convergent to some a, |a| = 1.
Clearly a ∈ C(A).

The linear subspace L appearing in the statement of the theorem is defined as
follows

L = { y ∈ Rn : ∀u ∈ C(A) 〈y, u〉 = 0 } (3)

Fix v ∈ Rn \ L. By the definition of L there exists u ∈ C(A) such that
〈v, u〉 6= 0. Choose a constant c > 0 such that |〈v, u〉| > c|v||u| (e.g. we can take
c = |〈v, u〉|/(2|v||u|).

Let us define an open cone C

C = { x ∈ Rn : |〈v, x〉| > c|v||x| }. (4)

Claim 1. A ∩C is a subanalytic set, 0 ∈ cl(A ∩C).

Proof of Claim 1. For u ∈ C(A) as above we have u ∈ C. Let xi ∈ A and λi ∈ R
be sequences such that limi→∞ λixi = u and limi→∞ xi = 0. Since C is open,
λixi ∈ C for i large enough. Hence xi ∈ C for sufficiently large i. This proves that
0 ∈ cl(A ∩ C).

By Lemma 2.3 the set A is subanalytic. The cone C is also subanalytic (C is
even semialgebraic). Thus A ∩C as an intersection of subanalytic sets is subana-
lytic. The claim follows.

Let us define the new norm in Rn by a formula

‖x‖ = max{|x|, |〈v, x〉|/c|v|} (5)

One checks easily that ‖x‖ > |x| for x ∈ C and ‖x‖ = |x| otherwise.

Claim 2. `0(f, | |) = `0(f, ‖ ‖)

The claim follows from inequalities ‖x‖ ≥ |x| ≥ c‖x‖ and from the definition
of the  Lojasiewicz exponent.

Consider the following set

B = { x ∈ K : ∀y ∈ K ‖y‖ = ‖x‖ ⇒ f(y) ≥ f(x) }.

Claim 3. B \ {0} ⊂ Γv ∩ C in some neighborhood of zero.

Proof of Claim 3. This is the key point of the proof of Theorem 1.3. By the
curve–selection lemma and Claim 1 there exists an analytic curve φ : (−1, 1)→ Rn,
φ(0) = 0 such that φ((0, 1)) ⊂ A ∩ C. Since a function f ◦ φ is real analytic, its
derivative has a finite number of zeros in a small neighborhood of zero. Thus for
some 0 < δ < 1 f ◦ φ is strictly increasing in the interval [0, δ].

Set R = |φ(δ)| and consider arbitrary y ∈ B \ {0} such that ‖y‖ < R. We shall
check that y ∈ Γv ∩ C.
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By continuity of |φ| there exists t1 (0 < t1 < δ) such that |φ(t1)| = ‖y‖. The
point x1 = φ(t1) belongs to the cone C. Hence |x1| < ‖x1‖.

By continuity of ‖φ‖ there is t2 (0 < t2 < t1) such that ‖φ(t2)‖ = |x1|. Put
x2 = φ(t2). Since f ◦ φ increases in the interval [0, δ], we conclude that f(x2) <
f(x1). We have also f(y) ≤ f(x2) because y ∈ B and ‖x2‖ = ‖y‖. Therefore
f(y) < f(x1). Since x1 ∈ A, this inequality implies that |y| 6= |x1| = ‖y‖. Both
norms of y do not coincide. Thus y ∈ C.

Put r = ‖y‖. For every x ∈ C such that 〈v, x〉 = ±rc|v| we have ‖x‖ = ‖y‖
and consequently f(x) ≥ f(y), since y ∈ B. We see that y is the solution of
the following problem: find x ∈ C satisfying a condition 〈v, x〉 = ±rc|v| with the
smallest value of f(x). By the method of Lagrange’s multipliers there is a constant
λ such that grad f(y) = λv. Therefore y ∈ Γv. The claim follows.

Proof of (i). By the curve–selection lemma and Lemma 2.3 there exists an
analytic curve ψ : (−1, 1) → Rn, ψ(0) = 0, ψ((0, 1)) ⊂ B \ {0} such that
`0(f, ‖ ‖) = ν(f ◦ ψ)/ν(‖ψ‖). Furthermore by Claim 3 we get ψ((0, τ)) ⊂ Γv ∩ C
for some τ , 0 < τ ≤ 1. Since Γv is an analytic set, there exist τ1, 0 < τ1 < τ such
that ψ((−τ1, τ1)) ⊂ Γv. Set γ(t) = ψ(τ1t). We obtained an analytic curve γ such
that γ(0) = 0, γ((−1, 1)) ⊂ Γv, and γ((0, 1)) ⊂ Γv ∩ C. From Claim 2 it follows
that α0 = `0(f, | |) = `0(f, ‖ ‖) = ν(f ◦ γ)/ν(‖γ‖) = ν(f ◦ γ)/ν(γ). This ends the
proof of (i).

To finish the proof we shall use two claims.

Claim 4. The function |gradf | has an isolated zero at the origin.

Claim 5. For any analytic curve φ : (−1, 1) → U , φ(0) = 0, φ 6= 0, we have
ν(f ◦ φ) ≥ ν(grad f ◦ φ) + ν(φ). For the curve γ we have
ν(f ◦ γ) = ν(grad f ◦ γ) + ν(γ).

We prove these claims later.

Proof of (ii). By Claim 4 we may assume (shrinking the ball K if necessary) that
grad f(x) 6= 0 for all x ∈ K \ {0}. Thus, by Corollary 2.4, there exists an analytic
curve φ : (−1, 1)→ K, φ(0) = 0, φ 6= 0 for which β0 = ν(grad f ◦ φ)/ν(φ). Using
Claim 5 and Corollary 2.4 again we get

β0 = ν(grad f ◦ φ)/ν(φ) ≤ ν(f ◦ φ)/ν(φ) − 1 ≤ α0 − 1.

For the curve γ we have

α0 = ν(f ◦ γ)/ν(γ) = ν(grad f ◦ γ)/ν(γ) + 1 ≤ β0 + 1.

From these inequalities we get β0 = ν(grad f ◦ γ)/ν(γ) = α0 − 1.
Proof of (iii). By Corollary 2.4 there exists an analytic curve ψ : (−1, 1)→ K,
ψ(0) = 0, ψ 6= 0 for which θ0 = ν(grad f ◦ ψ)/ν(f ◦ ψ). By Claim 5 we have

θ0 = ν(grad f ◦ ψ)/ν(f ◦ ψ) ≤ 1− ν(ψ)/ν(f ◦ ψ) ≤ 1− 1/α0.
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For the curve γ we have

θ0 ≥ ν(grad f ◦ γ)/ν(f ◦ γ) = 1− ν(γ)/ν(f ◦ γ) = 1− 1/α0.

Collecting together these inequalities we obtain θ0 = ν(grad f ◦ γ)/ν(f ◦ γ) =
1− 1/α0 = β0/α0.

It remains to prove claims 4 and 5.
Proof of Claim 4. Suppose to the contrary that 0 ∈ cl((grad f)−1(0)\{0}). Then by
the curve–selection lemma there exists an analytic curve φ : (−1, 1)→ Rn, φ(0) =
0, φ 6= 0 such that grad f(φ(t)) = 0 for t ∈ (0, 1). Since the derivative (f ◦ φ)′ =
〈grad f ◦ φ, φ′〉 vanishes in the interval (0, 1), f(φ(t)) = 0 for t ∈ [0, 1). Therefore
0 ∈ cl(f−1(0) \ {0}) – a contradiction.
Proof of Claim 5. For any analytic function h of positive order, we have ν(h) =
ν(h′) + 1. Hence ν(f ◦φ)− ν(grad f ◦φ)− ν(φ) = ν((f ◦φ)′) + 1− ν(grad f ◦φ)−
(ν(φ′) + 1) = ν〈grad f ◦φ, φ′〉− ν(gradf ◦φ)− ν(φ′). Therefore it suffices to prove
inequality

ν〈grad f ◦ φ, φ′〉 ≥ ν(grad f ◦ φ) + ν(φ′) (6)

and show that when we replace φ by the curve γ we get equality. The above
inequality is a consequence of the estimate |〈grad f ◦ φ, φ′〉| ≤ |grad f ◦ φ||φ′| and
Property 2.1.

For the curve γ we have c|v||γ(t)| ≤ |〈v, γ(t)〉| ≤ |v||γ(t)| for t ∈ [0, 1) which
shows that ν(〈v, γ〉) = ν(γ). Hence ν(〈v, γ′〉) = ν(〈v, γ〉′) = ν(〈v, γ〉) − 1 =
ν(γ)− 1 = ν(γ′).

Since γ((0, 1)) is a subset of the polar curve Γv, grad f(γ(t)) is parallel to v for
t ∈ (0, 1). Therefore we have |〈grad f(γ(t)), γ′(t)〉| = (|grad f(γ(t))|/|v|)|〈v, γ′(t)〉|
for t ∈ [0, 1). By Property 2.1 we get ν(〈grad f◦γ, γ′〉) = ν(grad f◦γ)+ν(〈v, γ′〉) =
ν(grad f ◦ γ) + ν(γ′) which completes the proof of the claim and the proof of the
theorem. �

To prove Theorems 1.4 and 1.5 we need to estimate the growth of a gradient
on polar curves. It is done in Theorem 2.5. We keep notation of Theorem 1.3.

Theorem 2.5. Let f : Rn → R be a polynomial function of degree d with an
isolated zero at the origin. Then there exists an analytic curve γ : (−1, 1)→ Rn,
γ(0) = 0 such that: ν(γ) ≤ (d − 1)n−1, ν(grad f ◦ γ) ≤ (d − 1)n and β0 =
ν(grad f ◦ γ)/ν(γ).

I hope that the above estimates can be improved. In this way we would obtain
sharper versions of Theorems 1.4 and 1.5.

The proof is based on Lemmas 2.6 and 2.8. Let us denote ∂if = ∂f/∂xi.

Lemma 2.6. Let f : U → R be an analytic function defined in a neighborhood of
zero U ⊂ Rn such that gradf(x) 6= 0 for x ∈ U \ {0} and let L be a proper linear
subspace of Rn. Then there exists v = (v1, . . . , vn−1, 1) ∈ Rn \ L such that:
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(i) Γv = { x ∈ U : (∂1f − v1∂nf) = · · · = (∂n−1f − vn−1∂nf) = 0 },
(ii) the derivatives dx(∂1f − v1∂nf), . . . , dx(∂n−1f − vn−1∂nf) are linearly

independent for all x ∈ Γv \ {0}.

Proof. Consider the map

G : U \ (∂nf)−1(0) 3 x→ (∂1f(x)/∂nf(x), . . . , ∂n−1f(x)/∂nf(x)) ∈ Rn−1.

The set { (v1, . . . , vn−1) ∈ Rn−1 : (v1, . . . , vn−1, 1) ∈ L } has measure zero in
Rn−1. By Sard’s theorem there exists a regular value v′ = (v1, . . . , vn−1) of G
which belongs to the complement of this set. Set v = (v1, . . . , vn−1, 1). It is easy
to check that Γv is given by (i) and G−1(v′) = Γv \ {0}. Since v′ is a regular value
of G, the derivatives dx(∂1f/∂nf), . . . , dx(∂n−1f/∂nf) are linearly independent
for all x ∈ Γv \ {0}. By the rule of differentiating a quotient and by (i) we get
dx(∂if/∂nf) = (1/∂nf)dx(∂if − vi∂nf) for i = 1, . . . , n− 1. Therefore dx(∂1f −
v1∂nf), . . . , dx(∂n−1f − vn−1∂nf) are also linearly independent. �

Notice that, in fact, we proved that for almost all v ∈ Rn (in the sense of
measure theory) either Γv is a one dimensional analytic set or Γv = {0}. We show
below that the second possibility cannot occur. This explains why we call the sets
Γv polar curves.

Lemma 2.7. Under the assumptions of Theorem 1.3, 0 is an accumulation point
of Γv for every v ∈ Rn \ {0}.

Proof. We can show, using the curve–selection lemma, that for all x sufficiently
close to the origin the vectors gradf(x) and x do not point in opposite directions
(see e.g. proof of Proposition 3.8.8 in [BeR]). Let Sr = {x ∈ Rn : |x| = r}
be a sphere of sufficiently small radius. By the previous remark the mapping
H : Sr × [0, 1]→ S1 given by

H(x, t) =
(1− t)grad f(x) + tx

|(1− t)grad f(x) + tx|

is well defined. H is a homotopy between H0(x) = grad f(x)/|gradf(x)| and
H1(x) = x/|x|. Hence the mapping H0 has a topological degree 1 and thus is
surjective. Since we have an inclusion H−1

0 (v/|v|) ⊂ Γv ∩ Sr, the origin is an
accumulation point of Γv. �

Lemma 2.8. Let A ⊂ Rn be a real algebraic set given by equations H1(x) =
· · · = Hn−1(x) = 0, where H1, . . . , Hn are polynomials, and let ψ : (−1, 1)→ A,
ψ(0) = 0, ψ 6= 0 be an analytic curve. Assume that
(i) the derivatives dxH1, . . . , dxHn−1 are linearly independent for all x ∈ A \ {0}

in a neighborhood of zero,
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(ii) 0 ∈ Rn is an isolated point of the set A ∩ { x ∈ Rn : Hn(x) = 0 }.
Then there exist an analytic curve γ : (−1, 1) → A, γ(0) = 0 and an analytic
function s, s(0) = 0 such that

(iii) ψ = γ ◦ s in a neighborhood of zero,
(iv) ν(γ) ≤

∏n−1
i=1 degHi,

(v) ν(Hn ◦ γ) ≤
∏n
i=1 degHi.

Proof. Regard Rn as a subset of Cn. Then A = AC ∩ Rn where AC = { z ∈ Cn :
H1(z) = · · · = Hn−1(z) = 0 }. Let AC = A1∪ · · · ∪As be the decomposition of AC

into irreducible algebraic components.
Since ψ((−1, 1)) ⊂ A, there exists a component C = Ai (1 ≤ i ≤ s) of the set

AC for which ψ((−1, 1)) ⊂ C. The component C is a complex algebraic curve.
Indeed by (i) there is a point x = ψ(t) (0 < t < 1) for which the derivatives dxH1,
. . . , dxHn−1 are linearly independent. Therefore dimC C ≤ n − rank(C, x) ≤
n− rank(dxH1, . . . ,dxHn−1) = 1 (see [Wh]). Since C contains an analytic branch,
dimC C = 1.

According to Puiseux’ theorem (see [ Lo, 173–176]) the curve C is in a neigh-
borhood of zero a finite union of branches. We have C ∩U = γ1(D)∪ · · · ∪ γl(D),
where U is a neighborhood of 0 ∈ Cn, D = {t ∈ C : |t| < 1} is a unit disc and
γi : (D, 0) → (C, 0) (1 ≤ i ≤ l) are injective holomorphic curves. Moreover, ac-
cording to Milnor (see [Mi] remarks after lemma 3.3) we can additionally assume
that for i = 1, . . . , l if γi(t) ∈ Rn then t ∈ R. The curve ψ extends to a local holo-
morphic (not necessarily injective) parametrization of one of branches described
above, say γ1(D). Now it is easily seen that we can put γ(t) = γ1(t) for t ∈ (−1, 1)
and find an analytic substitution s such that ψ(t) = γ(s(t)) for small t.

Claim 1. If F ∈ C[X1, . . . , Xn] is a polynomial for which F ◦ γ 6= 0, then
ν(F ◦ γ) ≤ (degC)(degF ).

Proof. In order to prove the claim we use some intersection theory. Assume that
F is irreducible. Then by [Sh, 190–194] the intersection multiplicity at zero of the
curve C and the hypersurface {F = 0} is given by the formula

ι0(C, {F = 0}) =
l∑

i=1

ν(F ◦ γi)

where γi are injective holomorphic parametrizations of the branches of C at ze-
ro. Hence ν(F ◦ γ) ≤ ι0(C, {F = 0}). By Bezout’s theorem ι0(C, {F = 0}) ≤
(degC)(degF ). Therefore ν(F ◦ γ) ≤ (degC)(degF ).

If F is a reducible polynomial then the formula ν(F ◦ γ) ≤ (degC)(deg F )
follows from inequalities ν(Fi ◦ γ) ≤ (degC)(degFi), where Fi are irreducible
factors of F .

Claim 2. degC ≤
∏n−1
i=1 degHi.
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Proof. Let us recall an invariant δ of algebraic sets introduced in  Lojasiewicz’s
book [ Lo, 419–420]: Let W = W1 ∪ · · · ∪Ws be a decomposition of an algebraic
set W into irreducible components. Then, by definition δ(W ) =

∑s
i=1 degWi. We

will use the following inequality δ(W ∩ V ) ≤ δ(W )δ(V ) (see [ Lo]). Applying this
property to the set AC we see that degC ≤ δ(AC) = δ({H1 = 0} ∩ · · · ∩ {Hn−1 =
0}) ≤

∏n−1
i=1 δ({Hi = 0}) ≤

∏n−1
i=1 degHi. The claim follows.

Proof of (iv). Let L be a linear form such that L ◦ γ 6= 0. By Claims 1 and 2
ν(γ) ≤ ν(L ◦ γ) ≤ (degC)(degL) ≤

∏n−1
i=1 degHi.

Proof of (v). By Claims 1 and 2 ν(Hn ◦ γ) ≤ (degC)(degHn) ≤
∏n
i=1 degHi.

Proof of Theorem 2.5. Let L ⊂ Rn be a proper linear subspace from Theorem 1.3.
By Lemma 2.6 we can take v = (v1, . . . , vn−1, 1) ∈ Rn \ L such that the polar
curve Γv satisfies conditions (i) and (ii) of 2.6 in a neighborhood of zero. Moreover
there exists an analytic curve ψ : (−1, 1)→ Γv, ψ(0) = 0 such that β0 = ν(grad f ◦
ψ)/ν(ψ). Put H1 = ∂1f − v1∂nf , . . . , Hn−1 = ∂n−1f − vn−1∂nf , Hn = ∂nf .
By Lemma 2.8 applied to Γv and ψ we see that there exists an analytic curve γ :
(−1, 1)→ Γv and an analytic substitution s such that ψ = γ◦s in a neighborhood of
zero. Moreover ν(γ) ≤

∏n−1
i=1 degHi ≤ (d− 1)n−1 and ν(Hn ◦ γ) ≤

∏n
i=1 degHi ≤

(d − 1)n. Since ν(ψ) = ν(γ)ν(s) and ν(grad f ◦ ψ) = ν(grad f ◦ γ)ν(s), the
 Lojasiewicz exponent β0 equals ν(grad f ◦ γ)/ν(γ).

A map H = (H1, . . . ,Hn) is a composition of grad f with a linear auto-
morphism. Hence ν(grad f ◦ γ) = ν(H ◦ γ). Since H ◦ γ = (0, . . . , 0,Hn ◦ γ),
ν(grad f ◦ γ) = ν(Hn ◦ γ) ≤ (d− 1)n. The theorem follows. �

Proof of Theorem 1.4. Let
∑
fµx

µ be the Taylor series at zero of f (µ is the
multi–index). Set F (x) =

∑
|µ|≤α0

fµx
µ.

Claim 1. The polynomial F has an isolated zero at the origin. The  Lojasiewicz
exponent ᾱ0 for the inequality |F (x)| ≥ C|x|ᾱ is equal to α0.

Proof of claim. Denote [α0] the integer part of α0 and set h = f − F . Since the
order of h is greater than or equal to [α0] + 1, we have |h(x)| ≤ M |x|[α0]+1 for
some M > 0 and all sufficiently small |x|. By Corollary 2.4 there exists C > 0
such that |f(x)| ≥ C|x|α0 in a neighborhood of zero.

From the above inequalities we get |F (x)| = |f(x) − h(x)| ≥ |f(x)| − |h(x)| ≥
C|x|α0−M |x|[α0]+1 = (C−M |x|[α0]+1−α0)|x|α0 for small |x|. Since M |x|[α0]+1−α0

≤ 1/2C for sufficiently small |x|, we have an estimate |F (x)| ≥ 1/2C|x|α0 in a
neighborhood of zero. This proves that the polynomial F has an isolated zero at
the origin and shows that ᾱ0 ≤ α0. In order to verify that α0 ≤ ᾱ0 it is sufficient
to change the role of f and F in the above consideration.

By Claim 1, Theorem 2.5 and Theorem 1.3 there exists an analytic curve γ
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for which ν(γ) ≤ Nn−1 for N = [α0] − 1 such that β0 = α0 − 1 = ᾱ0 − 1 =
ν(gradF ◦ γ)/ν(γ). Therefore β0 is a rational number in the interval [N,N + 1)
with the denominator ≤ Nn−1. �

Proof of Theorem 1.5. It follows from Theorem 2.5 that there exists an analyt-
ic curve γ such that β0 = ν(gradF ◦ γ)/ν(γ) and ν(gradF ◦ γ) ≤ (degF − 1)n.
Hence β0 ≤ (degF − 1)n. �
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[Gw] J. Gwoździewicz, Wyk ladnik  Lojasiewicza funkcji analitycznej o zerze izolowanym, doctoral

thesis (in Polish), Jagiellonian University, Kraków 1996.
[P l] A. P loski, Sur l’exposant d’une application analytique I, II, Bull. Pol. Acad. Sci. Math. 32

(1984), 669–673, 33 (1985), 123–127.
[P l1] A. P loski, Multiplicity and the  Lojasiewicz exponent, Singularities, Banach Center (1988),

353–364.
[ Lo] S.  Lojasiewicz, Introduction to Complex Algebraic Geometry, Birkhäuser Verlag 1991.
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