
Comment. Math. Helv. 74 (1999) 306–321
0010-2571/99/020306-16 $ 1.50+0.20/0

c© 1999 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Projectively equivalent metrics, exact transverse line fields
and the geodesic flow on the ellipsoid

Serge Tabachnikov

Abstract. We give a new proof of the complete integrability of the geodesic flow on the ellipsoid
(in Euclidean, spherical or hyperbolic space). The proof is based on the construction of a metric
on the ellipsoid whose non-parameterized geodesics coincide with those of the standard metric.
This new metric is induced by the hyperbolic metric inside the ellipsoid (Klein’s model).
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1. Introduction

The geodesic flow on the ellipsoid is one of the most popular examples of a com-
pletely integrable dynamical system (for the triaxial ellipsoid integrability was
established by Jacobi in 1838). A number of proofs of integrability is known:
by separation of variables ( Jacobi’s original approach), by confocal quadrics, by
isospectral deformations. An interested reader is referred to [2, 3, 4, 7, 9, 10, 14].

In this paper we give still another proof of complete integrability of the geodesic
flow on the ellipsoid. Our proof is based on the simple remark: if a dynamical
system (with continuous or discrete time) on a 2n-dimensional manifold possesses
two invariant differential 2-forms one of which is nondegenerate then the system
has n invariant functions. Namely, let the invariant forms be ω1 and ω2 where ω1
is nondegenerate. Then the functions

ωi2 ∧ ω
n−i
1

ωn1
, i = 1, ..., n

are integrals (not necessarily independent). Alternatively, consider the (1, 1)-
tensor field E relating the two forms: ω2(u, v) = ω1(Eu, v) for every tangent
vectors u and v. Then the eigenvalues of E are invariant functions, and these
integrals are functionally dependent on the previous ones.
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A much deeper result (which we do not use) is that if ω1 and ω2 are Poisson
compatible symplectic forms then these integrals Poisson commute with respect
to both forms – see, e.g., [5, 12] concerning bihamiltonian formalism.

In Section 2 we slightly modify and apply the above general observation as
follows. Consider the geodesic flow of a Finsler metric on a manifold M . One
identifies the tangent and cotangent bundles via the Legendre transformation and
considers the differential 1-form λ corresponding to the Liouville form on T ∗M and
the respective symplectic structure ω = dλ. The geodesic flow is a Hamiltonian
flow on TM whose Hamiltonian function is identified with the Lagrangian defining
the Finsler metric. Let S ⊂ TM be the hypersurface consisting of Finsler unit
vectors. The leaves of the characteristic foliation η on S are identified with non-
parameterized trajectories of the geodesic flow.

Two Finsler metrics on M are called projectively equivalent if, up to reparam-
eterization, their geodesics coincide. We show that if there exist two projectively
equivalent Finsler metrics on Mn then the geodesic flow of either metric has n
invariant functions. If the metrics are generic enough then these integrals are
functionally independent.

The argument goes as follows. Given two projectively equivalent Finsler metrics
on M , consider the transformation φ of TM that rescales the tangent vectors and
takes the first unit vector hypersurface S1 to the second one, S2. Then φ takes the
characteristic foliation η1 to η2. Therefore the symplectic forms ω1 and φ∗(ω2)
have the same characteristic foliation η1 on S1 and both forms are holonomy
invariant along η1. It follows that the functions

λ1 ∧ ωn−1−i
1 ∧ ωi2

λ1 ∧ ωn−1
1

, i = 1, ..., n− 1

are integrals of the geodesic flow of the first Finsler metric, the n-th integral being
the Lagrangian (once again one may also consider the spectrum of the field of the
linear transformations relating the two forms).

It is an interesting problem to describe the pairs of projectively equivalent
Finsler metrics for which the constructed integrals Poisson commute with respect
to the symplectic structure ω1. In particular, when are the forms ω1 and φ∗(ω2)
Poisson compatible?

We apply this construction to the geodesic flow on the ellipsoid. One of the
metrics is, of course, the Euclidean metric in the ambient space restricted to the
ellipsoid. The other metric is provided by the following general construction dis-
cussed in Section 3.

Consider a smooth hypersurface M ⊂ Rn equipped with a smooth transverse
line field ξ. A smooth curve γ on M is called a ξ-geodesic if at every point x ∈ γ
the 2-plane generated by the tangent line to γ and the line ξ(x) is second-order
tangent to γ; in other words, the osculating 2-plane of a ξ-geodesic at every point
x contains the line ξ(x). In particular, if ξ consists of the Euclidean normals
then a ξ-geodesic is the usual geodesic line on M . We show that if M is an
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ellipsoid and ξ is a so-called exact field (introduced and studied in [15, 16, 17] and
defined in Section 3) then there exists a metric on M whose geodesics coincide
with ξ-geodesics (this result was conjectured in [15]). Since the field of Euclidean
normals to a hypersurface is exact one obtains the second metric on the ellipsoid,
projectively equivalent to the Euclidean one.

This second metric comes from the hyperbolic metric inside the ellipsoid con-
sidered as the Klein model of the hyperbolic space Hn; the ellipsoid plays the role
of the sphere at infinity. Namely, there exists a one-parameter family of closed
hypersurfaces in Hn that are orthogonal, in the hyperbolic sense, to the lines from
the field ξ. These surfaces have the metrics induced from Hn, and the desired
metric on the ellipsoid is the limit of these, appropriately renormalized, metrics as
the hypersurfaces tend, in the Euclidean sense, to the sphere at infinity.

This construction is closely related with a result from [15] concerning the bil-
liard inside the ellipsoid. The billiard transformation is a map of the space of
oriented lines (rays) intersecting the billiard table; this map preserves the sym-
plectic structure on the space of rays associated with the Euclidean metric (see,
e.g., [18]). It was observed in [15] that if the billiard table is an ellipsoid then the
billiard map also preserves the symplectic structure on the space of rays associated
with the hyperbolic metric inside the ellipsoid. This observation gives a proof of
complete integrability of the billiard map.

In Section 4 we compute the integrals for the geodesic flow on the ellipsoid
provided by the preceding constructions. Remarkably, we obtain precisely the
classical integrals (as given in [8, 9, 10]).

In Section 5 we show that the same techniques apply to the geodesic flow on the
ellipsoid in the spherical or hyperbolic space. These flows are completely integrable
– see [20]; our method provides a new proof.

We also describe the Riemannian metrics in a domain D ⊂ Rn with the prop-
erty that for every smooth hypersurface M ⊂ D there exists a smooth transverse
line field ξ along M such that the geodesics on M are the ξ-geodesics. It turns out
that such a metric is a metric of constant curvature whose geodesics are straight
lines, that is, the Euclidean, spherical or hyperbolic one; the respective transverse
line field consists of the normals to a hypersurface.

It would be interesting to describe the Finsler metrics with the same property;
at the present writing we do not know whether there are any which are not Rie-
mannian. Such a Finsler metric would be a candidate for application of the above
described techniques, and one might expect its geodesic flow on the ellipsoid to be
integrable.

In the Appendix we prove Hamel’s characterization of Finsler metrics in a
domain in linear space that are projectively equivalent to the Euclidean ones.

We use vector notation throughout the paper: if x, u ∈ Rn and L is a function
on Rn then

xu = x1u1 + ...+ xnun, udx = u1dx1 + ...+ undxn,

dx ∧ du = dx1 ∧ du1 + ...+ dxn ∧ dun, ∂L/∂u = Lu = (Lu1 , ..., Lun),
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u(L) = uLu = u1Lu1 + ...+ unLun etc.

2. Projectively equivalent Finsler metrics

Start with a description of relevant facts about Finsler metrics (see, e.g., [3, 13]).
Finsler geometry describes the propagation of light in an inhomogeneous an-

isotropic medium. This means that the velocity of light depends on the point and
the direction. There are two equivalent descriptions of this process corresponding
to the Lagrangian and the Hamiltonian approaches in classical mechanics; we will
focus on the former.

A Finsler metric on a manifold M is described by a smooth field of strictly
convex smooth hypersurfaces, containing the origin (and not necessarily centrally-
symmetric), in the tangent space at each point. These hypersurfaces are called
indicatrices. The indicatrix consists of the Finsler unit vectors and plays the role
of the unit sphere in Riemannian geometry.

Equivalently, a Finsler metric is determined by a smooth nonnegative fiber-
wise convex Lagrangian function L on the tangent bundle TM whose unit level
hypersurface S intersects each fiber of TM along the indicatrix. Unless otherwise
specified, we assume that L is fiber-wise homogeneous of degree 2.

A Finsler geodesic is an extremal of the Lagrangian L. The Finsler geodesic
flow v is a flow in TM in which the foot point of a tangent vector moves along a
Finsler geodesic, the vector remains tangent to this geodesic and has a constant
Finsler length.

The Lagrangian L determines a diffeomorphism, called the Legendre transfor-
mation, between the tangent and cotangent bundles. If (x, u), x ∈ M, u ∈ TxM
is a tangent vector and (x, p), x ∈ M, p ∈ T ∗xM is a cotangent one then the
Legendre transformation is given by the formula: p = Lu.

Denote by λ the differential 1-form in TM corresponding to the Liouville form
in T ∗M ; one has: λ = Ludx. Let ω = dλ; then ω is a symplectic form in TM .
The flow v is a Hamiltonian flow with respect to this symplectic structure, the
Hamilton function being L. One has: λ(v) = 2L and ivω = −dL = Lvλ (where
Lv is the Lie derivative).

The unit level hypersurface S ⊂ TM is foliated by the trajectories of the
geodesic flow. These trajectories coincide with the leaves of the characteristic
foliation η generated by the kernels of ω restricted to S. Thus the leaves of η are
identified with non-parameterized Finsler geodesics. The 1-form λ determines a
contact structure on S.

Let two projectively equivalent Finsler metrics be given on Mn; we use the
subscript i = 1, 2 to indicate that an object relates to the first or the second
metric. Consider the diffeomorphism φ of TM given by the formula:

φ : (x, u)→ (X,U) where X = x, U = (L1(u)/L2(u))1/2 u.
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This transformation has the following properties.

Lemma 2.1. (i) φ(S1) = S2.
(ii) The 2-forms ω1 and φ∗ω2 have the same characteristic foliation η1 on S1 and
both are holonomy invariant along the leaves of this foliation.

Proof. Since L1(u) = 1 on S1, one has: L2(U) = (L1(u)/L2(u)) L2(u) = 1, and
the first claim follows. Since the Finsler metrics are projectively equivalent, φ
takes the leaves of η1 to those of η2. Since η2 is the characteristic foliation of ω2
on S2 the characteristic foliation of φ∗ω2 on S1 is η1. If v is a vector field tangent
to η1 then ivω1 = 0 and Lv(ω1) = ivdω1 + divω1 = 0 on S1. The same applies to
φ∗ω2, and the second claim is proved.

It follows that the functions invariantly associated with the forms ω1 and φ∗ω2
are constant on the leaves of η1, that is, are integrals of the geodesic flow of the
first Finsler metric.

One way to obtain such functions is as follows. Let E be the (1, 1)-tensor
field relating the two forms: φ∗ω2(u, v) = ω1(Eu, v) for every tangent vectors
u and v. Since η1 is the common characteristic foliation of the two forms, E
preserves the tangent directions to η1. It follows that the n− 1 eigenvalues of the
linear transformations induced by E on the fibers of the normal bundle TS/η1 are
integrals of the geodesic flow; still another integral is, of course, the Lagrangian
L1.

Another construction of invariant functions goes as follows. The integrals con-
structed below are functionally dependent on the above ones.

Lemma 2.2. The functions

fi =
λ1 ∧ ωn−1−i

1 ∧ φ∗ωi2
λ1 ∧ ωn−1

1
, i = 1, ..., n− 1

are constant along the leaves of η1.

Proof. Since λ1 is a contact form the denominator does not vanish. Similarly to
Lemma 2.1, Lv1(λ1) = 0 and Lv1(ω1) = Lv1(φ∗ω2) = 0 on S1. It follows that
v1(fi) = 0 for every i.

Notice that the symplectic form φ∗ω2 is not necessarily v1-invariant on the
whole TM . We modify the form ω2 as follows.

Lemma 2.3. The kernel of the 2-form ω′2 = d(L−1/2
2 λ2) contains the vector v2,

and for every function g this 2-form is invariant on TM under the flow gv2.
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Proof. One has:
ω′2 = (1/2)L−3/2

2 (2L2dλ2 − dL2 ∧ λ2).

Therefore

iv2ω
′
2 = (1/2)L−3/2

2 (2L2iv2dλ2 + λ2(v2)dL2)

= (1/2)L−3/2
2 (−2L2dL2 + 2L2dL2) = 0.

It follows that gv2 ∈ ker ω′2. Since ω′2 is closed, the Cartan’s formula for the Lie
derivative implies that ω′2 is (gv2)-invariant. The lemma is proved.

Since the map φ takes L1 to L2 and the vector field φ∗(v1) is equal, up to a
functional multiplier, to v2 we obtain the following corollary.

Corollary 2.4. The 2-form φ∗ω′2 = d(L−1/2
1 φ∗λ2) is invariant, along with ω1,

under the geodesic flow of the first Finsler metric on TM .

3. Exact transverse line fields along the sphere

Let M ⊂ Rn be a smooth hypersurface equipped with a smooth transverse line
field ξ. Denote by n(x), x ∈ M the unit normal vector field along M . Let v be
the vector field along ξ normalized so that v(x) n(x) = 1 for all x ∈M .

Definition. A transverse field ξ is called exact if the 1-form vdn on M is exact.

Clearly, the field of Euclidean normals is exact. Exact fields enjoy many prop-
erties of the Euclidean normals. For example, the following generalization of the
classical 4-vertex theorem holds (see [19]): given a generic exact transverse line
field ξ along a closed convex smooth plane curve γ, the envelope of the 1-parameter
family of lines ξ(x), x ∈ γ has at least 4 cusp singularities.

Below we list a few relevant properties of exact transverse line fields – see [15,
16]:

(i) Although defined in Euclidean terms, exactness is a projective property.
Namely, let ξ be an exact transverse line field alongM ⊂ Rn, and F be a projective
transformation of Rn whose domain contains M . Then the line field DF (ξ) along
F (M) is also exact.

(ii) Let f be a smooth function on the unit sphere Sn−1. Then the line field
generated by the vector field v(x) = x+grad f(x), x ∈ Sn−1 is exact. Every exact
field along the unit sphere is obtained this way.

(iii) Let ξ be an exact transverse line field along a sphere. Identifying the
interior of the sphere with the hyperbolic space Hn (Klein’s model), one has an
imbedding of the sphere to the space of oriented lines in Hn: to a point x ∈ Sn−1
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there corresponds the line ξ(x), oriented outward. Let L be the image of this map.
Then L is a Lagrangian submanifold of the space of oriented lines in Hn with its
canonical symplectic structure, associated with the hyperbolic metric, and if n ≥ 3
this condition is equivalent to exactness. It follows that if ξ is exact then the lines
from this field are the hyperbolic normals to a one-parameter family of equidistant
closed hypersurfaces in Hn. In view of Property (i), an analogous property holds
for the ellipsoid.

(iv) Let g be a Riemannian metric of constant positive or negative curvature in
a domain D ⊂ Rn whose geodesics are straight lines. Then, for every hypersurface
M ⊂ D the field of g-normals to M is an exact line field.

Let ξ be an exact transverse line field along the unit sphere. According to
Property (ii), ξ is generated by the vector field v(x) = x+ grad f(x) where f is a
smooth function on the sphere. Let (x, u), x ∈ Sn−1, u ∈ TxSn−1 be coordinates
in TSn−1. We ask whether there exists a metric on the sphere whose geodesics
are the ξ-geodesics. The affirmative answer is provided by the next theorem.

Theorem 3.1. The geodesics of the metric L(x, u) = u2e−2f(x)/2 are the ξ-
geodesics.

Proof. One wants to show that if x(t) is a geodesic of L then for every t the
acceleration vector x′′(t) belongs to the plane spanned by x′(t) and v(x(t)).

The Euler-Lagrange equation with constraints reads (see, e.g., [3]):

Luux
′′ + Luxx

′ − Lx = Cx

where C is an unknown function and x′ = u. One easily computes:

Lx = −u2e−2fgrad f, Lu = e−2fu, Lux = −2e−2fu⊗ grad f, Luu = e−2fId,

where u⊗ grad f is the endomorphism

(u⊗ grad f)ij = ui
∂f

∂xj
.

Thus the Euler-Lagrange equation is:

e−2f (x′′ − 2u(f)u+ u2grad f) = Cx,

where u(f) is the directional derivative of the function f . To find C, dot-multiply
by x and use the fact that ux = 0 and x · grad f = 0; one finds that

C = e−2fx′′x = −e−2fu2,

the last equality obtained by differentiating the identity xu = 0. Therefore

x′′ − 2u(f)u+ u2grad f = −u2x, hence x′′ = 2u(f)u+ u2v(x).
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It follows that the acceleration x′′ is a linear combination of the velocity x′ and
the transverse vector v(x). The theorem is proved.

It would be interesting to describe all pairs (M, ξ) where M is a hypersurface
and ξ is a transverse line field for which there exists a Lagrangian on M whose
extremals are the ξ-geodesics.

Next we discuss the relation between the Lagrangian from the previous theorem
and the above mentioned Property (iii) of exact transverse line fields. We use the
notation introduced prior to Theorem 3.1.

The idea is as follows. Consider the one-parameter family of equidistant closed
hypersurfaces inside the sphere which are orthogonal with respect to the hyperbolic
metric to the lines of the exact transverse field ξ along Sn−1. Let N be such a
hypersurface; it has the metric induced from the ambient hyperbolic space. We
want to consider the limit of these metrics as N tends to Sn−1. We need, however,
to renormalize the metrics, otherwise the limit will be infinite.

To this end let N be a hypersurface which is, in the Euclidean sense, infinites-
imally close to the unit sphere. Denote by y ∈ N the point that lies on the line
ξ(x); the correspondence ψ : x → y is a diffeomorphism from Sn−1 to N . One
has:

y = x− εh(x)v(x) +O(ε2)

where h is a positive function on the sphere and ε denotes an infinitesimal param-
eter. Let gε be the metric on the sphere induced by ψ from the metric on N and
rescaled by the factor ε.

Theorem 3.2. The metric from Theorem 3.1 is equal, up to a constant, to
limε→0 gε.

Proof. To start with, the hyperbolic metric inside the unit ball is given, in Eu-
clidean terms, by the formula:

LH(y, w) =
w2

1− y2 +
(wy)2

(1− y2)2

where y is a point inside the ball, w is a tangent vector and multiplication is
the Euclidean scalar product (see, e.g., [15]). Respectively, the hyperbolic scalar
product at point y is

< w1, w2 >=
w1w2
1− y2 +

(w1y)(w2y)
(1− y2)2 .

Recall that ξ is generated by the vector field v(x) = x + grad f(x) and that
xv(x) = 1. Write the unknown function h(x) as expφ(x). Let u ∈ TxSn−1 be a
tangent vector and w = Dψ(u). The function φ is determined by the condition
that the lowest term in ε in the scalar product < w, v > vanishes for every u.
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It is straightforward to compute that

w = u− εeφ(u(φ)v+u(v))+O(ε2), 1−y2 = 2εeφ+O(ε2), yv = 1− εeφv2 +O(ε2).

It follows that

yw = −εeφ(u(φ) + xu(v) + uv) +O(ε2) and vw = uv +O(ε).

Take the directional derivative of the identity xv = 1 and use the tautological
identity u(x) = u to obtain: uv+xu(v) = 0. In addition, uv = u · grad f = u(f);
therefore

yw = −εeφu(φ) +O(ε2) and vw = u(f) +O(ε).

Hence the lowest term in < w, v > is

2u(f)− u(φ)
4εeφ

.

Equating to zero for every u one finds: φ = 2f + const.
Finally, gε(x, u) = εLH(y, w) where (y, w) is related to (x, u) as above. The

formula for LH and the preceding computations imply that

gε(x, u) = Const
1
2
u2e−2f(x) +O(ε),

and the result follows.

Remark. We give an explicit parameterization of the equidistant hypersurfaces
orthogonal to the lines of the field ξ: these hypersurfaces, indexed by a parameter
ε which is an arbitrary positive real number, are the loci of the points

y = x− 2ε v(x) e2f(x)

2 + ε v2(x) e2f(x)
, x ∈ Sn−1.

This formula is a result of a direct computation similar to the one in the proof
of the above theorem; we do not reproduce this computation here. The previous
result concerned the case of an infinitesimal ε.

4. Integrals of the geodesic flow on the ellipsoid

In this section we compute the integrals of the geodesic flow on the ellipsoid pro-
vided by the construction from Section 2.

Let E ⊂ Rn be the ellipsoid given by the equation
∑
aiy

2
i = 1. Let (y, v), y ∈

E, v ∈ TyE be coordinates in the tangent bundle TE. Consider the linear trans-
formation A that takes the ellipsoid to the unit sphere Sn−1 and extend A to
TE:

A : (y, v)→ (x, u); xi =
√
ai yi, ui =

√
ai vi.
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The geodesics on E are transformed by A to the geodesics of the following metric
on the sphere:

L1(x, u) =
1
2
v2 =

1
2

∑ u2
i

ai
.

Let n(y) be a normal vector to E at point y. For every geodesic through y its
osculating 2-plane contains n(y). Therefore the A-images of the geodesics on the
sphere are ξ-geodesics where the transverse line field ξ is generated by the vectors
A(n). Due to projective invariance of exactness (Property (i) in Section 3) the
field ξ is exact. We compute the metric associated with this field according to
Theorem 3.1.

Lemma 4.1. This metric is given by the formula:

L2(x, u) =
1
2

u2∑
aix2

i

.

Proof. We may take n(y) to have the components aiyi; then A(n)(x) has the
components aixi. Rescale this vector to the vector v(x) with the components
aixi/

∑
ajx

2
j ; then xv(x) = 1. One easily verifies that v(x) = x+ grad f(x) where

f is the following function on the sphere: f(x) = ln(
∑
aix

2
i )/2. It follows that the

metric provided by Theorem 3.1 is

1
2
u2e−2f(x) =

1
2

u2∑
aix2

i

.

The lemma is proved.

Thus L1 and L2 are projectively equivalent metrics. We are ready to apply the
construction from Section 2.

Introduce the following notation:

α =
∑ u2

i

ai
, β =

∑
aix

2
i ; then L1 =

1
2
α, L2 =

1
2
u2

β
.

Using the notation from Section 2, first compute the 1-forms on TSn−1 corre-
sponding to both Lagrangians:

λ1 =
∑ uidxi

ai
, λ2 =

udx

β
.

Next, the map φ that takes the unit level hypersurface of L1 to that of L2 is the
rescaling by the factor of

√
αβ/u2. It follows that

φ∗(λ2) =
√

α

u2β
udx; let γ = (u2β)−1/2.
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Therefore

ω1 =
∑ dui ∧ dxi

ai
, φ∗ω′2 = d(L−1/2

1 φ∗λ2) =
√

2γ(du ∧ dx+ d ln γ ∧ (udx)).

We drop the subscript and denote ω1 by ω; let also Ω = du ∧ dx+ d ln γ ∧ (udx).
We need an explicit formula for the geodesic flow V of L1.

Lemma 4.2. One has:

V =
∑(

ui
∂

∂xi
− u2

β
aixi

∂

∂ui

)
.

Proof. The tangent vectors to TSn−1 belong in the kernels of the 1-forms xdx and
udx+ xdu; one sees that the above V annihilates both forms. Next, the geodesic
flow is the Hamiltonian flow of L1 with respect to the symplectic structure ω; and
indeed, the above V satisfies the formula: iV ω = −dL1. The lemma is proved.

We also make an observation that is verified by a direct computation.

Lemma 4.3. V (γ) = 0.

Thus, in addition to α, the quadratic function u2β is an integral of the geodesic
flow V ; being expressed in terms of the original ellipsoid, this is the classical
Joachimsthal integral. It follows that Ω is an invariant form (neither closed nor
non-degenerate). This form is easily computed:

Ω = du ∧ dx− (udu) ∧ (udx)
u2 − (xdu) ∧ (

∑
aixidxi)

β
.

We are ready to compute integrals of the geodesic flow from the invariant forms
ω and Ω.

Consider the V -invariant 2-form ωt = t−1ω + Ω. Then the function ft =
ωn−1
t /ωn−1 is an integral of the flow V for every t.

Consider TSn−1 as a submanifold in TRn; then the 1-forms xdu+udx and xdx
vanish on TSn−1. The computation of the functions ft simplifies if one wedge-
multiplies the numerator and denominator by the 2-form (xdu + udx) ∧ (xdx)
and considers the resulting 2n-forms in TRn. Moreover, wedge-multiplying the
numerator by udx∧xdx yields zero because it contributes n+1 factors of the type
dxi. Also note that wedge-multiplying the numerator by xdu annihilates the term
(xdu) ∧ (

∑
aixidxi) in Ω. Furthermore, since ((udu) ∧ (udx))2 = 0, the function

ft is equal to the ratio of the two volume forms W1 and W2 in TRn where W1 =((∑ dui ∧ dxi
bi

)n−1
− (n− 1)

u2

(∑ dui ∧ dxi
bi

)n−2
∧(udu)∧(udx)

)
∧(xdu)∧(xdx),
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W2 =
(∑ dui ∧ dxi

ai

)n−1
∧ (xdu) ∧ (xdx),

and
bi =

ait

1 + ait
= 1− 1

1 + ait
.

Let W0 be the standard volume form Π(dui ∧ dxi). To find the volume forms W1
and W2 we need the next result.

Lemma 4.4. Consider the 2-form

ω =
∑ dui ∧ dxi

ci

in TRn. Then

ωn−1 ∧ (xdu) ∧ (xdx)
W0

=
(n− 1)!

Πci

∑
cix

2
i ,

and

ωn−2 ∧ (udu) ∧ (udx) ∧ (xdu) ∧ (xdx)
W0

=
(n− 2)!

Πci

∑
i<j

cicj(uixj − ujxi)2.

Proof. We prove the first equality; the second one is established similarly. The
desired volume form is found as follows: choose a 2-dimensional subspace Li =
Span(xi, ui); consider the area form (xdu) ∧ (xdx) on Li and the volume form
ωn−1 on TRn/Li; multiply the two and sum over i = 1, ..., n. The area form is
x2
i dui ∧ dxi, and the symplectic volume form equals

(n− 1)!Πj 6=i duj ∧ dxj
Πj 6=i cj

.

The result follows by summation.

The previous lemma implies that, up to a constant,

ft =
u2(
∑
bix

2
i )−

∑
i<j bibj(uixj − ujxi)2

u2(
∑
aix2

i )
.

The denominator is the invariant function γ. Therefore the numerator is an inte-
gral too; denote it by gt. It is easy to see that

gt = u2(
∑

bix
2
i )− (

∑
biu

2
i )(
∑

bjx
2
j ) + (

∑
biuixi)2.
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Consider the bilinear form in Rn:

Qt(a, b) =
∑ aibi

1 + ait
.

Since x2 = 1 and ux = 0, one has:∑
bix

2
i = 1−Qt(x, x),

∑
biu

2
i = u2 −Qt(u, u),

∑
biuixi = −Qt(u, x).

It follows that
gt = Qt(u, u)−Qt(x, x)Qt(u, u) +Q2

t (u, x).

Following J. Moser [8,, 9, 10] one extracts n integrals from this one-parameter
family of invariant functions by expressing gt in partial fractions and taking the
coefficient of (1 + ait)−1, divided by ai, to be the i-th integral:

Fi =
u2
i

ai
+
∑
j 6=i

(uixj − ujxi)2

ai − aj
.

Being expressed in terms of the coordinates (y, v) on the original ellipsoid these
functions coincide with the classical integrals of the geodesic flow as given in the
quoted papers by Moser.

Remark. The geometrical meaning of the equation gt(x, u) = 0 is that the straight
line in Rn through the point x in the direction of u is tangent to the quadricQt = 0;
this quadric is the image under the linear map A of a quadric, confocal with the
original ellipsoid E – [8, 9, 10].

5. Ellipsoids in the spherical and hyperbolic spaces

It is natural to ask whether the methods of the previous sections are applicable
to other Finsler metrics. A natural candidate would be a metric in a domain
D ⊂ Rn with the following property: for every hypersurface M ⊂ D there exists
a transverse line field ξ such that the Finsler geodesics on M are the ξ-geodesics.
The next result shows that if one restricts attention to the Riemannian case then
the supply of such metrics is rather limited. Assume that the dimension n is not
less than 3.

Theorem 5.1. A Riemannian metric g enjoys the above property if and only if
it is a metric of constant curvature whose geodesics are straight lines. In this case
the transverse line field ξ consists of the g-normals to a hypersurface.

Proof. Let a Finsler metric with the above property be given. First, we claim that
the geodesics of this metric in D are straight lines. Let M be an affine hyperplane.
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Since the osculating 2-planes of every curve in M lie in M and cannot contain a
transverse direction ξ, the Finsler geodesics in M are straight lines.

Let L be the Lagrangian, quadratic in the velocities u, defining the metric, and
let Q = L1/2. The non-parameterized extremals of Q coincide with those of L.

We make use of Hamel’s theorem that gives a necessary and sufficient condition
for the extremals of a Lagrangian in a domain in Rn, homogeneous of degree 1,
to be straight lines. This condition is: the matrix Qxiuj is symmetric – see [1]. In
particular, if M has the equation xk = const then the Hamel condition holds for
all i, j 6= k. Since n ≥ 3 the Hamel condition holds for all i, j, and the extremals
of Q in Rn are straight lines.

A Beltrami theorem states that a Riemannian metric whose geodesics are
straight lines is a metric of constant curvature (see, e.g., [6]). To finish the proof
one may use explicit formulas for the spherical or hyperbolic metric. We prefer,
however, to derive a necessary and sufficient condition in terms of the Lagrangian.

The extremals x(t) of the LagrangianQ on a hypersurface M satisfy the Euler-
Lagrange equation:

Quux
′′ +Quxx

′ −Qx = Cn(x)

where n(x) is a normal vector field to M and x′ = u. Since Q is homogeneous of
degree 1, Euler’s equation implies: uQu = Q, uQuu = 0. Using Hamel’s condition
one obtains: Quxu = Qxuu = Qx; thus Quxx′ −Qx = 0. The condition imposed
on the Finsler metric means that x′′ is a linear combination of ξ and u. Since
uQuu = 0 the Euler-Lagrange equation simplifies as follows:

Quu(x, u) ξ(x) = Cn(x).

Next we express this condition in terms of the Lagrangian L. One has:

Quu = (1/2) L−3/2 (2 L Luu − LTu Lu);

thus the condition on the transverse field ξ is:

Luu(x, u) ξ(x) − Lu(x, u) · ξ(x)
2L(x, u)

Lu(x, u) = Cn(x)

for every u, orthogonal to n(x).
Fix a point x ∈ M . If the metric is Riemannian then Luu is a symmetric

matrix, say, A. Then Lu = Au and 2L = Au · u. Our condition reads:

Aξ − Au · ξ
Au · u Au = Cn

for all u, orthogonal to n. This equality is satisfied by ξ = A−1n (and C = 1),
that is, by the g-normal to M at x. The theorem is proved.
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We do not know whether the above theorem extends to all Finsler metrics. We
conjecture this to be the case.

Use the standard models for the spherical and hyperbolic spaces: for the former
it is, naturally, the sphere in the Euclidean space with the induced metric; for the
latter it is one sheet of the 2-sheeted hyperboloid with the metric induced by
the Lorentz metric of signature (n, 1) in the ambient space. An ellipsoid in the
spherical or hyperbolic space is the intersection of the sphere or hyperboloid with
a positive-definite quadratic cone.

Using Theorem 5.1 and Property (iv) of exact transverse line fields from Section
3, one can prove that the geodesic flow on the ellipsoid in the spherical or hyper-
bolic space is integrable (see [20] for a different approach). This proof essentially
repeats the one given for the Euclidean case, and we do not dwell on it.

6. Appendix: proof of Hamel’s theorem

For the reader’s convenience we provide a proof of Hamel’s theorem. This theorem
is related to Hilbert’s 4-th problem, integral and symplectic geometry – see [1].

Let Q(x, u) be a Lagrangian, homogeneous of degree 1, whose extremals are
straight lines. The Euler-Lagrange equation reads:

Quux
′′ +Quxx

′ −Qx = 0

where x′ = u. If the extremals are straight lines then x′′ is proportional to u.
Since Qu is homogeneous of degree 0 one has, by Euler’s equation: Quuu = 0. The
Euler-Lagrange equation implies that

∑
kQuixkuk = Qxi for all i. Differentiate

with respect to uj to obtain:∑
k

Quiujxkuk = Qxiuj −Qxjui

for all i, j. The left hand side is symmetric in i, j while the right hand side is
skew-symmetric. Therefore both vanish, and Qxiuj = Qxjui .

Conversely, let the matrix Qxiuj be symmetric. Then Quxu = Qxuu = Qx,
and Quxu−Qx = 0. The Euler-Lagrange equation implies that Quux′′ = 0. The
matrix Quu(x, u) is degenerate and its kernel is generated by the vector u. Thus
x′′ is proportional to x′, and the extremals are straight lines.

Added in proof: After the submission of my paper I learned about the paper
by V. Matveev and P. Topalov “Geodesic equivalence and integrability” (MPIM
preprint, 1998) that contains a similar approach to the geodesic flow on the ellip-
soid.
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