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Abstract. We prove that Riemannian metrics with a uniform weak norm can be smoothed
to having arbitrarily high regularity. This generalizes all previous smoothing results. As a
consequence we obtain a generalization of Gromov’s almost flat manifold theorem. A uniform
Betti number estimate is also obtained.
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1. Introduction

An ultimate goal in geometry is to achieve a classification scheme, using natural
geometric quantities to characterize the topological type or diffeomorphism type of
Riemannian manifolds. While this grand scheme seems to be an impossible dream,
its basic philosophy has been a driving force in many important developments in
Riemannian geometry. The sphere theorems and various topological finiteness
theorems are typical examples. These results are concerned with control of global
topology of manifolds, and a crucial point therein is to control, uniformly, the local
topology.

Control of local topology often follows from control of local geometry. Here,
by local geometry, we mean the local behavior of the metric tensor. On the
other hand, control of local geometry is frequently also the essential ingredient
for control of global geometry, such as in Cheeger-Gromov’s compactness theorem
and its various extensions, which can be named geometric finiteness theorems.
Notice that some rudimental topological finiteness results are direct corollaries of
geometric finiteness theorems. But the significance of the latter goes beyond this.
In any case, control of local geometry is obviously a key topic. An interesting and
important aspect of this topic is various degrees of control of local geometry needed
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or available in different situations. In [P], the first author introduced a sequence
of norms which provide a certain quantitative measure for local geometric control.
These norms can be defined either in terms of the Ck,α-norms or the Lk,p-norms
for functions, and they are defined on a given scale. For example, the Ck,α-norm of
a Riemannian manifold on scale r is bounded, if it is covered by coordinate charts
of size comparable to r such that the metric tensor expressed in the coordinates
is uniformly bounded in Ck,α-norm, and that the coordinate transition functions
are uniformly bounded in Ck+1,α-norm. Note that the local topology is uniformly
trivial if one of these norms on some scale is bounded. To admit richer topological
and geometric structures under norm bounds, we shall introduce a weak version of
these norms. The essential new feature is that we allow coordinate maps to have
double points. In spirit, this is similar to replacing an injectivity radius bound by
a conjugate radius bound. (Of course, e.g. a weak (harmonic) C0,α bound is so
weak that it is far from implying a conjugate radius bound.)

Indeed, our basic theme is to try to find the minimal degree of control of
local geometry under which interesting geometric and topological consequences
can be drawn. Traditional geometric conditions such as curvature bounds imply
various degrees of local geometric control, so we can think from their perspectives.
Historically, sectional curvature bounds were the first to be systematically studied.
They can roughly be compared with weak C2-norm bounds, at least the latter
imply the former. Since understanding of sectional curvature bounds has been
reached on a good level, it is natural to try to find the minimal degree of local
geometric control under which a metric can be approximated by metrics with
sectional curvature bounds or weak C2-norm bounds (or better bounds). In this
paper, we present a result towards this goal, along with some applications. The
local geometric control we need is as weak as a bound on the weak harmonic C0,α-
norm, or a bound on the weak L1,p-norm. These do appear to be the sought-after
minimal degree of local geometric control in our set-up.

To formulate the result precisely, we introduce the following classes of Rieman-
nian manifolds. (The definition of the weak norms are given in §2.)

Definition 1. Given n ≥ 2, 0 < α < 1, p > n and function Q : (0,∞) → [0,∞)
which is nondecreasing in r and satisfies limr→0Q(r) = 0, we define

M(n, α,Q)=

(M, g)

∣∣∣∣∣∣∣
(M, g) is a complete Riemannian manifold,dimM = n,

the weak harmonic C0,α norm ‖(M, g)‖W,h
C0,α,r

≤ Q(r)

for all positive r ≤ 1

,
and

M(n, p,Q)=

(M, g)

∣∣∣∣∣∣∣
(M, g) is a complete Riemannian manifold,dimM = n,

the weak L1,p norm ‖(M, g)‖WL1,p,r ≤ Q(r)

for all positive r ≤ 1

 .



Vol. 74 (1999) Controlled geometry via smoothing 347

Remark 1. A priori these two classes seem to be independent. We will prove
however that (weak) L1,p bounds actually imply (weak) harmonic C0,α bounds,
see Theorem 1.5. A further question is whether (weak) C0,α bounds imply (weak)
harmonic C0,α bounds. It is still unanswered.

Remark 2. By Anderson-Cheeger’s work [AC] manifolds with a lower bound for
Ricci curvature and a positive lower bound for conjugate radius belong to these
two classes.

Theorem 1.1. For every manifold (M, g) in M(n, α,Q), every r ∈ (0, 1] and
every positive number ε, there is a metric gε on M such that

e−εg ≤ gε ≤ eεg,
‖(M, gε)‖WC0,α,r ≤ 2Q(r),

‖(M, gε)‖WCk,α,r ≤ Q̃,

where k is an arbitrary positive integer and Q̃ = Q̃(n, k, ε, α,Q(r)) denotes a pos-
itive number depending only on n, k, ε, α and Q(r).

Theorem 1.2. For every manifold (M, g) in M(n, p,Q), every r ∈ (0, 1] and
every positive number ε, there is a metric gε on M such that

e−εg ≤gε ≤ eεg,
‖(M, gε)‖WL1,p,r ≤ 2Q(r),

‖(M, gε)‖WLk,p,r ≤ Q̃,

where k is an arbitrary positive integer and Q̃ = Q̃(n, k, ε, p,Q(r)) denotes a posi-
tive number depending only on n, k, ε, p and Q(r).

Thus a metric with some regularity (given by the weak norm) can be deformed
or smoothed to a nearby one with arbitrarily high regularity. In particular, man-
ifolds with a lower bound on Ricci curvature and a positive lower bound on con-
jugate radius can be smoothed. Previous smoothing results have been concerned
with metrics with various curvature bounds, and involved two independent tech-
niques: the embedding method and the Ricci flow. The embedding technique in
smoothing as used by Cheeger-Gromov [CG] consists of embedding (or immers-
ing) a given manifold into a Euclidean space and then perturbing it suitably by
a smoothing operation, which is based on the classical convolution process. The
smoothing result in [CG] is that metrics on closed manifolds with lower and upper
bounds on sectional curvatures and a positive lower bound on injectivity radius can
be smoothed to metrics with bounds on all derivatives of the Riemann curvature
tensor. Later, by embedding into a Hilbert space instead of a finite dimensional
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space, Abresch [A] was able to remove the condition on injectivity radius and ex-
tend to complete manifolds. More recently Shen [SH] showed that manifolds with
a lower bound on sectional curvatures and a positive lower bound on injectivi-
ty radius can be smoothed to having two-sided sectional curvature bounds. The
technique of Ricci flow is based on the fundamental work of Hamilton [H]. Using
this technique, Bemelmans-Min Oo-Ruh [BMR] obtained the same result as in
[CG] without injectivity radius lower bound, and Shi [S] obtained the same result
as in [A]. Later work considers metrics with other kinds of curvature bound. For
example, in [Ga2, Y1, Y2] Gao and Yang dealt with integral bounds on sectional
curvatures. In [DWY], Ricci curvature bounds were treated.

By virtue of the available constructions of controlled harmonic coordinates
under various curvature bounds, all these smoothing results are consequences of
Theorem 1.1 or Theorem 1.2.

As typical applications we present the following two results.

Theorem 1.3. (Betti number estimate) For the class of manifolds Mn in
M(n, α,Q), and satisfying diamM ≤ D, we have the estimate for the Betti num-
bers ∑

i

bi(Mn) ≤ C(n,D, α,Q), (1.7)

and the estimate for the number of isomorphism classes of rational homotopy
groups

πq(M)⊗Q ≤ C(n, q,D, α,Q) for q ≥ 2. (1.8)

(1.7) follows from Theorem 1.1 and Gromov’s uniform betti number estimate
regarding sectional curvature [G2]. This estimate can also be proved directly using
Toponogov type comparison estimate introduced in [W], see [PW] for details. In
[W] the same estimate (1.7) is given for the class of manifolds satisfying RicM ≥
−(n − 1)H, conj ≥ r0 and diamM ≤ D. (1.8) follows from Theorem 1.1, 1.2 and
the result in [R, Theorem 0.3].

Theorem 1.4. There exists an ε = ε(n, α,Q) > 0 such that if a manifold Mn

belongs to M(n, α,Q) and diam ≤ ε, then M is diffeomorphic to an infranilman-
ifold.

This generalizes Gromov’s almost flat manifold theorem [G1] as well as its
generalization in [DWY]. (The proof is simple: combine Theorem 1.1 with [G1].)

Remark. By Theorem 1.2, Theorem 1.3 and 1.4 also hold if we replace the class
M(n, α,Q) by M(n, p,Q). (The constants will depend on p instead of α.)

By the Sobolev embedding, L1,p harmonic norm controls C0,α harmonic norm.
The following result demonstrates the relation between L1,p-norm and C0,α har-
monic norm.
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Theorem 1.5. Let Q(r) be a function as in Definition 1 and p > n. Then for
any Riemannian manifold Mn with ‖(M, g)‖L1,p,r (‖(M, g)‖W

L1,p,r
) ≤ Q(r), there

holds
‖(M, g)‖hL1,p,r (‖(M, g)‖W,h

L1,p,r
) ≤ C(n, p)Q(r),

where C(n, p) is a constant depending only on n, p. In other words, controlled har-
monic coordinates exist on M (in case of weak norm, the coordinates are allowed
to have double points).

On account of this result, Theorem 1.2 follows from Theorem 1.1.
The proof of Theorem 1.1 uses the embedding method in [A]. Roughly speaking,

we embed a given Riemannian manifold into the Hilbert space of L2-functions on
it, and then use the embedding to pull back the L2-metric of the Hilbert space.
The crucial point is of course to find a suitable embedding, such that the pull-
back metric will enjoy nice properties. In [A], the embedding is defined in terms
of distance functions. In our situation, these functions are not appropriate, and
we employ instead solutions of a canonical geometric partial differential equation.
Now if e.g. the harmonic C0,α-norm of the manifold is bounded, then a uniform
pointwise bound on sectional curvatures will hold for the pull-back metric, and
hence we can apply the smoothing results for metrics with sectional curvature
bounds as given e.g. in [A] or [S].

If we only assume that the weak harmonic C0,α-norm of the manifold is bound-
ed, i.e. it is in the class M(n, α,Q), the global embedding is generally not under
control. To remedy the situation, we follow the idea in [A] of employing instead
local embeddings. In [A], Abresch uses the exponential map to lift local patches
of the manifold and his local embeddings are exactly embeddings of these lifted
patches. In our situation, the exponential map is not suitable. Our substitute for
it is the coordinate maps. Thus we use them to lift local patches, and construct
embeddings of the lifted patches via the same geometric partial differential equa-
tion as mentioned before. To make sure that the pull-back metrics induced by
these local embeddings descend to the local patches and that the resulting metrics
patch together to define a metric globally, it is crucial to require the embeddings
to be equivariant under isometries. Since our embeddings are defined in terms
of solutions of a canonical geometric PDE, they naturally share this equivariance
property.

The above scheme (suitably modified) can also be applied to give an alternative
proof of Theorem 1.2. This is of course more involved than deriving Theorem 1.2
from Theorem 1.1 and 1.5. However, more geometric structures can be seen from
this alternative approach. As before, a given Riemannian manifold (in the class
M(n, p,Q)) will be embedded into the Hilbert spaces of L2-functions on it, and
the pull-back metrics descend to yield a new metric on the underlying manifold.
But these metrics satisfy here an integral bound on sectional curvatures rather
than a pointwise bound. This is a new situation. To handle it, we can apply the
Ricci flow and follow the arguments in [DWY]. The details will appear elsewhere.
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2. Norm and Weak Norm

Definition 2. Fix an integer k ≥ 0 and a number 0 ≤ α ≤ 1. The Ck,α-norm of
an n-dimensional Riemannian manifold (M, g) on scale r > 0, ‖(M, g)‖Ck,α,r, is
defined to be the infimum of positive numbers Q such that there exist embeddings:

ϕτ : B(0, r) ⊂ Rn → Uτ ⊂M

(B(0, r) denotes the closed Euclidean ball of radius r centered at the origin) with
images Uτ , τ ∈ I (an index set), with the following properties:
1) e−2Qδij ≤ gτ,ij ≤ e2Qδij ,
2) Every metric ball B(p, r10e

−Q), p ∈M lies in some set Uτ ,
3) r|l|+α‖∂lgτ,ij‖Cα ≤ Q for all multi-indices l with 0 ≤ |l| ≤ k.
Here gτ,ij denote the coefficients of gτ = ϕ∗τg on B(0, r), and δij are the Kronecker
symbols.
Remark. Note that this definition is slightly different from the corresponding one
in [P], where in addition the (rescaled) Ck+1,α-norm of the transition functions
are required to be under control. For convenience, we can call the Ck,α-norm (of
Riemannian manifolds) as defined in [P] the strong Ck,α-norm. (Note however
that the “strong” harmonic Ck,α-norm is equivalent to the harmonic Ck,α-norm.)

We define the harmonic Ck,α-norm on scale r, ‖(M, g)‖hCk,α,r, by requiring
additionally the following
4) ϕ−1

τ : Uτ → Rn is harmonic,
which is equivalent to saying that
4′) id : B(0, r) → B(0, r) is harmonic with respect to gτ on the domain and the
Euclidean metric on the target, which is in turn equivalent to saying that∑

i

∂i(gijτ
√

det gτ,ij) = 0

for all j.
If k ≥ 1 and p > n (when k = 1) or p > n

2 (when k ≥ 2), then we define the
Lk,p-norm on the scale of r, ‖(M, g)‖Lk,p,r, by retaining 1) and 2), and replacing
3) by
3′) r|l|−

n
p ‖∂lgτ,ij‖Lp ≤ Q for all 1 ≤ |l| ≤ k.

The harmonic Lk,p-norm is defined similarly.
For any choice of these norms, it is clear that the local topology is trivial

on some uniform scale for any class of manifolds with uniformly bounded norm.
(Note that the injectivity radius may not be uniformly positive though.) To allow
nontrivial local topology, we introduce the weak norms ‖ ‖WCk,α,r and ‖ ‖WLk,p,r,
which are defined in identical ways except that each ϕτ : B(0, r)→ Uτ is assumed
to be a local diffeomorphism instead of diffeomorphism. The corresponding weak
harmonic norms ‖ ‖W,h

Ck,α,r
and ‖ ‖W,h

Lk,p,r
are defined in a similar way, with 4) being

replaced by 4′).



Vol. 74 (1999) Controlled geometry via smoothing 351

Note that (weak) harmonic norms dominate (weak) norms on the same scale.
We also have ‖ ‖W,r ≤ ‖ ‖ ,r and ‖ ‖W,h,r ≤ ‖ ‖hr. All norms are continuous
and non-decreasing in r. If (M, g) is sufficiently smooth, these norms converge to
zero as r → 0. Furthermore, (weak) Ck,α (Lk,p) norms vary continuously in the
Ck,α (Lk,p) topology of Riemannian manifolds. See [P] for the relevant details.

We point out that Rn is the only space with norm = 0 on all scales. And flat
manifolds are the only spaces with weak norm = 0 on all scales.

Conventional geometric conditions such as curvature bounds imply norm bounds.
Such implications are mostly contained in constructions of controlled harmonic co-
ordinates and are a crucial ingredient for various compactness theorems. To have
a clear perspective, we collect these results in the following proposition.

Proposition 2.1. There are positive functions Q(H, ρ, r, p) and Q1(H, r, p) of
H ≥ 0, ρ > 0, r > 0, p > n and of H ≥ 0, r > 0, p > n respectively, satisfying
limr→0Q(H, ρ, r, p) = 0, limr→0Q1(H, r, p) = 0 such that for manifolds Mn with
a) |K| ≤ H, inj ≥ ρ, then ‖(M, g)‖h

L2,p,r
≤ Q(H, ρ, r, p);

b) |K| ≤ H, then ‖(M, g)‖W,h
L2,p,r

≤ Q1(H, r, p);
c) |Ric| ≤ (n− 1)H, inj ≥ ρ, then ‖(M, g)‖h

L2,p,r
≤ Q(H, ρ, r, p);

d) Ric ≥ −(n− 1)H, inj ≥ ρ, then ‖(M, g)‖h
L1,p,r

≤ Q(H, ρ, r, p);

e) Ric ≥ −(n− 1)H, conj ≥ ρ, then ‖(M, g)‖W,h
L1,p,r

≤ Q(H, ρ, r, p).

These results follow from works of Jost-Karcher [JK], Anderson [AN] and
Anderson-Cheeger [AC]. (See also Gao [Ga1, Ga2] for results along these lines.)

We now prove Theorem 1.5.

Proof of Theorem 1.5. We will prove the case when ‖(M, g)‖L1,p,r ≤ Q(r). The
other case is exactly the same. By definition of L1,p norm, we have a collection of
diffeomorphisms

ϕτ : B(0, r)→ Uτ ⊂M
satisfying

r1−np ‖∂gτ,ij‖Lp,B(0,r) ≤ Q.
Note that the norm is scale invariant, namely

‖(M, r−2g)‖L1,p,1 = ‖(M, g)‖L1,p,r ≤ Q(r).

So with the scaled pull back metric r−2ϕ∗τg, we have

‖∂r−2gτ,ij‖Lp,B(0,1) ≤ Q(r).

On the Euclidean ball B(0, 1) equipped with the metric r−2ϕ∗τg, solve the
Dirichlet boundary value problem:

ψτ : (B(0, 1), r−2ϕ∗τg)→ Rn, with ∆ψτ = 0 and ψτ |∂B(0,1) = Id|∂B(0,1),
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where Id is the identity map Id: B(0, 1) → Rn with B(0, 1) equipped with the
metric r−2ϕ∗τg. We will show that ψτ is also a coordinate. Now ∆(Id−ψτ ) = ∆Id.
By the elliptic estimate for divergence operators (see [P, Appendix A])

‖Id− ψτ‖2,p,B(0,1) ≤ C1(n, p)‖∆Id‖p,B(0,1)

≤ C1(n, p)‖∂r−2gτ,ij‖p,B(0,1) ≤ C1(n, p)Q(r).

Since limr→0 Q(r) = 0, fix an 0 < ε0 � 1, there is an r0 > 0 such that
C1(n, p)Q(r0) ≤ ε0. Therefore ψτ is a harmonic coordinate on the ball B(0, 1)
for the metric r−2ϕ∗τg when r ≤ r0. Moreover the L1,p-norm of the metric
components with respect to ψτ is bounded by C(n, p)Q(r). By scaling back,
we have harmonic coordinate on B(0, r) with respect to the metric ψ∗τg and
‖(M, g)‖h

L1,p,r
≤ C(n, p)Q(r). �

3. Smoothing

As explained in the introduction, our strategy is to first achieve sectional curvature
bounds by embedding into the Hilbert space of L2-functions. This is done in the
next two sections. The higher regularity smoothing then easily follows from known
smoothing results.

Consider (M, g) ∈M(n, α,Q). We have a collection of local diffeomorphisms

ϕτ : B(0, r)→ Uτ ⊂M

satisfying 1), 2), 3) and 4′) of Definition 2.
In the next section we will construct a canonical embedding

Fτ : (B(0, r), gτ )→ L2(B(0, r), gτ ),

where gτ = ϕ∗τg. We use Fτ to pullback the L2 metric of L2(B(0, r), gτ ) to produce
a new metric g̃τ on B(0, r). This construction works for general metrics on B(0, r),
and has the following equivariance property, which will be proved in §5. Namely,
if g1, g2 are two metrics on B(0, r) such that there is an isometric embedding

ψ : (B(0, r), g1)→ (B(0, r), g2)

and if g̃1, g̃2 are obtained via the above construction, then

ψ : (B(0, r), g̃1)→ (B(0, r), g̃2)

is also an isometric embedding. Granted this (see Proposition 4.4) we have

Proposition 3.1. There exists a smooth metric ḡ on M such that the pullback of
ḡ by ϕτ is exactly g̃τ .
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Proof. Let r1 = r
10e
−Q. Then for every p ∈ M , Bg(p, r1) ⊂ Uτ for some τ . It

follows that there exists a p̃ ∈ B(0, r) such that Bgτ (p̃, r1) ⊂ B(0, r) and ϕτ (p̃) = p.
We now define the metric ḡ as follows. If X,Y ∈ TpM , then

rg(X,Y ) = g̃τ
(

((ϕτ )∗|p̃)−1(X), ((ϕτ )∗|p̃)−1(Y )
)
.

To show that this metric is well-defined, let p̃′ be another such point, i.e. for
some τ ′, Bgτ′ (p̃

′, r1) ⊂ B(0, r) and ϕτ ′(p̃′) = p. Let r4 = r
20e
−4Q and r3 = r

20e
−3Q.

Let gE denote the Euclidean metric. We insert a lemma.

Lemma 3.2. There is an isometric embedding

ψ : (B(p̃, r4), gτ )→ (Bgτ′ (p̃
′, r3), gτ ′).

Proof. Note that ϕτ ’s are not diffeomorphisms, hence the lemma is nontrivial.
First ψ can be defined as follows. Since gτ is eQ-quasi-isometric to gE,

B(p̃, r4) ⊂ Bgτ (p̃, r3). (3.1)

For any point q ∈ B(p̃, r4), connect q to the center point p̃ with a curve γ̃ in
B(p̃, r4) such that the length of γ̃ lgτ (γ̃) < r3. Since

ϕτ : (Bgτ (p̃, r3), gτ )→ Bg(p, r3) ⊂M

is a local isometry and ϕτ (p̃) = p. From (3.1) ϕτ maps the curve γ̃ to a curve
γ in Bg(p, r3) starting with p and l(γ) < r3. Again since ϕτ ′ is a local isometry
and ϕτ ′(p̃′) = p. The curve γ then can be lifted via ϕτ ′ to a curve in Bgτ′ (p̃

′, r3)
starting with p̃′. The other end point of this curve is defined to be the image of
q. (Note that, in general, lifting can not be done for incomplete space. Here the
map is a local isometry and the curve starts from the center, and we have control
on the length of the curve and the size of the metric ball, so it will not hit the
boundary during lifting.) Now we will show that ψ is well-defined, i.e. the image
is independent of the choices of the curve γ̃. If γ̃1 is another curve in B(p̃, r4)
connecting q to the center point p̃ with lgτ (γ̃1) < r3, we can connect γ̃1 to γ̃ by
a homotopy H̃(s, t) in BgE (p̃, r4) with fixed end points and lgτ (H̃(s, ·)) < 2r3 for
each s, since B(p̃, r4) is an Euclidean ball and gτ is eQ-quasi-isometric to gE . Then
ϕτ maps H̃(s, t) to a homotopy H(s, t) in Bg(p, 2r3) with l(H(s, ·)) < 2r3 for each
s. Therefore H(s, t) can be lifted via ϕτ ′ to a homotopy in Bgτ′ (p̃

′, 2r3) starting
with p̃′. By the (localized) homotopy lifting lemma the other end points are all
the same. Therefore ψ is well-defined.

Next we show that ψ is one-to-one. Let r2 = r
20e
−2Q. Then

Bgτ′ (p̃
′, r3) ⊂ B(p̃′, r2) ⊂ Bgτ′ (p̃

′,
1
2
r1).
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Since B(p̃′, r2) is an Euclidean ball one can construct “inverse” φ similarly as
above:

φ : (Bgτ′ (p̃
′, r3), gτ ′)→ (Bgτ (p̃,

1
2
r1), gτ ).

Thus ψ is one-to-one. That ψ is an isometric embedding follows from the con-
struction. �

Now we continue with the proof of Proposition 3.1. Using the equivariance, we
have

ψ∗g̃τ ′ = g̃τ .

Therefore

g̃τ ′
(

((ϕτ ′)∗|p̃′)−1(X), ((ϕτ ′)∗|p̃′)−1(Y )
)

= g̃τ ′
(

(ψ)∗ ◦ ((ϕτ )∗|p̃)−1(X), (ψ)∗ ◦ ((ϕτ )∗|p̃)−1(Y )
)

= ψ∗g̃τ ′
(

((ϕτ )∗|p̃)−1(X), ((ϕτ )∗|p̃)−1(Y )
)

= g̃τ
(

((ϕτ )∗|p̃)−1(X), ((ϕτ )∗|p̃)−1(Y )
)
.

We have proved that the metric ḡ is well-defined.
To show that ϕ∗τ ḡ = g̃τ , consider

ϕτ : B(0,
9
10
r)→ Uτ .

In particular, for any p̃ ∈ B(0, 9
10r), Bgτ (p̃, r1) ⊂ B(0, r), and therefore p̃ can be

used to define the metric ḡ at ϕτ (p̃). It follows from the definition that

ϕ∗τ ḡ = g̃τ .

Finally, note that the smoothness of the metric ḡ is an immediate consequence of
(3.2). This completes the proof of Proposition 3.1. �

4. Embedding I

We continue with the above manifold (M, g) ∈ M(n, α,Q). Let Ω = B(0, r) ⊂ Rn.
We consider the pull back metric ϕ∗τg on Ω for a fixed τ . For convenience, this
metric will be denoted by g. It is easy to see that ‖(Ω, g)‖h

C0,α,r
≤ Q(r). We are

going to construct an equivariant embedding of (Ω, g) into L2(Ω, g) by associating
to every point p ∈ Ω a geometric function fp ∈ L2(Ω) ≡ L2(Ω, g), which depends
nicely on p. A natural choice seems to be the distance function measured from p.
Indeed, it is used by Abresch in [A]. However, under our rather weak assumptions
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on the metric it is impossible to have uniform control of the second order deriva-
tive of the distance function, which is needed to ensure that the pull-back metric
induced by the embedding satisfies a sectional curvature bound. In fact, one can
not even expect differentiability of the distance function in balls of uniform size.
Our substitute for the distance function is solutions of a canonical geometric par-
tial differential equation. Those solution functions have the crucial equivariance
property (like the distance functions) and enjoy better regularity. Many choices of
“canonical” PDE solutions are possible, e.g. in [A] Green’s function is suggested.
But Green’s function is inconvenient because of its singularity. We shall employ a
very simple and nicely-behaved PDE.

Denote
Ω1 = Ω \ ∪q∈∂ΩBg(q, i0),

where i0 = r
10 . (Bg(q, ·) denotes the closed geodesic ball of center q and radius

· measured in g.) Then for s ∈ Ω1, let hs ∈ L1,2
0 (Bg(s, i0)) be the unique weak

solution of the following Dirichlet boundary value problem:{
∆hs = −1 in Bg(s, i0)
hs ≡ 0 on ∂Bg(s, i0).

(4.1)

Here the Laplace operator is defined with respect to the metric g. The function
hs will be extended to be zero outside the geodesic ball.

First note the following

Lemma 4.1. For all i0 ≤ 1 the following Poincaré inequality holds∫
Bg(s,i0)

h2 dv ≤ Ci20
∫
Bg(s,i0)

|∇h|2 dv, (4.2)

where h ∈ L1,2
0 (Bg(s, i0)), dv and ∇ are defined with respect to the metric g, and

C is a uniform constant.

Proof. Since the harmonic C0,α-norm of (Ω, g) is uniformly bounded, we have
Bg(s, i0) ⊂ B(s, eQ(1)i0). Now extend h to B(s, eQ(1)i0) by defining its value to be
zero outside the geodesic ball Bg(s, i0). Then we have∫

B(s,eQ(1)i0)
h2 dvE ≤ Ce2Q(1)i20

∫
B(s,eQ(1)i0)

|∇Eh|2 dvE ,

where dvE and ∇E are defined with respect to the Euclidean metric gE , and C
is a uniform constant. Again since the harmonic C0,α-norm of (Ω, g) is uniformly
bounded, the volume element dv and the gradient ∇ are comparable to the Eu-
clidean ones. Therefore the inequality (4.2) follows with a new uniform constant
C. �
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Using (4.2) and a simple integration argument we then deduce a uniform esti-
mate for the L1,2-norm of hs in terms of the volume of Bg(s, i0), namely∫

Bg(s,i0)
|∇hs|2 ≤ Ci20vol(Bg(s, i0)), (4.3)∫

Bg(s,i0)
h2
s ≤ Ci40vol(Bg(s, i0)). (4.4)

Here again C is a uniform constant.
Since in harmonic coordinates the Laplace operator takes the form ∆ = gij∂i∂j ,

uniform interior C2,α estimates then follow readily by the standard elliptic theory
[GT, Chapter 5]. We also have a uniform L∞ estimate up to boundary, but it
seems impossible to obtain better estimate up to boundary because the control
of the geometry of the boundary is very weak. At a first glance this appears
to threaten to destroy the embedding scheme. Fortunately we can use a cut-off
function β = βn (see (4.9) below) to get around it. On the other hand, we can
not obtain control of the dependence of hs on the center s. To remedy this, we
shall take a suitable average of hs over s. The resulting new family of functions
will depend nicely on the center.

Now let us state a few more basic properties of the functions hs in the following
proposition, which will be proved at the end of this section. Here, as before, we
work under the assumption ‖(Ω, g)‖h

C0,α,r
≤ Q(r).

Proposition 4.2. Let h̄s(p) be the solution of equation (4.1) with respect to the
canonical Euclidean metric gE on the Euclidean ball B(s, i0). Then for any ε > 0
and fixed 0 < R < 1, there is an r0 = r0(ε, R,Q) > 0 such that if i0 ≤ r0,

|hs(p)− h̄s(p)| < εi20, (4.5)

| ∂
∂p
hs(p)−

∂

∂p
h̄s(p)| < εi0 (4.6)

for all s and all p with dgE (s, p) ≤ Ri0. It will follow from the proof that
B(s,Ri0) ⊂ Bg(s, i0) so that these estimate make sense. Also

| ∂
2

∂p2hs(p)| ≤ C(n,Q,R), | 1
i0

∂

∂p
hs(p)| ≤ C(n,Q,R). (4.7)

Remark. Note that
h̄s(p) =

1
2n

(i20 − d2
gE (s, p)). (4.8)

Therefore 2n
i20
h̄s(p) ≤ 1

5 when dgE (s, p) ≥
√

4
5 i0. Choosing R = 10

11 in Proposi-

tion 4.2, we have 2n
i20
hs(p) < 1

4 when
√

4
5 i0 ≤ dgE (s, p) ≤ 10

11 i0 and i0 is sufficiently

small.
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Now we proceed to construct the desired embedding. Let β = βn ∈ C∞0 ([0,∞))
be the cut off function:

βn(t) =
{ 0 if 0 ≤ t ≤ 1

4

Bn if t ≥ 1
2

, (4.9)

where Bn is a constant which will be determined later.
Then β

(
2n
i20
hs(·)

)
= 0 near the sphere ∂Bg(s, 9

10 i0) for all i0 small. (Note that

dg converges to dgE when i0 → 0.) We define a new function which is β
(

2n
i20
hs(·)

)
restricted to the ball Bg(s, 9

10 i0) and identically zero outside. For simplicity we

still denote this new function by β
(

2n
i20
hs(·)

)
. As mentioned before, we have no

control of the dependence of hs on the center s. The said average function is given
as follows

fp(q) =
∫

Ω
β

(
2n
i20
hs(p)

)
β

(
2n
i20
hs(q)

)
ds, (4.10)

where ds is the volume form of g. Note that fp(q) is symmetric in p and q and is
C2,α uniformly bounded in both variables.

Now we define the embedding

F : Ω1 → L2(Ω, g)

p 7−→ i
− 3

2n+1
0 fp

Note that

dvpF (q) = 2ni
−3

2n

0

∫
Ω
β′
(

2n
i20
hs(p)

)
〈 1
i0
∇hs(p), vp〉β

(
2n
i20
hs(q)

)
ds,

(4.11)

∇2
vp,wpF (q) = 4n2i

− 3
2n−1

0∫
Ω
β′′
(

2n
i20
hs(p)

)
〈 1
i0
∇hs(p), vp〉〈

1
i0
∇hs(p), wp〉β

(
2n
i20
hs(q)

)
ds

+ 2ni
−3

2n−1
0

∫
Ω
β′
(

2n
i20
hs(p)

)
∇2hs(p)(vp, wp)β

(
2n
i20
hs(q)

)
ds,
(4.12)

where vp, wp ∈ TpΩ1.
We first show that when g is the Euclidean metric, we can normalize β so that

F is an isometric embedding. In this case the embedding function is

f̄p(q) =
∫

Ω
β

(
1−

d2
gE (p, s)
i20

)
β

(
1−

d2
gE (q, s)
i20

)
ds.
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By the symmetry of the integration domain, B(p,
√

3i0
2 ) ∩ B(q,

√
3i0
2 ), and the

integrand, f̄p(q) depends only on dgE (p, q) and Bn. Hence we can write f̄p(q) =
in0 f̃( 1

i0
dgE (p, q)), dvp F̄ (q) = i

−n/2
0 f̃ ′( 1

i0
dgE (p, q))〈∇dgE (p, q), vp〉 for a uniquely de-

termined function f̃ . Then

‖dvp F̄‖2L2(Ω) = i−n0

∫
B(p,2i0)

f̃ ′2(
1
i0
dgE (p, q))〈∇dgE (p, q), vp〉2dq

= i−n0

∫ 2i0

0
rn−1

∫
Sn−1

f̃ ′2(
1
i0
r)〈ξ, vp〉2dξdr

= i−n0
vol(Sn−1)|vp|2

n

∫ 2i0

0
rn−1f̃ ′2(

1
i0
r)dr

=
vol(Sn−1)|vp|2

n

∫ 2

0
rn−1f̃ ′2(r)dr,

where |vp| denote the Euclidean norm of vp. Choose Bn in the definition of β so

that vol(Sn−1)
n

∫ 2
0 r

n−1f̃ ′2(r)dr = 1. Then we arrive at the following.

Lemma 4.3. F̄ is an isometric embedding.

With the above choice of β we will show that F is an almost isometric embed-
ding when g is not necessarily the Euclidean metric and the second derivative of
F is also uniformly bounded. More precisely we have

Proposition 4.4. For any given ε0 > 0, there exists an r0 > 0 such that

(1 + ε0)−2g(vp, vp) ≤ ‖dvpF‖2L2(Ω) ≤ (1 + ε0)2g(vp, vp), (4.13)

for all vp ∈ TpΩ1 and 0 < i0 ≤ r0. And

‖∇2F (vp, wp)‖2L2(Ω) ≤ C(n, α,Q)i−2
0 g(vp, vp) · g(wp, wp). (4.14)

Proof. By definition

‖dvpF‖2L2(Ω) =
∫
Bg(p,2i0)

|dvpF (q)|2dq.

To prove (4.13), first note that β, β′, β′′ (by construction) and i−1
0 |∇hs| (by

(4.7)) are uniformly bounded. Hence the formulas (4.5) and (4.6) imply (by the
theorem of bounded variations) that the difference between the integrand of the
formula (4.11) and its Euclidean analog is bounded by Cε, where C is a constant
independent of i0 and the geometry of (M, g).



Vol. 74 (1999) Controlled geometry via smoothing 359

On the other hand, the volume element of the metric g satisfies the following
inequalities.

e−nQ(i0)volRn ≤ volg ≤ enQ(i0)volRn , (4.15)

where Q(i0)→ 0 when i0 → 0. Therefore we obtain an estimate for the difference
between ‖dvpF‖2L2(Ω) and its Euclidean analog which equals gE(v, v). Note that
the computation of this difference involves a double integration (one with square),
which produces a factor i3n0 , killing the factor i−3n

0 in the expression (4.11) of
|dvpF |2.

The proof of (4.14) is similar. Namely since β, β′, β′′, i−1
0 |∇hs| and |∇2hs|

(by (4.7)) are uniformly bounded by a constant independent of i0, so are the
integrands of the formula (4.12). Now applying (4.15) and a double integration as
above gives the estimate. �

Proof of Proposition 4.2. First consider the map

φ : Rn → Rn

φ(s+ x) = s+ i0x.

Let h̃s(p) be the solution of the following problem{ ∆̃h̃s = −1 in φ−1(Bg(s, i0))

h̃s ≡ 0 on ∂φ−1(Bg(s, i0)),
(4.16)

where ∆̃ is the Laplace operator with respect to the metric i−2
0 φ∗g. Let ¯̃

hs(p)
denote the solution of the same problem with respect to the Euclidean metric on
the Euclidean ball B(s, 1). Then

¯̃
hs(p) = i−2

0 h̄s ◦ φ(p), p ∈ B(s, 1)

h̃s(p) = i−2
0 hs ◦ φ(p), p ∈ φ−1(Bg(s, i0)). (4.17)

Since

‖(φ−1(Bg(s, i0)), i−2
0 φ∗g)‖C0,α,1 = ‖(Bg(s, i0), g)‖C0,α,i0

≤ Q(i0) (4.18)

with Q(i0) → 0 as i0 → 0, we have (φ−1(Bg(s, i0)), i−2
0 φ∗g) → (B(s, 1), gE) as

i0 → 0.
From (4.17) and the estimates for hs (see (4.3), (4.4)) we deduce the following

estimates ∫
φ−1(Bg(s,i0))

(h̃2
s + |∇̃h̃s|2) ≤ C(n,Q(1)). (4.19)

By the elliptic theory, we then have the following uniform interior estimate:

‖h̃s‖C2,α(B
i
−2
0

φ∗g
(s,R)) ≤ C(n,Q(1), R), (4.20)



360 P. Petersen, G. Wei and R. Ye CMH

for any fixed 0 < R < 1.
From these estimates and the uniqueness of the weak solution ¯̃hs it is easy to

deduce the following: for each sequence of centers sk converging to some center s0
and each sequence i0(k) converging to zero, the corresponding rescaled solutions
h̃sk converge weakly to ¯̃hs0 . Moreover, by the Arzela-Ascoli theorem, they also
converge uniformly in C1 on proper compact subsets of BgE (s0, 1). This conver-
gence fact along with the smooth dependence of ¯̃

hs on s then imply that the h̃s
converge uniformly with respect to s in C1 on proper compact subsets of B(s, 1)
as i0 goes to zero. Consequently, for a fixed R ∈ (0, 1), given any ε > 0, there is
an r0 > 0 such that for all s and p with dgE (p, s) < R, if i0 ≤ r0, then

|h̃s(p)− ¯̃
hs(p)| < ε. (4.21)

Similarly,

| ∂
∂p
h̃s(p)−

∂

∂p
¯̃hs(p)| < ε. (4.22)

Hence for all s and all p with dgE (s, p) ≤ Ri0,

|hs(p)− h̄s(p)| < εi20,

| ∂
∂p
hs(p)−

∂

∂p
h̄s(p)| < εi0.

(4.7) just follows from (4.20) and (4.17). �

5. Embedding II

In this section we study the geometry of F (Ω1) as a submanifold in L2(Ω). We
will prove, among other things, two important properties of F (Ω1). That is,
the induced metric of F (Ω1) has uniformly bounded sectional curvature and the
embedding F is equivariant.

The geometry of F (Ω1) is completely determined by the second fundamental
form of its embedding into L2(Ω), which in turn can be described by the family of
orthogonal projections. P (y) : L2(Ω)→ TyF (Ω1) ⊂ L2(Ω), y ∈ F (Ω1). We have

Lemma 5.1. The sectional curvature of F (Ω1) is given by the following formula:

R(z1, z2)z3 = [dz1P, dz2P ]z3, z1, z2, z3 ∈ TzF (Ω1). (5.1)

Proof. Since P 2 = P , one has

(dz1P )P + P (dz1P ) = dz1P. (5.2)
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Let ∇ be the connection on F (Ω1) and dz1 the directional derivative on the L2

space. Then

∇z1z2 = P (dz1z2)
= dz1z2 − (1− P )(dz1(Pz2))
= dz1z2 − (1− P ) [(dz1P )z2 + P (dz1z2)]
= dz1z2 − (1− P )(dz1P )(Pz2)
= dz1z2 − (dz1P )z2.

Here we have used (5.2) in the last equation. Therefore

∇z1 = dz1 − (dz1P ). (5.3)

Now formula (5.1) follows from (5.3) and the definition of the curvature tensor. �

Proposition 5.2. Let α0 = (1 + ε0)2C(n, α,Q). Here ε0, r0, C are the same
constants as in Proposition 4.4. Then for all 0 < i0 < r0,

‖dẏP‖op ≤ α0i
−1
0 ‖ẏ‖, (5.4)

Proof. Since (1− P (F (p))) dwpF = 0,

ddvpFP · dwpF = (1− P (F (p)))∇2
vp,wpF.

By (4.13) and (4/14), ‖dẏP‖op ≤ α0i
−1
0 ‖ẏ‖. �

Therefore the metric g̃ = F ∗gL2 , the metric on Ω1 obtained by pulling back
the L2 metric, has bounded sectional curvatures.

To prove the equivariance, we first note:

Lemma 5.3. Let hs(p) be the function defined in (4.1), and let ψ : Ω→ Ω′ be an
isometric embedding. Then

hψ(s)(ψ(p)) = hs(p). (5.5)

Proof. Since equation (4.1) is invariant under isometry, this follows from the
uniqueness of solutions to (4.1). �

Let (Ω, g) be as before and F : Ω1 → L2(Ω) the embedding defined in §4. With
the above lemma, we can now prove

Proposition 5.4. If ψ : (Ω, g)→ (Ω′, g′) is an isometric embedding, then

ψ : (Ω, g̃)→ (Ω′, g̃′)
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is also an isometric embedding.

Proof. First, we assume ψ is actually an isometry. Then

F ◦ ψ(p) = i
−3

2n+1
0 fψ(p),

where the function

fψ(p)(q) =
∫ ′

Ω
β

(
2n
i20
hs(ψ(p))

)
β

(
2n
i20
hs(q)

)
ds.

=
∫

Ω
β

(
2n
i20
hψ−1(s)(p)

)
β

(
2n
i20
hψ−1(s)(ψ

−1(q))
)
ds.

Here we have used Lemma 5.3. Since ψ is an isometry, a change of coordinates
yields

fψ(p)(q) = fp(ψ−1(q)).

It follows then that
F ◦ ψ = (ψ−1)∗ ◦ F,

where we have denoted by (ψ−1)∗ the map on L2(Ω) induced by ψ−1. Therefore

ψ∗F ∗gL2 = (F ◦ ψ)∗gL2 = F ∗((ψ−1)∗)∗gL2 = F ∗gL2 .

This proves the equivariance when ψ is an isometry. Since Ω,Ω′ are both domains
of Rn, the general statement follows by applying the above to ψ : Ω→ ψ(Ω). �

Proof of Theorem 1.1. This theorem is a consequence of Proposition 3.1, Lemma
5.1, Proposition 5.2, Proposition 4.3 and using results from [A] or [S], which can be
stated that if the sectional curvature is uniformly bounded, then one can smooth
the metric so that the weak Ck,α-norms are uniformly bounded. �
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