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c© 1999 Birkhäuser Verlag, Basel

Commentarii Mathematici Helvetici

Riemannian submersions of open manifolds which are flat
at infinity

Valery Marenich

To my wife

Abstract. We prove that a base Bn−k of a Riemannian submersion π : Mn → Bn−k is flat,
if Mn is flat at infinity and Bn−k is compact. As a corollary we obtain a topological gap-
phenomenon for open manifolds of nonnegative sectional curvature (Eschenburg-Schroeder-Strake
conjecture).

Mathematics Subject Classification (1991). 53C20, 53C21.

Keywords. Open manifold, riemannian submersion.

0. Introduction

We say that an open (complete noncompact) Riemannian manifold Mn is flat at
infinity if its sectional curvatures Kσ at a point tend to zero as this point tends
to infinity. More precisely, let o be some fixed point in Mn and

κ(ρ) = sup{ |Kσ|
∣∣σ ⊂ TqMn, ρ(o, q) = ρ}

be the function which measures the absolute value of the curvature of Mn as
ρ→∞. Then Mn is flat at infinity if κ(ρ)→ 0 as ρ→∞.

Riemannian submersion π : Mn → Bn−k, is a map of constant rank such that:
1. On Mn is defined a smooth horizontal distribution H of subspaces which are

orthogonal to the distribution V of subspaces tangent to fibers Wp = π−1(b), b ∈
Bn−k, which we call vertical ones.

2. In every point q the restriction of the differential π∗ of the map π to a
horizontal space Hq is an isometry.

A union of vertical fibers of a Riemannian submersion gives a metric foliation
on Mn, i.e., a smooth partition into lower dimensional submanifolds which are
locally everywhere equidistant, see [GG].

The purpose of this paper is to prove the following result.
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Theorem A. If the space Mn of a Riemannian submersion π : Mn → Bn−k is
flat at infinity, and the base Bn−k is compact, then the manifold Bn−k is flat.

We would like to stress, that in Theorem A we do not assume any restriction
on the sign of the curvature or any estimate on the injectivity radius. In fact,
as follows from the proof it is sufficient to suppose that only sectional curvatures
in two-dimensional directions containing some horizontal vector tend to zero at
infinity. It is also easy to see that our Theorem A does not include unnecessary
conditions.

According to [CG] every open Riemannian manifold V n of nonnegative sec-
tional curvature is diffeomorphic to the space of a normal bundle of some closed
totally geodesic submanifold S of V n (S is called a soul of V n), and due to [P]
there exists a Riemannian submersion π : V n → S. Therefore, Theorem A yields
the following corollary for manifolds of nonnegative sectional curvature.

Theorem B (Eschenburg-Schroeder-Strake conjecture). If an open Rie-
mannian manifold V n of nonnegative sectional curvature is flat at infinity, then
the soul S of this manifold is flat, and the universal cover Ṽ n of V n is diffeomor-
phic to the Euclidean space Rn.

The last theorem means that if V n is simply connected and κ(ρ)→ 0 as ρ→∞,
then V is diffeomorphic to the euclidean space; i.e., Theorem B may be considered
as the topological counterpart (”topological gap-phenomenon”) of a well known
metric gap-phenomenon asserting that if the manifold V n has a pole, sectional
curvature of V n is non-negative or non-positive and ρ2κ(ρ) → 0 as ρ→ ∞, then
V n is isometric to the euclidean space Rn, see [KS]. Theorem B was conjectured in
[ESS] and proved there for the case codimS ≤ 3 (see also announcement in [M1]).

The proof of Theorem A is based on a uniform length estimate for some special
curves in Grassmanians and ergodic arguments first introduced in [M2] (see also
[M1, M3]). Here we present shortly the idea of the proof. Taking a long geodesic
γ(t) on the base Bn−k and some parallel vector field Ȳ (t) along γ we construct
their horizontal lifts sufficiently close to infinity in Mn, i.e., a geodesic l(t) and a
horizontal vector field Y (t) along l such that the curvature of Mn along l is small.
Due to the O’Neill fundamental equation for submersions we know that

K̄B(γ(t), γ̇(t), Ȳ (t)) = KM(l(t), l̇(t), Y (t)) + 3‖Al̇(t)(Y )(t)‖2,

where K̄B and KM are sectional curvatures of the base Bn−k and Mn correspond-
ingly and A is the O’Neill fundamental tensor of submersion, see [O’N1]. Then we
note, that

‖Al̇(t)(Y )(t)‖ ≤ ‖V̇l(t)‖,

where Vl(t) is a curve in a Grassmann manifold Gkn of k-dimensional subspaces
consisting of parallel transports of vertical subspaces of a submersion along l to
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some fixed point. Because subspaces Vl(t) are generated by Jacobi fields along l
where the curvature of Mn is small, we see that every such curve tends in C1-norm
to a curve in Gkn of some special kind - we call such curves linear curves in Gkn.
We prove that length of linear curves are uniformly bounded (our main technical
result, see Lemma 3), and that compactness of the base Bn−k of the submersion
yields a uniform boundedness of ‖V̇l(0)‖. This leads to our principal estimates:∫ T

0
‖V̇l(t)‖dt and

∫ T

0
‖Al̇(t)(Y )(t)‖2dt

are uniformly bounded for some T depending on l and tending to infinity as l
tends to infinity in Mn, see Lemma 7. Due to O’Neill formula this implies that
ergodic means of the sectional curvature of the base tend to zero:

1
T

∫ T

0
|K̄B(γ(t), γ̇(t), Ȳ (t))|dt→ 0,

which due to Birkhoff-Khintchin theorem yields the vanishing of the sectional
curvature, i.e., proving that the base Bn−k is flat and completing the proof of
Theorem A.

A formula (8.1) below for the derivative of the trace A1(t) of second forms II(t)
of fibers along a horizontal geodesic l(t) in Mn from [M2], [M3]

A′1(t) + ‖A2(t)‖ = ‖V̇l(t)‖2 +Kk
M(l(t), l̇(t)),

where A2(t) denotes the sum of squares of eigenvalues of II(t) and Kk
M (l(t), l̇(t))

- ”partial (or vertical)” Ricci curvature of Mn, implies in addition that normal
curvatures of fibers tend to zero at infinity.

Another corollary of our Theorem A is the following already known result (see
[W]).

Theorem C. All flat spaces of riemannian submersions over compact bases are
locally direct products.

Indeed, due to O’Neill this statement is true if all fibers of the submersion
π : Mn → Bn−k are totally geodesic ones, and O’Neill’s fundamental tensor A of
the submersion π is zero. To prove this when Mn is flat it is sufficient to apply
our ergodic arguments to the last equality. The reader may find these arguments
in [M2, M3].

The organization of the paper is as follows. First we consider linear curves
in Grassmanians. We prove that length of such curves are uniformly bounded
by some constant. Then we define curves of vertical subspaces for a submersion
π : Mn → Bn−k, prove that these curves converge in C1-norm to linear curves
and obtain our principal estimates. To complete the proof of Theorem A we use
ergodic arguments from our previous articles [M1 - M3].

The author express his sincere gratitude to the referee for the extraordinarily
careful reading and very useful criticism.
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1. Linear curves of subspaces

Denote by Gkn the Grassmann manifold of all k-dimensional subspaces of the eu-
clidean n-dimensional space Rn. Gkn is considered with a natural Riemannian
metric g such that the factorization Π : O(n) → O(n)/O(k) × O(n − k) = Gkn,
where O(n) is provided with the Lipcshitz-Killing metric, is a riemannian submer-
sion.

We say that a curve V (t), 0 ≤ t ≤ T in Gkn of k-subspaces is linear if the
subspaces V (t) are generated by some vectors ηi(t), i = 1, ..., k linearly depending
on t, i.e., such that

ηi(t) = ηi(0) + tDηi(0). (1.1)

Vectors ηi(t) are defined for all t, but the vector space generated by them may
have dimension less than k for some values of the parameter t. If it is not stated
otherwise, we assume that [0, T ) is the maximal interval where this vector space
has constant dimension k. Obviously, the choice of a linear base (1.1) of V (t) is
not unique. Among different possibilities we always can choose some orthonormal
base {e1, ..., ek, ek+1, ..., en} of Rn such that vectors {e1, ..., ek} generate V (0) and
V (t) is generated by {e1 + td1, ..., ek + tdk} for some vectors di = djiej which we
call derivatives of ei. Continuing by linearity the map ei → di we define some
linear map A : V (0)→ Rn.

In Lemmas 1 and 2 below we assume one more condition on V (t). Further (see
section 2) we consider the curve Vl(t) of vector spaces which are parallel transports
along some horizontal geodesic l(t) of vertical subspaces of a submersion π to a
fixed point q = l(0). Thus Vl(t) is generated by all horizontal variations of l,
i.e., by some Jacobi fields ηi(t) along l. In this case vectors Dηi(0) are covariant
derivatives of these Jacobi fields, and for two arbitrary vectors v and w of Vl(0) the
bilinear form (Av,w) is the second fundamental form of the fiber corresponding
to the normal l̇(0), see section 2 below. Because of this below in Lemmas 1
and 2 the form (Av,w) is symmetric at t = 0. Therefore, we can choose the base
{ei, i = 1, ...k} of V (0) consisting of eigenvectors of this form. Thus, the tangent
to V (0) component of the derivative di of the base vector ei is parallel to it and

ei(t) = (1 + tλi)ei + t
∑

j=k+1,...,n

(di)jej , (1.2)

where λi are eigenvalues of the form (Av,w). We say that the linear curve V (t) is
determined by {ei, di; i = 1, ...k}.

Call vectors of V (0) vertical and normal to V (0) — horizontal ones. Sum-
ming up what we said above we see that every linear curve V (t) is the image of
the subspace generated by first k coordinate vectors of some orthonormal base
{e1, ..., ek, ek+1, ..., en} in Rn under the map with the following matrix:(

I + t(VD) t(HD)
0 I

)
, (1.3)
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where VD and HD are matrices of vertical and horizontal components of the
derivatives di correspondingly: VD = (di)j , i = 1, ..., k; j = 1, ..., k and HD =
(di)j , i = 1, ..., k; j = k + 1, ..., n, and the matrix VD is diagonal. To define an
orthogonal transformation of Rn mapping V (0) into V (t) we use an orthogonal-
ization process as follows. Denote by Λ1

1 = (2 max{λi|i = 1, ..., k})−1. Then for
t < Λ1

1 the vectors

ẽi(t) = ei(t)/(1 + λit) = ei + (1 + λit)−1t
∑

j=k+1,...,n

(di)jej , j = k + 1, ..., n

also generate V (t). If j = k + 1, ..., n we set

ẽj(t) = ej − t
k∑
i=1

(di)jei.

An easy calculation shows

|(ẽi(t), ẽj(t))− δij | ≤ (1 + t2Λ2
1)t2‖HD‖2, (1.4)

where
‖HD‖2 =

∑
i=1,...,k;j=k+1,...,n

((di)j)2 (1.5)

and Λ2
1 some constant depending only on Λ1

1 and dimensions of considered spaces.
Because due to (1.4) the base ẽi, i = 1, ..., n is already almost orthonormal, another
easy calculation shows that for the orthonormal base {ēi(t), i = 1, ...n} of Rn which
is obtained by an orthogonalization from {ẽi(t), i = 1, ...n} we have

‖ẽi(t)− ēi(t)‖ ≤ (1 + t2Λ3
1)t2‖HD‖2 (1.6)

where the constant Λ3
1 again depends only on Λ2

1 and dimension n. By construction
{ēi(t), i = 1, ...n} is the orthonormal base of Rn such that the first k vectors
generate V (t), or V (t) is the image of V (0) under the orthogonal transformation
with a matrix:

O(t) =
(

I t(HD)
−t(HD) I

)
+ t2G, (1.7)

where for the norm of the matrix G the following is true:

‖G‖ ≤ (1 + t2Λ4
1)‖HD‖2, (1.8)

for some constant Λ4
1 depending on Λ3

1. Finally note that the curve V (t) in Gkn
is the image under submersion Π : O(n) → Gkn of the curve O(t) in O(n) so that
the vector V̇ (0) is the image of Ȯ(0) under the differential Π∗. From (1.7) we see
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that the tangent vector of the curve of the orthogonal transformations O(t) at the
moment t = 0 is

Ȯ(0) =
(

0 HD
−HD 0

)
. (1.9)

By definition of the Lipschitz-Killing metric the length of this vector equals ‖HD‖.
Note also that this vector is the horizontal one for the riemannian submersion
Π : O(n) → O(n)/O(k) × O(n − k) = Gkn, so that it has the same length as its
image V̇ (0) under the differential Π∗. Therefore, the length of the vector V̇ (0)
in Gkn equals the length of Ȯ(0) in the Lipschitz-Killing metric on O(n), i.e., is
exactly ‖HD‖; and we arrive at the following statement.

Lemma 1.
‖V̇ (0)‖2 = ‖HD‖2 =

∑
i=1,...,k;j=k+1,...,n

((di)j)2.

Remark 1. Note that if we consider another curve Ṽ (t) of k-subspaces of Rn

generated by some other fields {µi(t), i = 1, ..., k} such that µi(0) = ηi(0) and
(dµi(t)/dt)|t=0 = Dηi(0) in (1.1), but dependence of µi(t) on t is not linear, then

still ˙Ṽ (0) = V̇ (0), so that the speed of the curve V (0) depends only on the initial
values ηi(0) and Dηi(0). Thus, the formula of Lemma 1 is true for an arbitrary
curve of k-subspaces in Gkn.

Now we show that a geodesic curvature Kg(V (t)) of the linear curve V (t)
determined by {ei, di; i = 1, ...k} can be estimated at initial point t = 0 in terms
of {ei, di; i = 1, ...k}.

Lemma 2. Let V (t) be the linear curve determined by {ei, di; i = 1, ...k}, where
{ei; i = 1, ...k} is the orthonormal base of V (0). Then for some constant Λ2
depending only on dimension n

|Kg(V (0))| ≤ Λ2,

where Kg(V (t)) is the geodesic curvature of V (t) at the moment t.

Proof. To prove this we use a well-known equality between a geodesic curvature
of some curve in a Riemannian manifold and a distance from this curve to the
geodesic, issuing from the same initial point with the same velocity vector: the
geodesic curvatureKg(V (0)) of the curve V (t) and the norm of its vector of velocity
are related by the following equality:

Kg(V (0)) = lim
t→0

2
distGkn(V (t), V̄ (t))

‖V̇ (0)‖2t2
, (2.1)
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where V̄ (t) is the geodesic in Gkn issuing from V (0) with the same velocity vector:
˙V̄ (0) = V̇ (0). Every geodesic V̄ (t) in the base Gkn of the riemannian submersion

Π : O(n) → O(n)/O(k) × O(n − k) = Gkn is the image under the map Π of
some horizontal geodesic in O(n), i.e., some 1-parameter subgroup of orthogonal
transformations of Rn. Consider the 1-parameter subgroup Ō(t) of O(n) generated
by the vector Ȯ(0) above:

Ȯ(0) =
(

0 HD
−HD 0

)
.

Because the vector Ȯ(0) is horizontal the geodesic Ō(t) in O(n) is a horizontal
geodesic and goes under submersion Π onto some geodesic in Gkn. Because, as
we verified above, the vector Ȯ(0) has the image under the differential Π∗ which
is equal to V̇ (0), this geodesic has the same velocity vector at initial point when
t = 0, i.e., we conclude V̄ (t) = Π(Ō(t)). A direct calculation shows that

Ō(t) = exp(tȮ(0)) = I + tȮ(0) + t2Ḡ+ ... (2.2)

where for some constant Λ1
2 we have ‖Ḡ‖ ≤ Λ1

2‖HD‖2. Because of the estimates
(1.7)–(1.8) above this gives inequality

‖Ō(t)−O(t)‖ ≤ t2Λ2‖HD‖2/2 (2.3)

for some constant Λ2 depending on Λ1
2 and dimension n. Because (as every rie-

mannian submersion) Π does not increase distances the last formula yields an
inequality

‖V̄ (t)− V (t)‖ ≤ t2Λ2‖HD‖2/2 (2.4)

implying the claim of the lemma. Lemma 2 is proved.

Remark 2. Obviously, as in Remark 1 above, the geodesic curvature of the curve
V (t) at t = 0 depends only on the initial values of the fields, generating V (t)
and their first and second derivatives at t = 0. If some other curve Ṽ (t) of k-
subspaces of Rn is generated by some fields {µi(t), i = 1, ..., k} such that µi(0) =
ηi(0), (dµi(t)/dt)|t=0 = Dηi(0), and ‖(d2µi(t)/dt2)|t=0‖ ≤ Λ2

2‖V̇ (0)‖2, then its
curvature at t = 0 is bounded by some constant Λ3

2(C) depending on Kg(V (0))
and the constant Λ2

2.

Next Lemma is the main technical point of our arguments.

Lemma 3. Let V (t), 0 ≤ t ≤ T be some linear curve in Gkn such that its geodesic
curvature Kg(V (t)) is bounded by some constant Λ2 for all 0 ≤ t ≤ T . Than the
length of V (t) is bounded by some constant Λ3 which depends on Λ2, but does not
depend on T .
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Proof. Proof of the lemma follows from simple compactness arguments. In addition
to the Riemannian metric g on Gkn defined above and coming from the Lipschitz -
Killing metric on O(n) under the submersion Π, the grassmanian Gkn admits also
the following non-riemannian metric ∠ (”angle”): for two subspaces V and W in
Rn the angle between them is

∠(V,W ) = sup
v∈V

inf
w∈W

∠(v, w). (3.1)

Clearly, we always have 0 ≤ ∠(V,W ) ≤ π/2 and ∠(V,W ) = π/2 if and only if
some vector w of W is orthogonal to V . Let V (t) be our linear curve determined
by {ei, di; i = 1, ..., k} as in (1.2), and also, as before, A : V (0) → Rn be the
linear map continuing by linearity the map ei → di. Continue arbitrarily this map
to some linear map Ã : Rn → Rn in a self-adjoint way (i.e., take an arbitrary
extension A′ and then change to (A′ + (A′)∗)/2). Then the space V (t) is the
image of V (0) under the map I + tÃ, and for some vector η(0) of V (0) we have
(η(0), η(t)) = 0 for η(t) = (I + tÃ)η(0) from V (t) if and only if

(η(0), (I + tÃ)η(0)) = 0, (3.2)

Denote by {Ei, i = 1, ..., n} the orthonormal base of Rn consisting of eigenvectors
of Ã and by λi, i = 1, ..., n corresponding eigenvalues. If we take a partition
−∞ < t1 < ... < tm < ∞ for ti = −(λi)−1, i = 1, ...,m, where λi, i = 1, ...,m are
all nonzero eigenvalues, then easy to see, that for arbitrary ti < t′ < t” < ti+1 we
have

(η(t′), η(t”)) > 0 (3.3)

where η(t) = (I + tÃ)η(0). Last condition implies that the angle between some
fixed vector η(t′) and η(t”) is a monotonely increasing function on t” when t′ < t”
are from (ti, ti+1). The same condition implies, that the angle between η(t”) and
V (t′) is also a monotonely increasing function on t” under the same restriction.
Indeed, by definition for all t we have η(t) = η(0) + td for some η(0) from V (0).
Let d = v + w, where v belongs to the subspace V (t′), and w is normal to it. Let
also η(t′) = a + b, where the vector a = λv is parallel to v, and b is normal to v.
Then η(t”) = b+ (λ+ (t”− t′))v + (t”− t′)w, and (3.3) means that

(η(t′), η(t′)) + (t”− t′)(η(t′), v) > 0 (3.4)

The component of η(t”) normal to V (t′) equals (t”− t′)w while the tangent com-
ponent of η(t”) to V (t′) is η(t′) + (t”− t′)v. So for the angle φ(t”) between η(t”)
and the subspace V (t′) we have

tg(φ(t”)) =

√
(w,w)(t”− t′)√

(η(t′) + (t”− t′)v, η(t′) + (t”− t′)v)
,
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and by a direct calculation we see, that due to (3.4) the derivative of φ(t”) is
positive. Because this is true for an arbitrary η(t”) we conclude that the angle
between V (t”) and V (t′) is also a monotonely increasing function on t” when
t′ < t” are from (ti, ti+1). To prove this it is sufficient to note that the derivative
of the angle between V (t′) and V (t”) on t” equals the maximum of derivatives
of angles between V (t′) and those vectors η(t”) of V (t”) which have a maximum
angle with V (t′).

Thus, every linear curve V (t) we can divide in not more than n + 1 intervals
{V (t)|ti < t < ti+1} such that the ”angle”-function φs(t) = ∠(V (s), V (s + t))
is monotonely increasing for 0 < t < ti+1 − s and monotonely decreasing for
ti− s < t < 0; and the claim of the lemma will follow if we prove it for every such
interval. In order to do this we note that this monotonicity of the angle means
that the curve {V (t)|ti < t < ti+1}, leaving at some moment ε-neighborhood of
V (s) in the metric ∠ never come back, or that every ball in ∠-metric with the
center V (s) contains only one connected arc of the considered interval of the curve
V (t). Denote by U(V, ε) an ε-neighborhood in the metric ∠ of the point V of Gkn.

For a given number Λ2 there exists some ω depending on Λ2 such that in every
ω-ball in the Riemannian metric g a length of every connected arc of an arbitrary
curve with geodesic curvature bounded by Λ2 is bounded by some constant L,
which depends on ω and Λ2 and has order 2ω as ω → 0.

Because topologies generated by two metrics ∠ and g coincide, there exists a
function ω(ε) (where ω(ε) → 0 as ε → 0) such that every ε-ball in the metric ∠
is contained in ω(ε)-ball in the metric g. Find some ε such that ω(ε) ≤ ω. Using
compactness ofGkn find some finite coveringGkn = ∪iU(Vi, ε/2). If some point V (t′)
belongs to some U(Vi, ε/2), then because of the triangle inequality the intersection
of the considered interval V (t), ti < t < ti+1 with this U(Vi, ε/2) lies in U(V (t′), ε),
and by the arguments above has length less than L, which obviously means that
the length of the whole interval is bounded by LN , where N is the number of all
U(Vi, ε/2) in the finite covering of Gkn. As was said above, the number of intervals
V (t), ti < t < ti+1 with described behavior of the ”angle”-function φs(t) is not
bigger than the dimension n, so that the length of V (t),−∞ < t <∞ is bounded
by nLN , i.e., ∫ ∞

−∞
‖V̇ (t)‖dt < Λ3 (3.5)

for some constant Λ3 depending only on Λ2. Lemma 3 is proved.

Remark 3. Note that the length estimate of the last Lemma is easily general-
ized for arbitrary family of subspaces V (t) generated by some k-vectors linearly
depending on t, even if for some parameters dimV (t) 6= k, or V (t) 6∈ Gkn. Indeed,
let V (t) be generated by ηi(t) = ηi(0) + tdi, i = 1, ..., k. Then dimV (t) 6= k if and
only if ‖η1(t) ∧ ... ∧ ηk(t)‖ = 0. The last function being polynomial of degree k
has at most k zeros ti, i = 1, ...k′, k′ ≤ k, so that Vi(t) = {V (t), ti < t < ti+1} is
a linear curve in Gkn. Therefore, if geodesic curvatures of Vi are bounded by Λ2
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the sum of length of all curves Vi(t) = {V (t)|ti < t < ti+1}, which we denote by
L(V ), is not bigger than (k + 1)Λ3:

∞∫
−∞

‖V̇ (t)‖dt ≤ (k + 1)Λ3,

where ‖V̇ (t)‖ is given by the formula of Lemma 1.

This remark will be essential in the next section when we shall consider V (t)
defined as above (i.e., generated by vectors linearly depending on t) and such that
probably dimV (t) 6≡ k, i.e., may be dimV (t) < k for some t (see Lemmas 6 and 7
below). We call such V (t) a linear family of subspaces.

2. Curves of vertical subspaces

The principal objects we consider are curves of vertical subspaces along horizontal
geodesics in Mn. We define them as follows: For every point q in the space Mn

of the riemannian submersion π : Mn → Bn−k and every geodesic γ issuing from
the point p = π(q) in the base Bn−k of this submersion there exists a unique
horizontal lift of γ, i.e., a geodesic l issuing from q such that π(l(t)) = γ(t), where
t is a natural parameter both on l and γ, see [O’N2]. Such geodesics are called
horizontal ones. In every point l(t) the horizontalHl(t) and vertical subspaces Vl(t)
of a submersion π are defined. Denote by Gkn the Grassmanian of all k-dimensional
subspaces of the euclidean n-dimensional space TqMn which we denote below by
Rn. Then the curve Vl(t) of vertical subspaces along l is the curve in Gkn defined
as follows:

Vl(t) = I−1
t (Vl(t)),

where It is the parallel transport from q to l(t) along l. The obtained Vl(t) is
a family of vector k-subspaces of a fixed euclidean space Rn (the tangent space
TqM

n). Generally, only the first element of this family Vl(0) equals the vertical
subspace Vq. (If e.g., all Vl(t) coincide with Vq and Mn has nonnegative sectional
curvature, then due to the splitting theorem, see [M2,M3], it follows that Mn is
locally a direct product.)

In this section we prove that norms of velocity vectors of curves Vl of vertical
subspaces are uniformly bounded, see Lemmas 4 and 5 below, and that these
curves converge in C1-norm to linear curves on longer and longer intervals as the
curvature along l tends to zero, when the point q goes to infinity, see Lemma 6.

First we estimate the velocity vector V̇l(t) of the curve Vl(t) through normal
curvatures of the fiber Wp. By the normal curvature of the fiber Wp at the point
q in direction η tangent to Wp and corresponding to the unit normal e, where the
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vector e is horizontal (i.e., normal to Wp) we denote

Knorm(η, e) = (
D

∂s
e(s)|s=0, η) = (V D

∂(Vη)
He(s),Vη),

where q(s) be some curve in the fiber Wp issuing from q with velocity vector η and
e(s) some unit horizontal vector field along q(s) such that e(0) = e. Note that this
definition is common, e.g., it equals

(T ηe, η) = (V D

∂(Vη)
He,Vη),

where T is O’Neill’s tensor on pairs of vertical and horizontal vectors, see [O’N1].
Because the second fundamental form of the fiber Wp corresponding to the normal
e

II(η′, η”, e) = (V D

∂(Vη′)He,Vη”)

is a symmetric one, the estimate on normal curvatures leads to an estimate on the
norm of the second form:

‖II‖ = sup{|II(η′, η”, e) | ‖η′‖, ‖η”‖, ‖e‖ ≡ 1} = sup{|Knorm(η, e)| | ‖η‖, ‖e‖ ≡ 1}.
(4.1)

In the next lemma we prove that the compactness1of the base Bn−k yields uni-
form boundedness of normal curvatures of fibers and due to (4.1) their second
fundamental forms.

Lemma 4. Let q(s),−s′ < s < s′ be some curve in the fiber Wp such that q = q(0),
e(s) be some horizontal unit vector field along q(s) and l(t) = expq(te(0)). Then
for some constant Λ4, which depends only of the injectivity radius rinj(B) of a
base B and the curvature of a space Mn of a submersion π along l the following
is true

sup{|Knorm(η, e)| | ‖η‖, ‖e‖ ≡ 1} ≤ Λ4.

Proof. Because every riemannian submersion does not increase distances, the fol-
lowing general statement is true: let q1 and q2 be two points in Mn such that
the distance r between them equals the distance between their images p1 and p2
correspondingly under the submersion π : Mn → Bn−k. Then all points from the
fiber over p1 have distance not less than r to q2, i.e., the fiber Wp1 lies outside
the metric ball B(q2, r) with the center q2 and radius r (and an easy geometric
arguments show then that the normal curvatures of the fiber corresponding to the
normal q1q2 are less or equal to the corresponding curvatures of the ball B(q2, r)

1 In fact, we need only to assume that rinj(Bn−k) > 0.



430 Riemannian submersions of open manifolds CMH

at the point q1). Thus our estimate on normal curvatures is the corollary of a
second variation formula due to the following arguments.

Denote by q′ = l(r′) for r′ = rinj(Bn−k)/3, q” = l(r”) for r” = 2rinj(Bn−k)/3,
and by l′ = l(t), 0 ≤ t ≤ r′ and l” = l(t), r′ ≤ t ≤ r” two intervals of l connecting q′

with q and q” with q′ correspondingly. First we note that both l′ and l” are minimal
geodesics. Indeed, their images under submersion π are geodesics in Bn−k of length
less than injectivity radius rinj(Bn−k), i.e., are minimal geodesics. Because l′, l”
are horizontal their length equal to the corresponding distances in Bn−k between
images p′ = π(q′) and p = π(q) and p” = π(q”) and p′ = π(q′) correspondingly,
i.e., equal to r′. As was said above, π does not increase distances, so we see that
length of l′ and l” are not bigger than distances between q′ and q and q” and q′

correspondingly, which means that l′, l” are minimal. In the same way we conclude
that the geodesic l = l(t), 0 ≤ t ≤ 2r′ < rinj(Bn−k) connecting q” and q is also
minimal.2

Now we take arbitrarily a family of minimal geodesics ls(t) connecting the point
q′ with q(s). Then ls tends to the interval l(t), 0 ≤ t ≤ r′ of l′ when s→ 0. Indeed,
if we suppose on the contrary the existence of some converging subsequence lsj
tending to some minimal geodesic l̃′ connecting points q′ and q and different from
l′, then l̃′ would be minimal, and l”∪l̃′ would be a broken-geodesic path connecting
q” and q and having length 2r′ which equals the distance between q” and q. But
the path l” ∪ l̃′ being broken at the point q′ could be shortened, implying that
dist(q”, q) < 2r′ and l is not minimal. This contradiction yields that l̃′ = l′, or
that ls is a family of geodesics tending to l′ as s→ 0. Therefore, ls defines a Jacobi
vector field on l′:

µ(t) =
∂ls(t)
∂s |s=0

, 0 ≤ t ≤ r′.

By definition µ(0) = q̇(0) = η and we are assuming that η is a unit vector,
‖µ(0)‖ = 1. If L(s) denotes the length of ls(t), 0 ≤ t ≤ r′, then from arguments
above we see that L(s) attains a minimum at s = 0. Hence, due to the second
variation formula

0 ≤ L”(s)|s=0 = Knorm(η, e) +
∫ r′

0
(‖D
∂t
µ(t)‖2 − (RM (µ(t), l̇(t))l̇(t), µ(t)))dt,

(4.2)
where RM denotes a curvature tensor of Mn. Changing if necessary e to −e we
assume that Knorm(η, e) ≤ 0. Therefore, the claim of the lemma will follow if we
prove that the integral part of (4.2) is uniformly bounded from above. By standard
compactness arguments this is true for all points q from an arbitrary fixed compact
in Mn. If the point q tends to infinity (this is exactly the case which we shall need
and consider below, see the proof of Theorem A), then the sectional curvature of
Mn tends to zero due to our condition, and uniform boundedness is also clear.

2 Here we repeated some arguments from [M4].
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Indeed, consider q such that dist(o, q) > ρ0 where ρ0 is such that for all ρ > ρ0
we have κ(ρ) < κ0 = (π/2r′)2, i.e., the sectional curvature of Mn along l′ by an
absolute value is not bigger than κ0. Because of our choice and due to the Rauch
comparison theorem (see [CE, Rauch I and Rauch II theorems 1.28 and 1.29]) we
see that the Jacobi field µ(t), 0 ≤ t ≤ r′ has no conjugate points. Applying the
same theorem to the field ν(t) = µ(r′− t), 0 ≤ t ≤ r′ such that ν(0) = 0 we deduce
also that

Dsin(
√
κ0t) ≤ ‖ν(t)‖ ≤ Dsinh(

√
κ0t), (4.3)

where D = ‖(Dν/∂t)(0)‖. Because ‖ν(r′)‖ = 1 we find from (4.3) that D ≤ 1 and

‖ν(t)‖ ≤ sinh(
π

2
). (4.4)

Note also that our condition on the sectional curvature

−κ‖v ∧ w‖2 ≤ (RM (v, l̇)l̇, v) ≤ κ‖v ∧ w‖2 (4.5)

implies that all eigenvalues of the symmetric bilinear form {v, w} → (RM (v, l̇)l̇, w)
belongs to an interval [−κ,κ] so that for an arbitrary vector v we have

‖RM(v, l̇)l̇‖ ≤ κ‖v‖. (4.6)

Hence, from the Jacobi equation

D2

∂t2
ν(t) +RM (ν(t), l̇(t))l̇(t) = 0

it is not difficult to deduce

‖D
∂t
ν(t)‖ ≤ 1 +

π2

4r′
sinh(π/2) (4.7)

yielding a uniform estimate on the integral part of (4.2) and completing the proof
of Lemma. Lemma 4 is proved.

Due to (4.1) the last Lemma gives also a uniform estimate of second funda-
mental forms of fibers of our submersion π : Mn → Bn−k implying in particular
the following result.

Lemma 5. Let q(s) be some curve in the fibre Wp and e(s) be a unit horizontal
vector field along q(s) obtained by lifting the same vector ē from the base, i.e.,
π∗(e(s)) ≡ π∗(e(0)). Then for some constant Λ5 depending only on rinj(Bn−k)
the following is true

‖D
∂s
e(s)‖ ≤ Λ5‖q̇(s)‖.
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Proof. For r = rinj(B) consider a family of horizontal geodesics ls(t) = expq(s)te(s),
0 ≤ t ≤ r issuing from q(s) in directions e(s). By definition of the horizontal field
e(s), all ls have the same image under the submersion π : Mn → Bn−k, which is
a minimal geodesic γ(t) = expptē, 0 ≤ t ≤ r on Bn−k. Thus the length L(s) of all
ls are equal, L(s) ≡ r. According to the second variation formula:

L′′(s)|s=0 = Knorm(η(r), l̇(r)) −Knorm(η(0), l̇(0))

+
∫ r

0
(‖D
∂t
η(t)‖2 + (RM (η(t), l̇(t))l̇(t), η(t)))dt,

(5.1)

where η(t) = ∂
∂t ls(t)|s=0 is the variation Jacobi field along l(t) = l0(t), and by

Knorm(η(t), l̇(t)) we denote the normal curvature of the fiber Wγ(t) in direction
η(t) according to the normal l̇(t). Because of

D

∂s
e(s)|s=0 =

D

∂s

∂

∂t
ls(t)|s,t=0 =

D

∂t

∂

∂s
ls(t)|s,t=0 =

D

∂t
η(t)|t=0 (5.2)

the claim of the Lemma is equivalent to the estimate

‖D
∂t
η(t)|t=0‖ ≤ Λ5‖η(0)‖, (5.3)

which we are deducing in a same way as above in Lemma 4 from the second vari-
ation formula (5.2), Lemma 4 uniform estimate on normal curvatures and Rauch
comparison theorem. Clearly, we can assume ‖η(0)‖ = 1. Due to Lemma 4 we
have |Knorm(η(t), l̇(t))| ≤ Λ4‖η(t)‖, and again by standard compactness argu-
ments (5.3) follows for an arbitrary q from every fixed compact domain in Mn.
If the point q tends to infinity (which is again the only what we need below, see
the proof of Theorem A), then the sectional curvature of Mn tends to zero due
to our condition on Mn. For q with dist(o, q) > ρ0, where ρ0 is such that for
all ρ > ρ0 we have κ(ρ) < κ0 = (π/2r)2, the sectional curvature of Mn along l
by an absolute value is not bigger than κ0. Now we decompose the Jacobi field
η(t) = µ(t)+ν(t) into two Jacobi fields such that µ(0) = η(0), (Dµ/∂t)(0) = 0 and
µ(0) = 0, (Dν/∂t)(0) = (Dη/∂t)(0). Because of our choice of κ0 the Jacobi fields
µ(t) has no focal points and ν(t) has no conjugate points for 0 ≤ t ≤ r. Therefore,
by the Rauch comparison theorem (see [CE, Rauch I and Rauch II theorems 1.28
and 1.29]) we obtain the following estimates:

cos(
√
κ0t) ≤ ‖µ(t)‖ ≤ cosh(

√
κ0t), (5.4)

and
D sin(

√
κ0t) ≤ ‖ν(t)‖ ≤ Dsinh(

√
κ0t), (5.5)

where D = ‖(Dη/∂t)(0)‖ is the number we are estimating. These gives us for
0 ≤ t ≤ r

‖η(t)‖ ≤ Dsinh(r) +B
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where B equals cosh(π/2). Thus from the Jacobi equation

D2

∂t2
η(t) +RM (η(t), l̇(t))l̇(t) = 0 (5.6)

with the help of (4.6) it is not difficult to deduce

|‖D
∂t
η(t)‖ − ‖D

∂t
η(0)‖| ≤ κ0r(Dsinh(r) +B)

which under the conditions

κ0sinh(r) ≤ 1 and κ0B ≤ 1 (5.7)

leads to

|‖D
∂t
η(t)‖ −D| ≤ rD + r, and |‖D

∂t
η(t)‖| ≤ (1 + r)D + r, (5.8)

and

|r‖D
∂t
η(0)‖2 −

∫ r

0
‖D
∂t
η(t)‖2dt| ≤ r2(2 + r)D2 + 2r2(1 + r)D + r3.

Due to (5.2) the last inequality gives us

rD2 ≤ r2(2 + r)D2 + 2r2(1 + r)D + r3 + Λ4(1 + (Dr +B)).

Thus, finding some ρ1 > ρ0 such that for ρ > ρ1 we have κ(ρ) < sinh−1(r), B−1

to satisfy (5.7) and finally obtain

D ≤ Λ5

for some constant Λ5 depending only on r = rinj(B) proving the claim of the
Lemma. Lemma 5 is proved.

Remark 4. Note that in Lemmas 4 and 5 we do not have to assume that fibers of
our submersion are smooth submanifolds: the corresponding definitions of normal
curvatures and second fundamental form could be given in a barrier sense, see for
instance [C] or [M5]. Our Lemmas 4, 5 in this case prove that fibers have uniformly
bounded normal curvatures in barrier sense (Lemma 4), and that derivatives of
Jacobi fields generated by horizontal variations of horizontal geodesics are also
bounded (Lemma 5). In particular, Lemma 5 estimate is true in a case of open
manifolds of nonnegative sectional curvature, where it was proved only that the
corresponding riemannian submersion is of C1,1-class (e.g., due to our arguments
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in Lemmas 4 and 5). This allows us to apply Theorem A for open manifolds of
nonnegative curvature proving topological gap Theorem B.

Now we take arbitrarily some point p and a geodesic γ(t) = expp(tē) in a base
Bn−k, and consider their horizontal lifts in Mn, i.e., a point q of a fiber Wp over p
and a horizontal geodesic lq(t) = expq(te). In the next lemma we prove that when
q goes to infinity the curve of vertical subspaces Vlq tends in C1-norm to some
linear family of subspaces.

Lemma 6. For T arbitrary big and ε arbitrary small there exists ρ(ε, T ) such that
for all q with dist(o, q) > ρ(ε, T ) the curve of vertical subspaces Vlq(t), 0 ≤ t ≤ T

along lq is ε close in C1-norm to some linear family V̄ (t), 0 ≤ t ≤ T .

Proof. Let qi(s), i = 1, ..., k be some curves in the fiber Wp issuing from the point
q in directions of vectors ηi which form a base of a vertical space Vq. Denote by
lq,s,i(t) horizontal lifts of γ to qi(s), i.e., such that

π(lq,s,i(t)) ≡ γ(t). (6.1)

Because of (6.1) variation fields

ηi(t) =
∂

∂s
lq,s,i(t)|s=0

are vertical ones and such that for any given t vectors {ηi(t), i = 1, ..., k} generate
Vlq(t). By definition the curve of vertical subspaces Vl(t) = I−1

t Vlq is generated by
parallel transports ei(t) of these vectors {ηi(t), i = 1, ..., k} along lq to the point
q, i.e.,

V (t) =< ei(t), i = 1, ..., k > where ei(t) = I−1
t (ηi(t)), (6.2)

and I−1
t is a parallel transport along geodesic lq from the point lq(t) to q. To

simplify notations, we denote our curve Vlq (t) by V (t) and lq by l. Clearly

e′i(t) = I−1
t (

D

∂t
ηi(t)) and e”i(t) = I−1

t (
D2

∂t2
ηi(t)),

and from the Jacobi equation (5.6) we see that vector fields ei(t) in the euclidean
space Rn = TqM

n are solutions of the corresponding equation

ei”(t) +Rt(ei(t)) = 0, (6.3)

where the linear self-adjoint operator Rt is defined by Rt(v) = I−1
t RM (It(v), l̇(t))

l̇(t). As above due to (4.6)
‖Rt‖ ≤ κ(ρl), (6.4)
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where ρl = inf{dist(o, l(t))|0 ≤ t ≤ T}. From the triangle inequality easy to see
that ρl ≥ ρ− T , where by ρ we denote dist(o, q). Because κ(ρ)→ 0 as ρ→∞ we
are able to prove that our curve V (t) tends to the linear family V̄ (t) generated by

ēi(t) = ei(0) + te′i(0). (6.5)

Here, as above in Remark 3, we have to repeat that for some tj , j = 1, ...,m,m ≤ n
a dimension of V̄ (t) could be less than k, so that only open intervals V̄ (t), tj < t <
tj+1 of V̄ (t) are linear curves. Thus we consider below t 6= tj and verify that our
curve V (t) converges on intervals (tj , tj+1) to linear curves V̄ (t), tj < t < tj+1.

Take some tj < t′ < tj+1 and find arbitrarily an orthonormal base {ei(t′), i =
1, ..., k} of V (t′). Without loss of generality we can assume that these vectors are
values of Jacobi fields ηi along l, i.e., ei(t′) = I−1

t (ηi(t′)). Compare ei(t′) with
ēi(t′), where ēi(t) = ηi(0) + tDηi(0) is the vector from V̄ (t′). The claim of the
lemma will follow if we prove that e(t′) and ē(t′) and their derivatives e′(t′) and
ē′(t′) are ε-close.

First, let us show that the norm of every ηi(t) is bounded by some function
depending only on κ(ρl) and T . Indeed, by definition ‖ηi(t′)‖ = 1, so by Lemma 5
and due to (5.2) we have ‖Dηi(t′)‖ ≤ Λ5 for some constant Λ5. Therefore, rep-
resenting as above in Lemma 5 the field ηi(t) as a sum of two Jacobi fields νi(t)
and µi(t) such that ‖Dνi(t′)‖ = 0 and ‖µi(t′)‖ = 0 by the Rauch’s Comparison
Theorem (comparing Mn with the hyperbolic plane of constant curvature κ, see
(5.4) and (5.5) above) we see that√

κ(ρl)T ≤ π/2 (6.6)

implies for the Jacobi fields the following: µi has no focal points, and νi has no
conjugate points for 0 ≤ t ≤ T , and the following estimates are true:

‖µi(t)‖ ≤ cosh(
√
κ(ρl)t), (6.7)

and
‖νi(t)‖ ≤ Λ5sinh(

√
κ(ρl)t). (6.8)

Because ‖ei(t)‖ ≡ ‖ηi(t)‖ the last two inequalities give

‖ei(t)‖ ≤ cosh(
√
κ(ρl)t) + Λ5sinh(

√
κ(ρl)t). (6.9)

Thus from (6.3), (6.4) and (6.6) we easily have

‖ei(t)− (ei(0) + te′i(t))‖ ≤ Λ6κ(ρl)T 2 (6.10)

and
‖e′i(t)− e′i(t)‖ ≤ Λ6κ(ρl)T, (6.11)
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where
Λ6 = cosh(π/2) + Λ5sinh(π/2).

If in addition
κ(ρl)T 2 < εΛ−1

6 (6.12)

we deduce
‖ei(t)− ēi(t)‖ < ε and ‖e′i(t)− ē′i(t)‖ < ε. (6.13)

As we already note, due to the triangle inequality ρl ≥ ρ − T . Therefore, to
complete the proof note that to satisfy (6.6) and (6.12) it is sufficient for given ε
and T choose first some 0 < κ < εT−2 and 0 < κ < εT−2Λ−1

6 , and then find ρ0
such that κ(ρ) < κ for all ρ > ρ0. Then estimates of the lemma (6.13) will be
satisfied for all points q such that ρ(q) > ρ0 + T .

We end this section with a statement similar to the main result of the section 1:
proving that the length of a curve of vertical subspaces Vl(t), 0 ≤ t ≤ T stays
bounded when T →∞ for some suitable choice of ε and corresponding ρ(ε, T )→
∞.

Lemma 7. Let ε = T−2 and ρ = ρ(ε, T ) be a number defined in the previous
Lemma 6. Then ∫ T

0
‖V̇l(t)‖dt ,

∫ T

0
‖V̇l(t)‖2dt ≤ Λ7

for some uniform constant Λ7 and every horizontal geodesic l issuing from the
point q, if only ε is sufficiently small and dist(o, q) > ρ(ε, T ).

Proof. To prove the claim of the lemma we compare the length of the curve of
vertical subspaces Vl(t), 0 ≤ t ≤ T with the length of the corresponding V̄ (t), 0 ≤
t ≤ T constructed in the proof of Lemma 6. Here again (see Remark 3 and
Lemma 6 above) we consider only t 6= tj such that intervals V̄ (t), tj < t < tj+1 of
V̄ (t) are linear curves, and verify that the length of our curve Vl(t) converges to
the sum of length of linear curves V̄ (t), tj < t < tj+1.

Divide the interval [0, T ] into two subsets I1 = {t|‖V̇l(t)‖ < T−1} and I2 =
{t|‖V̇l(t)‖ ≥ T−1}. Obviously,∫

I1

‖V̇l(t)‖dt ,

∫
I1

‖V̇l(t)‖2dt ≤
1
T
. (7.1)

To estimate the length of {Vl(t), t ∈ I2} we note that due to Lemma 6 V̇l(t) and
˙V̄ (t) are ε-close where ε = T−2 an inequality ‖V̇l(t)‖ ≥ T−1 means that directions

of the vectors V̇l(t) and ˙V̄ (t) are T−1-close:

∠(V̇l(t), ˙V̄ (t)) < T−1 (7.2)
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Because of this the length of Vl(t), t ∈ I2 is close to the length of V̄ (t), t ∈ I2 by the
following standard arguments. Consider sufficiently small r-tubular neighborhood
U of V̄ (t) in Gkn for some r < rinj(Gkn) and such that 1) the projection pr : U →
V̄ (t) sending a point V to the nearest to it point on the curve V̄ (t) is well defined in
this neighborhood, and 2) has bounded differential. The existence of such r follows
from the uniform boundedness of the geodesic curvature of V̄ (t), see Lemma 2.
Then every curve Vl(t) in U having directions V̇l(t) sufficiently close to V̄ (t) will
be transversal to the fibers of pr. Thus we conclude that

a) for r and ε sufficiently small the map pr : {Vl(t), t ∈ I2} → {V̄ (t), t ∈ [0, T ]}
is injective to its image, and

b) the length of {Vl(t), t ∈ I2} is bounded in terms of the length of its image
pr({Vl(t), t ∈ I2}), the angle between ˙V̄ (t) and V̇ (t) and r (we omit this standard
estimate. It involves first and second variation formulas, and could be found in
almost all manuals on riemannian geometry).

Therefore, (7.2) for small ε yields∫
I2

‖V̇l(t)‖dt ≤ Λ1
7

∫ T

0
‖ ˙V̄ (t)‖dt ≤ (k + 1)Λ3Λ1

7, (7.3)

for some uniform constant Λ1
7 (where, of course, Λ7 → 1 as ε → 0). Due to

Lemma 5 we have ‖V̇l(t)‖ ≤ Λ5, hence the last inequality gives also∫
I2

‖V̇l(t)‖2dt ≤ (k + 1)Λ3Λ5Λ1
7, (7.4)

which together with (7.1) completes the proof of the lemma. Lemma 7 is proved.

Now we are ready to prove Theorem A.

3. Proof of Theorem A

Let π : Mn → Bn−k be a Riemannian submersion with Mn flat at infinity, and
p be some point in Bn−k, X̄ and Ȳ some unit vectors of TpBn−k and q be some
point in Mn such that π(q) = p, and X,Y be horizontal lifts of X̄ and Ȳ in q, i.e.,
horizontal unit vectors from TqM

n such that π∗(X) = X̄ and π∗(Y ) = Ȳ . Then,
according to [O’N1] for the sectional curvatures KM of Mn and K̄B of Bn−k in
two-dimensional directions {X,Y } and {X̄, Ȳ } correspondingly, the following is
true:

K̄B(p, X̄, Ȳ ) = KM(q,X, Y ) + 3‖AX(Y )‖2, (1)

where AX(Y ) is the O’Neill tensor of the horizontal distribution equals V∇X(Y ).
Let η be a vertical unit vector at q parallel to AX(Y ). Then if η(t) is the Jacobi
vertical vector field with η(0) = η as before along the horizontal geodesic l(t)



438 Riemannian submersions of open manifolds CMH

issuing from the point q in direction X , and Y (t) - any horizontal field along l
such that Y (0) = Y , then from (η(t), Y (t)) ≡ 0 we have

‖AX(Y )‖ = |(η,AX(Y ))| = |(Y,Dη(0))| = |(Y,HDη(0))| ≤ ‖HD‖ = ‖V̇l(0)‖,
(2)

see Lemma 1 equality.
Because Mn is open, it is easy to see, that all fibers Wp are unbounded (oth-

erwise Mn would be compact), and for every point p of Bn−k and ρ there exists
q from Wp with ρ(o, q) > ρ. Chose κ > 0 arbitrary small and let ρ′ is the number
such that k(ρ) < κ for all ρ > ρ′. For arbitrary T find another ρ” according to
Lemma 7. Then from O’Neill formula (1), estimate (2), Lemma 7 estimates and
|KM(l(t), l̇(t), Y (t))| ≤ κ we have

1
T

∫ T

0
|K̄B(γ(t), γ̇(t), Ȳ (t))|dt ≤ κ +

3
T

∫ T

0
‖V̇l(t)‖2dt ≤ κ +

3
T

Λ7, (3)

for ρ > ρ′, ρ”. Consider a map φt sending (p, X̄, Ȳ ) to (γ(t), γ̇(t), Ȳ (t)). Like
a geodesic flow, i.e., the map sending (p, X̄) to (γ(t), γ̇(t)); this map preserves
the volume form of the bundle S2Bn−k of the pairs of unit normal vectors in
Bn−k. Therefore, according to the Birkhoff-Khintchine theorem the left hand side
of (3) under the constraint T → ∞ tends almost everywhere to the mean value
function K̄∗ of the function |K̄B(p, X̄, Ȳ )| on S2Bn−k and equals zero according
to (3). Thus the integral of K̄∗ over S2Bn−k equals zero. According to the same
Birkhoff-Khintchine theorem this integral of K̄∗ over S2Bn−k equals the integral
of |K̄B(p, X̄, Ȳ )| over S2Bn−k, implying that K̄B(p, X̄, Ȳ ) ≡ 0, or Bn−k is flat.
Theorem A is proved.

4. Mean normal curvatures of fibers

We conclude this paper with a note, that Lemma 7 uniform estimate allows us to
prove not only that the base Bn−k is flat, but also that mean integral values of
normal curvatures of fibers along any interval l = {l(t), 0 ≥ t ≥ T} of length T of
an arbitrary horizontal geodesic in Mn tend to zero as T →∞ and this interval l
tends to infinity. Namely, let l(t) be some horizontal geodesic going through some
arbitrary chosen point q in a horizontal direction e of Hq. Consider the function
Knorm(η, e) - the normal curvature of the fiber containing the point q in some
vertical direction η corresponding to the normal e of this fiber. Denote by N(t)
the maximum of all |Knorm(η(t), l̇(t))| over all vertical vectors η(t) at the point
l(t), and by ρl = inf{dist(o, l(t) | 0 ≤ t ≤ T}. Then the following is true:

Lemma 8.
1
T

∫ T

0
N(t)dt < Λ8(

1√
T

+
√
κ(ρl))
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for some universal constant Λ8.

Proof. Let as before η(t) be the Jacobi variation field along l(t) generated by the
family ls(t), l0(t) = l(t) of horizontal geodesics, η(t) = ∂

∂s ls(t)|s=0 and e(s) =
l̇s(0). Then D

∂se(s)|s=0 = D
∂tη(t)|t=0 and for K(t) = Knorm(η(t), l̇(t)) by a direct

calculation we have

K ′(t) = ((
D

∂s
e(t), η(t))/(η(t), η(t)))′ = ((

D

∂t
η(t), η(t))/(η(t), η(t)))′ =

(Dη∂s (t), Dη∂t (t))(η(t), η(t)) − 2(Dη∂t (t), η(t))2

(η(t), η(t))2 +
(D

2η
∂t2

(t), η(t))
(η(t), η(t))2 .

If we assume that at the moment t = 0 our vector η(0) is the eigenvector of
the second fundamental form II(0) of the fiber Wp in the considered point q

corresponding to the normal e = l̇(0), then the last formula and the Jacobi equation
for η(t) give:

K ′(0) +K2(0) =
‖HDη

∂t (0)‖2
‖η(0)‖2 +KM(l(0), l̇(0), η(0)).

Obviously, the same formula for the derivative of the normal curvature of the fiber
is true for any t if η(t) is a unit eigenvector of the second form corresponding to
the normal l̇(t). For arbitrary t taking in the last formula sum over all eigenvectors
ηi(t) of the second form II(t) of the fiber Wγ(t) (where γ(t) = π(l(t))) correspond-
ing to the normal e(t) = l̇(t) we obtain the following formula for the trace A1(t)
of the second form II(t) of the fiber Wγ(t) according to the normal l̇(t), see [M2],
[M3]:

A′1(t) + ‖A2(t)‖ =
k∑
i=1

‖HDηi
∂t (t)‖2
‖ηi(t)‖2

+Kk
M(l(t), l̇(t)),

where by ‖A2(t)‖ we denote the sum of squares of eigenvalues of the form II(t)
and by

Kk
M(l(t), l̇(t)) =

k∑
i=1

Kk
M(l(t), l̇(t), ηi(t))

the ”partial (or vertical) Ricci curvature” in direction l̇(t). According to Lemma 1

‖V̇l(t)‖2 =
k∑
i=1

‖HDηi
∂t (t)‖2
‖ηi(t)‖2

,

which leads to the formula:

A′1(t) + ‖A2(t)‖ = ‖V̇l(t)‖2 +Kk
M(l(t), l̇(t)). (8.1)



440 Riemannian submersions of open manifolds CMH

From our condition on the curvature we have |Kk
M(l(t), l̇(t))| ≤ kκ(ρl). As follows

from Lemma 5 ‖V̇l(t)‖ ≤ Λ5, hence

A′1(t) + ‖A2(t)‖ ≤ Λ5‖V̇l(t)‖+ kκ(ρl).

Taking the integral of the above inequality over an interval [0, T ] and using the
estimate |A1(t)| ≤ kΛ5 following from Lemma 5 we get:

1
T

T∫
0

‖A2(t)‖dt ≤ 2kΛ5
T

+
Λ5
T

T∫
0

‖V̇l(t)‖dt+ kκ(ρl)

which due to Lemma 7 gives us the following estimate:

1
T

T∫
0

‖A2(t)‖dt ≤ Λ′8
T

+ kκ(ρl) (8.2)

for some uniform constant Λ′8. By definition |N(t)| ≤
√
‖A2(t)‖, thus the claim

of the lemma easily follows from Cauchi-Bunyakowsky inequality. Lemma 8 is
proved.
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