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Abstract. We prove an inequality, conjectured by Kalai, relating the g-polynomials of a poly-
tope P , a face F , and the quotient polytope P/F , in the case where P is rational. We introduce
a new family of polynomials g(P, F ), which measures the complexity of the part of P “far away”
from the face F ; Kalai’s conjecture follows from the nonnegativity of these polynomials. This
nonnegativity comes from showing that the restriction of the intersection cohomology sheaf on
a toric variety to the closure of an orbit is a direct sum of intersection homology sheaves.
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Suppose that a d-dimensional convex polytope P ⊂ Rd is rational, i.e. its
vertices have all coordinates rational. Then P gives rise to a polynomial g(P ) =
1+g1(P )q+g2(P )q2 + · · · with non-negative coefficients as follows. Let XP be the
associated toric variety (see §6 – our variety XP is d+ 1-dimensional and affine).
The coefficient gi(P ) is the rank of the 2i-th intersection cohomology group of XP .

The polynomial g(P ) turns out to depend only on the face lattice of P , (see §1).
It can be thought of as a measure of the complexity of P ; for example, g(P ) = 1
if and only if P is a simplex.

Suppose that F ⊂ P is a face of dimension k < d. We construct an associated
polytope P/F as follows: choose an (d− k− 1)-plane L whose intersection with P
is a single point p of the interior of F . Let L′ be a small parallel displacement of
L that intersects the interior of P . The quotient P/F is the intersection of P with
L′; it is only well-defined up to a projective transformation, but its combinatorial
type is well-defined (Formally we put P/P to be the empty polytope). Faces of
P/F are in one-to-one correspondence with faces of P which contain F .

In Corollary 6, we show that

g(P ) ≥ g(F )g(P/F )

holds, coefficient by coefficient. This was conjectured by Kalai in [11], where some
of its applications were discussed. The special case of the linear and quadratic
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terms was proved in [12]. Roughly, this inequality means that the complexity of P
is bounded from below by the complexity of the face F and the normal complexity
g(P/F ) to the face F .

The principal idea is to introduce relative g-polynomials g(P, F ) for any face
F of P (§2). These generalize the ordinary g-polynomials since g(P, P ) = g(P ).
They are also combinatorially determined by the face lattice. They measure the
complexity of P relative to the complexity of F . For example, if P is the join of F
with another polytope, then g(P, F ) = 1 (the converse, however, does not hold).

Our main result gives an interpretation of the coefficients gi(P, F ) of the relative
g-polynomials as dimensions of vector spaces arising from the topology of the toric
variety XP . This shows that the coefficients are positive. Kalai’s conjecture is a
corollary.

The combinatorial definition of the relative g-polynomials g(P, F ) makes sense
whether or not the polytope P is rational. We conjecture that g(P, F ) ≥ 0 for any
polytope P ; this would imply Kalai’s conjecture for general polytopes.

This paper is organized as follows: The first three sections are entirely about the
combinatorics of polyhedra. They develop the properties of relative g-polynomials
as combinatorial objects, with the application to Kalai’s conjecture. The last three
sections concern algebraic geometry. A separate guide to their contents is included
in the introduction to §§4 - 6.

1. g-numbers of polytopes

Let P ⊂ Rd be a d-dimensional convex polytope, i.e. the convex hull of a finite col-
lection of points affinely spanning Rd. The set of faces of P , ordered by inclusion,
forms a poset which we will denote by F(P ). We include the empty face ∅ = ∅P
and P itself as members of F(P ). It is a graded poset, with the grading given by
the dimension of faces. By convention we set dim ∅ = −1. Faces of P of dimension
0, 1, and d− 1 will be referred to as vertices, edges, and facets, respectively.

Given a face F of P , the poset F(F ) is isomorphic to the interval [∅, F ] ⊂
F(P ). The interval [F, P ] is the face poset of the polytope P/F defined in the
introduction.

Given the polytope P , there are associated polynomials (first introduced in
[14]) g(P ) =

∑
gi(P )qi and h(P ) =

∑
hi(P )qi, defined recursively as follows:

• g(∅) = 1
• h(P ) = Σ∅≤F<P (q − 1)dimP−dimF−1g(F ), and
• g0(P ) = h0(P ), gi(P ) = hi(P ) − hi−1(P ) for 0 < i ≤ dimP/2, and gi(P ) = 0

for all other i.
The coefficients of these polynomials will be referred to as the g-numbers and

h-numbers of P , respectively. We do not discuss the h-polynomial further in this
paper.

These numbers depend only on the poset F(P ). In fact, as Bayer and Billera
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[1] showed, they depend only on the flag numbers of P : given a sequence of
integers I = (i1, . . . , in) with 0 ≤ i1 < i2 < · · · < in ≤ d, an I-flag is an n-tuple
F1 < F2 < · · · < Fn of faces of P with dimFk = ik for all k. The I-th flag
number fI(P ) is the number of I-flags. Letting P vary over all polytopes of a
given dimension d, the numbers gi(P ) and hi(P ) can be expressed as a Z-linear
combination of the fI(P ).

Conjecturally all the gi(P ) should be nonnegative for all P . This is known
to be true for i = 1, 2 [10]. For higher values of i, it can be proved for rational
polytopes using the interpretation of gi(P ) as an intersection cohomology Betti
number of an associated toric variety.

Proposition 1. If P is a rational polytope, then gi(P ) ≥ 0 for all i.

2. Relative g-polynomials

The following proposition defines a relative version of the classical g-polynomials.

Proposition 2. There is a unique family of polynomials g(P, F ) associated to a
polytope P and a face F of P , satisfying the following relation: for all P, F , we
have ∑

F≤E≤P
g(E,F )g(P/E) = g(P ). (1)

Proof. The equation (1) can be used inductively to compute g(P, F ), since the left
hand side gives g(P, F ) · 1 plus terms involving g(E,F ) where dimE < dimP .
The induction starts when P = F , which gives g(F, F ) = g(F ). �

As an example, if F is a facet of P , then g(P, F ) = g(P )− g(F ). Just as before
we will denote the coefficient of qi in g(P, F ) by gi(P, F ).

We have the following notion of relative flag numbers. Let P be a d-polytope,
and F a face of dimension e. Given a sequence of integers I = (i1, . . . , in) with
0 ≤ i1 < i2 < · · · < in ≤ d and a number 1 ≤ k ≤ n with ik ≥ e, define the relative
flag number fI,k(P, F ) to be the number of I-flags (F1, . . . , Fn) with F ≤ Fk. Note
that letting k = n and in = d gives the ordinary flag numbers of P as a special
case. Also note that the numbers fI,k where ik = e give products of the form
fJ(F )fJ′(P/F ), and all such products can be expressed this way.

Proposition 3. Fixing dimP and dimF , the relative g-number gi(P, F ) is a Z-
linear combination of the fI,k(P, F ).

Proof. Use induction on dimP/F . If P = F , then we have g(P, P ) = g(P ) and
the result is just the corresponding result for the ordinary flag numbers. If P 6= F ,
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the equation (1) gives

g(P, F ) = g(P )−
dimP−1∑
e=dimF

∑
dimE=e
F≤E<P

g(E,F )g(P/E).

For every e the coefficients of the inner summation on the right hand side are
Z-linear combinations of the fI,k(P, F ), using the inductive hypothesis. �

The following theorem is the main result of this paper. It will be a consequence
of Theorem 11.

Theorem 4. If P is a rational polytope and F is any face, then gi(P, F ) ≥ 0 for
all i.

Corollary 5. (Kalai’s conjecture) If P is a rational polytope and F is any face,
then

g(P ) ≥ g(F )g(P/F ),

where the inequality is taken coefficient by coefficient.

Proof. For any face E of P the polytope P/E is rational, so we have g(P ) =
g(F, F )g(P/F ) + other nonnegative terms. �

3. Some examples and formulas

This section contains further combinatorial results on the relative g-polynomials.
They are not used in the remainder of the paper.

First, we give an interpretation of g1(P, F ) and g2(P, F ) analogous to the ones
Kalai gave for the usual g1 and g2 in [10]. We begin by recalling those results from
[10].

Given a finite set of points V ⊂ Rd define the space Aff(V ) of affine dependen-
cies of V to be

{ a ∈ RV | Σv∈V av = 0, Σv∈V av · v = 0 }.

If VP is the set of vertices of a polytope P ⊂ Rd, then Aff(VP ) is a vector space of
dimension g1(P ).

To describe g2(P ) we need the notion of stress on a framework. A framework
Φ = (V,E) is a finite collection V of points in Rd together with a finite collection
E of straight line segments (edges) joining them. Given a finite set S, we denote
the standard basis elements of RS by 1s, s ∈ S. The space of stresses S(Φ) is the
kernel of the linear map

α:RE → RV ⊗ Rd,
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defined by
α(1e) = 1v1 ⊗ (v1 − v2) + 1v2 ⊗ (v2 − v1),

where v1 and v2 are the endpoints of the edge e. A stress can be described
physically as an assignment of a contracting or expanding force to each edge, such
that the total force resulting at each vertex is zero.

To a polytope P we can associate a framework ΦP by taking as vertices the
vertices of P , and as edges the edges of P together with enough extra edges to
triangulate all the 2-faces of P . Then g2(P ) is the dimension of S(ΦP ).

Given a polytope P and a face F , define the closed union of faces N(P, F )
to be the union of all facets of P containing F . Note that N(P, ∅) = ∂P , and
N(P, P ) = ∅. Let VN be the set of vertices of P in N(P, F ), and define a framework
ΦN by taking all edges and vertices of ΦP contained in N(P, F ).

Theorem 6. We have

g1(P, F ) = dimRAff(VP )/Aff(VN ), and

g2(P, F ) = dimR S(ΦP )/S(ΦN ),

using the obvious inclusions of Aff(VN ) in Aff(VP ) and S(ΦN ) in S(ΦP ).

The proof for g1 is an easy exercise; the proof for g2 will appear in a forthcoming
paper [3].

Next, we have a formula which shows that g(P, F ) can be decomposed in the
same way g(P ) was in Proposition 2. Given two faces E,F of a polytope P , let
E ∨ F be the unique smallest face containing both E and F .

Proposition 7. For any polytope P and faces F ′ ≤ F of P , we have

g(P, F ) =
∑
F ′≤E

g(E,F ′)g(P/E, (E ∨ F )/E).

Proof. Again, we show that this formula for g(P, F ) satisfies the defining relation
of Proposition 2. Fix F ′ ≤ F , and define ĝ(P, F ) to be the above sum. Then we
have ∑

F≤D
ĝ(D,F )g(P/D) =

∑
F ′≤E
F∨E≤D

g(P/D)g(E,F ′)g(D/E, (E ∨ F )/E)

=
∑
F ′≤E

g(E,F ′)g(P/E)

= g(P ).
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Since the computation of g(P, F ) from Proposition 2 only involves computation of
g(E,F ) for other faces E of P , this proves that ĝ(P, F ) = g(P, F ), as required. �

Finally, we can carry out the inversion implicit in Proposition 2 explicitly. First
we need the notion of polar polytopes. Given a polytope P ⊂ Rd, we can assume
that the origin lies in the interior of P by moving P by an affine motion. The
polar polytope P ∗ is defined by

P ∗ = { x ∈ (R∗)d | 〈x, y〉 ≤ 1 for all y ∈ P }.

The face poset F(P ∗) is canonically the opposite poset to F(P ). Define ḡ(P ) =
g(P ∗).

Proposition 8. We have

g(P, F ) =
∑

F≤F ′≤P
(−1)dimP−dimF ′g(F ′)ḡ(P/F ′). (2)

Proof. We use the following formula, due to Stanley [15]: For any polytope P 6= ∅,
we have ∑

∅≤F≤P
(−1)dimF ḡ(F )g(P/F ) = 0. (3)

Now define ĝ(P, F ) to be the right hand side of (2). We will show that the defining
property (1) of Proposition 2 holds.

Pick a face F of P . We have, using (3),

∑
F≤E≤P

ĝ(E,F )g(P/E) =
∑

F≤F ′≤E≤P
(−1)dimE−dimF ′g(F ′)ḡ(E/F ′)g(P/E)

=
∑

F≤F ′≤P
g(F ′)

∑
F ′≤E≤P

(−1)dimE−dimF ′ ḡ(E/F ′)g(P/E)

= g(P ),

as required. �
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Introduction to §§4 - 6

The remainder of the paper uses the topology of toric varieties to describe the
polynomial g(P, F ) when P is rational. Given P , there is an associated affine toric
variety XP , and g(P ) gives the local intersection cohomology betti numbers of XP

at the unique torus fixed point p.
The main topological result is the following (Theorem 10). Let Y ⊂ XP be

the closure of one of the torus orbits. Then the restriction of the intersection
cohomology sheaf IC·(X) to Y is a direct sum of intersection cohomology sheaves,
with shifts, supported on subvarieties of Y (a related result is given by Victor
Ginzburg in [8], Lemma 3.5). The polynomial gi(P, F ) measures the number of
copies of the intersection cohomology sheaf IC·({p}) that appear with shift 2i in
the restriction of the intersection cohomology sheaf of XP to YF , where YF is the
closure of the orbit corresponding to the face F .

To prove Theorem 10 we construct a certain resolution (the Seifert resolution,
§5) p: X̃ → X of X . Its key property is that the inclusion of Ỹ = p−1(Y ) in X̃ is
“Q-homology normally nonsingular” - the restriction of the intersection cohomol-
ogy sheaf of X̃ to Ỹ is an intersection cohomology sheaf (Proposition 14).

This construction, and hence Theorem 10, work in situations other than toric
varieties; essentially any variety X with a C∗ action contracting X onto the fixed
point set Y will satisfy Theorem 10. The proof we give, while easier than the
general result, only works for toric varieties.

4. Toric varieties

We will only sketch the properties of toric varieties that we will need. For a more
complete presentation, see [7]. Throughout this section let P be a d-dimensional
rational polytope in Rd.

Define a toric variety XP as follows. Embed Rd into Rd+1 by

(x1, . . . , xd) 7→ (x1, . . . , xd, 1),

and let σ = σP be the cone over the image of P with apex at the origin in Rd+1.
It is a rational polyhedral cone with respect to the standard lattice N = Zd+1.
More generally, if F is a face of P , let σF be the cone over the image of F ; set
σ∅ = {0}.

Define X = XP to be the affine toric variety Xσ corresponding to σ. It is the
variety SpecC[M ∩ σ∨], where

σ∨ = {x ∈ (Rd+1)∗ | 〈x,y〉 ≥ 0 for all y ∈ σ }

is the dual cone to σ, M is the dual lattice to N , and C[M ∩ σ∨] is the semigroup
algebra of M ∩ σ∨. It is a (d+ 1)-dimensional normal affine algebraic variety, on
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which the torus T = Hom(M,C∗) acts. Let fv:XP → C be the regular function
corresponding to the point v ∈M ∩ σ∨.

The orbits of the action of T on X are parametrized by the faces of P . Let F
be any face of P , including the empty face, and let

σ⊥F = {x ∈ σ∨ | 〈x,y〉 = 0 for all y ∈ σF }

be the face of σ∨ dual to σF . Then the variety

OF := { x ∈ X | fv(x) 6= 0 ⇐⇒ v ∈M ∩ σ⊥F }

is a T -orbit, isomorphic to the torus (C∗)d−e, where e = dimF . Furthermore, all
T -orbits arise this way. In particular, XP has a unique T -fixed point {p} = OP .

Given a face E, the union

UE =
⋃
F≤E

OF

is a T -invariant open neighborhood of OE . There is a non-canonical isomorphism
UE ∼= OE × XE where XE is the affine toric variety defined by the cone σE ,
considered as a subset of the affine it spans, with the lattice given by restricting
N . If OEF denotes the orbit of XE corresponding to a face F ≤ E, then OF sits in
UE ∼= OE ×XE as OE ×OEF .

The closure of the orbit OE is given by

OE =
⋃
F≥E

OF ;

it is isomorphic to the affine toric variety XP/E . More precisely, it is the affine
toric variety corresponding to the cone τ = σ/σE , the image of σ projected into
Rd+1/ spanσE , with the lattice given by the projection of N ; τ is a cone over a
polytope projectively equivalent to P/E.

The connection between toric varieties and g-numbers of polytopes is given
by the following result. Proofs appear in [5, 6]. We consider the intersection
cohomology sheaf IC·(X) of a variety X as an object in the bounded derived
category Db(X) of sheaves of Q-vector spaces on X . We will take the convention
that IC·(X) restricts to a constant local system placed in degree zero on an smooth
open subset of X .

Proposition 9. The local intersection cohomology groups of XP are described as
follows. Take x ∈ OF , and let jx be the inclusion. Then

dimH2ij∗xIC
·(XP ) = gi(F ),

and Hkj∗xIC·(XP ) vanishes for odd k.
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Definition. Call an object A in Db(X) pure if it is a direct sum of shifted inter-
section cohomology sheaves ⊕

α

IC·(Zα;Lα)[nα], (4)

where each Zα is an irreducible subvariety of X , Lα is a simple local system on a
Zariski open subset Uα of the smooth locus of Zα, and nα is an integer.

Now fix a face F of P . The following theorem is the main result of this paper.
It will be proved in the following two sections.

Theorem 10. Let j:OF→XP be the inclusion. Then the pullback A=j∗IC·(XP )
of the intersection cohomology sheaf on XP is pure.

As a result, since the local intersection cohomology exists only in even degrees
and gives trivial local systems on the orbits OY , we get

A =
⊕
E≥F

⊕
i≥0

IC·(OE)[−2i]⊗ V iE , (5)

for some finite dimensional Q-vector spaces V iE .
Now we can give an interpretation of the combinatorially defined polynomials

g(P, F ) for rational polytopes which implies nonnegativity, and hence Theorem 4.
Let {p} = OP be the unique T -fixed point of XP .

Theorem 11. The relative g-number gi(P, F ) is given by

gi(P, F ) = dimQ V
i
P .

Proof. Taking this for the moment as a definition of g(P, F ), we will show that the
defining relation of Proposition 2 holds. It will be enough to show that dimQ V

i
E =

g(E,F ) for a face F ≤ E 6= P , since then taking the dimensions of the stalk
cohomology groups on both sides of (5) gives exactly the desired relation (1).

Consider the commutative diagram of inclusions

OEF
j′

−−−−→ XE

k′
y yk
OF

j
−−−−→ XP

where k maps XE
∼= {x}×XE into OE×XE

∼= UE ⊂ XP , and k′ is the restriction
of k.
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Then k is a normally nonsingular inclusion, so we have

(j′)∗k∗IC·(XP ) = (j′)∗IC·(XE) =⊕
F≤F ′≤E

⊕
i≥0

IC·(OEF ′)[−2i]⊗W i
F ′

for some vector spaces W i
F ′ . On the other hand, since k′ is a normally nonsingular

inclusion, it is also equal to

(k′)∗j∗IC·(XP ) =
⊕

F≤F ′≤E

⊕
i≥0

IC·(OEF ′)[−2i]⊗ V iF ′ .

Where the V iF ′ are as in (5).
Comparing terms, we see that W i

E
∼= V iE , so we have

dimQ V
i
E = dimQW

i
E = gi(E,F ),

as required. �

5. The Seifert resolution

Fix a face F of the polytope P , and let τ = σF , X = XP , Y = YF . Our proof
of Theorem 10 involves constructing a certain resolution X̃ of X , which we call a
Seifert resolution of the pair (X,Y ). First we need to choose an action of C∗ on
X for which Y is the fixed-point set.

Let a be any lattice point in the relative interior of the cone τ . Define the
rank-one subtorus Ta ⊂ T ∼= Hom(M,C∗) to be the kernel of the restriction

Hom(M,C∗)→ Hom(M ∩ a⊥,C∗).

The mapM → Z given by pairing with a defines a homomorphism C∗=Hom(Z,C∗)
→ T = Hom(M,C∗) with image contained in Ta, thus defining an action of C∗ on
X .

Proposition 12. Y is the fixed-point set of this action, and for any x ∈ X we
have

lim
t→0

t · x ∈ Y.

We say that Y is an attractor for the C∗ action.
Let X◦ = X \Y . By the proposition above, the map X◦×C∗ → X◦ defined by

our C∗ action extends to a map X◦×C→ X . Let X̃ be the quotient X◦×C/ ∼,
where the equivalence relation is given by

(x, s) ∼ (t · x, t−1s)
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for t ∈ C∗. There is an induced map p: X̃ → X . We can let T act on X◦ × C by
acting on the first factor; this action passes to X̃, and p is an equivariant map.
Let Ỹ = p−1(Y ), X̃◦ = p−1(X◦).

Proposition 13. The map p is proper, and restricts to an isomorphism X̃◦ ∼= X◦.
Furthermore, Ỹ ∼= (X◦ × {0})/C∗ is a divisor in X̃, and is an attractor for the
the C∗ action on X̃ defined by the lattice point a.

We call the pair (X̃, Ỹ ) a Seifert resolution of (X,Y ). The action of T makes
X̃ into a toric variety. An explicit description of its fan will be useful. Take a fan
consisting of all cones of the form ρ and ρa = ρ+R≥0a, where ρ runs over all faces
of σ which do not contain τ . Then X̃ is the toric variety defined by this fan, and
Ỹ is the union of the orbits corresponding to the cones ρa.

The inclusion ̃: Ỹ → X̃ looks almost like the inclusion of the zero section of a
line bundle; for instance, if X is conical, Y = {p} is the cone point and a is chosen
to give the conical C∗ action, then X̃ is just the blow-up of X along Y .

Proposition 14. There is an isomorphism

̃∗IC·(X̃) ∼= IC·(Ỹ ).

We will prove this in the next section; first, we show how it implies Theorem
10. Consider the fiber square

Ỹ
̃

−−−−→ X̃yq yp
Y

j
−−−−→ X

where q = p|
Ỹ

. Because p and q are proper we have

Rq∗̃
∗IC·(X̃) ∼= j∗Rp∗IC·(X̃).

The left hand side is Rq∗IC·(Ỹ ) by Proposition 14, which is pure by the decompo-
sition theorem [2]. The decomposition theorem also implies that A = Rp∗IC·(X̃)
is pure, and because X̃ → X is an isomorphism on a Zariski dense subset, the
intersection cohomology sheaf of X must occur in A with zero shift. Thus the
right hand side becomes

j∗(IC·(X))⊕ j∗A′,
where A′ is pure. Theorem 10 now follows from the following lemma.

Lemma 15. If A,B are objects in Db(X) and A⊕B is pure, then so is A.
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Proof. Denote A⊕B by C. Since C is pure, it is isomorphic to the direct sum⊕
i∈Z

pHi(C)[−i]

of its perverse homology sheaves. Each pHi(C) = pHi(A) ⊕ pHi(B) is a pure
perverse sheaf, and since the category of perverse sheaves is abelian, pHi(A) is
pure. Then the composition⊕

pHi(A)[−i]→
⊕

pHi(C)[−i] ∼= C→ A

induces an isomorphism on all the perverse homology sheaves, and hence is an
isomorphism (see [2], §1.3). �

6. Proof of Proposition 14

Let A = ̃∗IC·(X̃). We will show that A satisfies the vanishing conditions for
intersection cohomology on the stalk and costalk cohomology groups [9], and thus
must be isomorphic to IC·(Ỹ ).

If X̃ is a line bundle over Ỹ , the result is immediate. In general, we can
take a quotient by a finite group which acts trivially on Ỹ and get a line bundle.
This works for more general varieties than toric varieties, but for our purposes a
combinatorial proof will suffice.

We continue the notation of the previous section. For each face ρ not containing
τ , let nρ be the index of the lattice (N ∩ span(ρ)) + aZ in N . If n = lcmnρ, then
we can define a lattice N ′ = N + (a/n)Z containing N . We get a corresponding
map of tori T → T ′; the kernel G is a finite cyclic group inside Ta.

Proposition 16. The quotient X̃/G is a line bundle over Ỹ /G ∼= Ỹ .

Using this, we prove Proposition 14. We can retract X̃ onto Ỹ using the C∗
action; we get an isomorphism

A ∼= Rπ∗IC·(X̃),

where π: X̃ → Ỹ is the projection defined by the action.
For a point y ∈ Ỹ , we can find a neighborhood N ⊂ Ỹ of y so that the stalk

and costalk cohomology groups of A are given by

Hii∗yA = IHn−i(π−1(N), π−1(∂N)),

Hii!yA = IHn−i(π−1(N)).
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Since G ⊂ Ta, elements of G preserve the fibers of π and act by transfor-
mations which are isotopic to the identity. Thus G acts trivially on the stalks
and costalks of A. The following lemma then shows that they are isomorphic to
IHn−i(π−1(N)/G, π−1(∂N)/G) and IHn−i(π−1(N)/G), respectively, and hence
to IHn−i(N, ∂N) and IHn−i(N), since X̃/G is a line bundle over Ỹ . The required
vanishing follows immediately.

Lemma 17. Let X be a pseudomanifold, acted on by a finite group G, and let Y
be a G-invariant subspace. Then there is an isomorphism

IH∗(X/G, Y/G;Q) ∼= IH∗(X,Y ;Q)G

between the intersection homology of the pair (X/G, Y/G) and the G-stable part
of the intersection homology of (X,Y ).

Proof. Give X a G-invariant triangulation. Then the intersection homology of X
can be expressed by means of simplicial chains of the barycentric subdivision, see
[13, Appendix]. Now the standard argument in [4, p. 120] can be applied. �
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